Overview

- Model Classifications
- Hierarchy of System Specification
 - 1. Time Base
 - 2. Segments and Trajectories
 - 3. I/O Observation Frame
 - 4. I/O Observation Relation
 - 5. I/O Function Observation
 - 6. I/O System, Classification re-visited
 - 7. Iterative Specification of Systems
 - 8. Structured Systems
 - 9. Coupled Systems

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

1/44

Different Model Type Classifications

- well-defined (white box) vs. ill-defined (black box)
- continuous vs. discrete
- deterministic vs. stochastic
- graphical vs. textual
- . . .
- which formalism?

Arch of Karplus

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

3/44

Hierarchy of system specification

Set Theory for Abstraction

$$\{1,2,\ldots,9\}$$
 $\{a,b,\ldots,z\}$
 $\mathbb{N},\mathbb{N}^+,\mathbb{N}_{\infty}^+$
 $\mathbb{R},\mathbb{R}^+,\mathbb{R}_{\infty}^+$
 $EV = \{ARRIVAL, DEPARTURE\}$
 $EV^{\phi} = EV \cup \{\phi\}$
 $A \times B = \{(a,b) | a \in A, b \in B\}$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

5/44

Time Base

$$time = \langle T, < \rangle$$

- Dynamic system: irreversible passage of time.
- Set T, ordering relation < on elements of T.
 - transitive: $A < B \land B < C \Rightarrow A < C$
 - irreflexive: $A \not < A$
 - antisymmetric: $A < B \Rightarrow B \not< A$
- *Total* (linear) ordering $\forall t, t' \in T : t < t' \lor t' < t \lor t = t'$
- Partial ordering: uncertainty or multiplicity.

Past, Future, Intervals

- Past: T_t = $\{\tau | \tau \in T, \tau < t\}$
- Future: $T_{(t)} = \{\tau | \tau \in T, t < \tau\}$
- $\langle t \text{ means } (t \text{ or } [t]) \rangle$
- Interval $T_{\langle t_b, t_e \rangle}$
- ullet Abelian group (T,+) with zero 0 and inverse -t
- Order preserving +: $t_1 < t_2 \Rightarrow t_1 + t < t_2 + t$
- Lower bound, upper bound
- ullet Time bases: ${\mathbb R}$: continuous, ${\mathbb N}$ or isomorphic: discrete

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

7/44

Time Bases

continuous, discrete, partial ordering

Segments and Trajectories

- With time base, describe behaviour over time
- Time function, *trajectory*, signal: $f: T \rightarrow A$
- Restriction to $T' \subseteq T$ $f|T':T' \to A, \ \forall t \in T': f|T'(t) = f(t)$
- Past of f: $f|T_t\rangle$
- Future of f: $f|T_{t}$
- Restriction to an interval: segment $\omega: \langle t_1, t_2 \rangle \to A$
- $\Omega = (A, T)$ set of all segments

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

9/44

Segments

- Length $l:\Omega \to T_0^+$
- Contiguous segments if domains are contiguous $\langle t_1, t_2 \rangle, \langle t_3, t_4 \rangle, t_2 = t_3$
- Concatenation of contiguous segments: ω₁ ω₂

$$\omega_1 \bullet \omega_2(t) = \omega_1(t), \forall t \in dom(\omega_1)$$

- $\omega_1 \bullet \omega_2(t) = \omega_2(t), \forall t \in dom(\omega_2)$
- Must remain function: unique values!

ullet Ω closed under concatenation

Left and right segments:

$$\omega_{t\rangle} \bullet \omega_{\langle t} = \omega$$

Types of Segments

- Continous: $\omega : \langle t_1, t_2 \rangle \to \mathbb{R}^n$
- Piecewise continuous
- Piecewise constant
- Event segments: $\omega: \langle t_1, t_2 \rangle \to A \cup \{\phi\}$
- Correspondence between piecewise constant and event segments (later, state trajectory)

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

11/44

Observation Frame

$$O = \langle T, X, Y \rangle$$

- *T* is *time-base*: \mathbb{N} (discrete-time), \mathbb{R} (continuous-time)
- *X* input value set: \mathbb{R}^n , EV^{ϕ}
- *Y* output value set: system response

I/O Relation Observation

$$IORO = \langle T, X, \Omega, Q, Y, R \rangle$$

- $\langle T, X, Y \rangle$ is Observation Frame
- Ω is the set of all possible input segments
- R is the I/O relation $\Omega \subseteq (X,T), R \subseteq \Omega \times (Y,T)$ $(\omega, \rho) \in R \Rightarrow dom(\omega) = dom(\rho)$
- $\omega : \langle t_i, t_f \rangle \to X$ input *segment*
- $\rho: \langle t_i, t_f \rangle \to Y$ output *segment*
- note: not really necessary to observe over same time domain

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

13/44

I/O Function Observation

$$SYS = \langle T, X, \Omega, Q, Y, F \rangle$$

- $\langle T, X, Y \rangle$ is Observation Relation Observation
- Ω is the set of all possible input segments
- F is the *set of I/O functions* $f \in F \to f \subset \Omega \times (Y,T)$ f is a function such that $dom(f(\omega)) = dom(\omega)$
- $f = initial \ state$: unique response to ω
- $R = \bigcup_{f \in F} f$

$$SYS = \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$$

$$T$$
 time base X input set $\omega: T \to X$ input segment Q state set $\delta: T \times \Omega \times Q \to Q$ transition function Y output set $\lambda: Q \to Y$ output function

$$\forall t_x \in [t_i, t_f] : \delta(t_i, \omega_{[t_i, t_f]}, q_i) = \delta(t_x, \omega_{[t_x, t_f]}, \delta(t_i, \omega_{[t_i, t_x]}, q_i))$$

Closure: Ω closed under concatenation and left segmentation.

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

15/44

System under study: T,h controlled liquid

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

17/44

Detailed (continuous) view, ALG + ODE formalism

Inputs (discontinuous \rightarrow hybrid model):

- Emptying, filling flow rate φ
- Rate of adding/removing heat W

Parameters:

- Cross-section surface of vessel A
- Specific heat of liquid c
- Density of liquid ρ

State variables:

- Temperature T
- Level of liquid l

Outputs (sensors):

• is_low, is_high, is_cold, is_hot

$$\begin{cases} \frac{dT}{dt} &= \frac{1}{l} \left[\frac{W}{c\rho A} - \phi T \right] \\ \frac{dl}{dt} &= \phi \\ is low &= (l < l_{low}) \\ is high &= (l > l_{high}) \\ is cold &= (T < T_{cold}) \\ is hot &= (T > T_{hot}) \end{cases}$$

$$SYS_{VESSEL}^{ODE} = \langle \mathcal{T}, X, \Omega, Q, \delta, Y, \lambda \rangle$$

$$\mathcal{T} = \mathbb{R}$$

$$X = \mathbb{R} \times \mathbb{R} = \{(W, \phi)\}$$

$$\omega: \mathcal{T} \to X$$

$$Q = \mathbb{R}^+ \times \mathbb{R}^+ = \{(T, l)\}$$

$$\delta: \Omega \times Q \to Q$$

$$\delta(\omega_{[t_i,t_f]},(T(t_i),l(t_i))) =$$

$$(T(t_i) + \int_{t_i}^{t_f} \frac{1}{l(\alpha)} \left[\frac{W(\alpha)}{c \rho A} - \phi(\alpha) T(\alpha) \right] d\alpha, \ l(t_i) + \int_{t_i}^{t_f} \phi(\alpha) d\alpha)$$

$$Y = \mathbb{B} \times \mathbb{B} \times \mathbb{B} \times \mathbb{B} = \{(\textit{is_low}, \textit{is_high}, \textit{is_cold}, \textit{is_hot})\}$$

$$\lambda: O \to Y$$

$$\lambda(T, l) = ((l < l_{low}), (l > l_{high}), (T < T_{cold}), (T > T_{hot}))$$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

19/44

High-level (discrete) view, FSA formalism

$$SYS_{VESSEL}^{FSA} = \langle \mathcal{T}, X, \Omega, Q, \delta, Y, \lambda \rangle$$

$$T = \mathbb{N}$$

$$X = \{heat, cool, off\} \times \{fill, empty, closed\}$$

$$\omega : T \to X$$

$$Q = \{cold, T_{between}, hot\} \times \{empty, l_{between}, full\}$$

$$\delta : \Omega \times Q \to Q$$

$$\delta((off, fill), (cold, empty)) = (cold, l_{between})$$

$$\delta((off, fill), (cold, l_{between})) = (cold, full))$$

$$\delta((off, fill), (cold, full))) = (cold, full))$$

$$\vdots$$

$$\delta((heat, fill), (hot, full))) = (hot, full))$$

$$Y = \mathbb{B} \times \mathbb{B} \times \mathbb{B} \times \mathbb{B}$$

$$\lambda : Q \to Y$$

$$\lambda(T, l) = ((l = low), (l = high), (T = cold), (T = hot))$$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

21/44

In SYS: δ is deterministic, but . . .

Discrete-event models ($T = \mathbb{R}$, finite non- ϕ)

- Specification and analysis of behaviour
 - physical systems (time-scale, parameter abstraction) queueing systems
 - non-physical systems (software)
- Traditionally: World Views
 - 1. Event Scheduling
 - 2. Activity Scanning
 - 3. Three Phase Approach
 - 4. Process Interaction
- Emulate non-determinism by deterministic + pseudo RNG
- All can be represented as DEVS

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

23/44

Formalism classification based on general system model

	T: Continuous	T: Discrete	T: { NOW }
Q: Continuous	DAE	Difference Eqns.	Algebraic Eqns.
Q: Discrete	Discrete-event	Finite State Automata	Integer Eqns.
	Naive Physics	Petri Nets	

Basis for **general**, **standard software architecture of simulators**Other classifications based on **structure of formalisms**

Simulation Kernel Operation

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

25/44

Model-Solver Architecture

Difference Equations (solving may be symbolic)

$$\begin{cases} x_1 &= 1 \\ x_{i+1} &= ax_i + 1 \end{cases}$$

$$x_n &= 1 + a + a^2 + \dots + a^{n-1}$$

$$ax_n &= a + a^2 + \dots + a^{n-1} + a^n$$

$$\implies x_n (1 - a) = 1 - a^n$$

$$\implies x_n = \frac{1 - a^n}{a - a}$$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

27/44

Iterative Specification of Systems

- Iterative Application of Generator Segments
- Elementary Segments, generate any input segment
- Generator State Transition function, apply iteratively

State set can be product set

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

29/44

Adding Structure

- no structure is imposed on sets upto now
- additional information: construct sets from primitives
- cross-product ×
- building concrete systems from building blocks
- ullet system o structured system
- ullet structured sets and functions \sim *variables*

Multivariable Sets

Variables, coordinates, ports v_i

$$V = (v_1, v_2, \dots, v_n)$$
 $S_1, S_2, \dots S_n$ $S = (V, S_1 \times S_2 \times \dots S_n)$

Projection operator

$$: S \times V \to \bigcup_{j=1}^{n} S_{j}, S.v_{i} = s_{i}$$

$$: S \times 2^{V} \to \bigcup_{v \in 2^{V}} \times_{j \in V} S_{j}, S.(v_{i}, v_{j}, \dots) = s.v_{i}, s.v_{j}, \dots$$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

31/44

Examples

Ports

$$X_1 = ((heatFlow, liquidFlow), \mathbb{R} \times \mathbb{R})$$

 $x \in X_1, x.heatFlow$

Variables

$$S_1 = ((temperature, level),]0.0, 100.0[\times [0, H])$$

$$S_2 = ((qLength, cashStatus), \mathbb{N} \times \{Idle, Busy\})$$

$$s \in S_2, s.qLength$$

Structured Functions

$$f: A \rightarrow B$$

with A and B structured sets

Projection

$$f.b_i: A \to ((b_i), B_i),$$

 $f.b_i(a) = f(a).b_i$

$$f.(b_i,b_j,\ldots):A\to ((b_i,b_j,\ldots),B_i\times B_j\times\ldots)$$
$$f.(b_i,b_j,\ldots)(a)=f(a).(b_i,b_j,\ldots)$$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

33/44

Structured System

$$S = \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$$

 X, Q, δ, Y, λ

are structured sets/functions

similarly, structured IOR, structured IOF, ...

Non-modular Multicomponent Specification

- Collections of interacting components
- Compositional modelling
- Modular (through ports) vs. non-modular (direct interaction)
- Direct interaction through transition function

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

35/44

Multicomponent System

$$MC = \langle T, X, \Omega, Y, D, \{M_d | d \in D\} \rangle$$

 $M_d = \langle Q_d, E_d, I_d, \delta_d, \lambda_d \rangle, \forall d \in D$

- *D* is a set of component *references/names*
- Q_d is the state set of component d
- ullet $I_d\subseteq D$ is the set of *influencers* of d
- $E_d \subseteq D$ is the set of *influencees* of d
- δ_d is the *state transition function* of d $\delta_d: \times_{i \in I_d} Q_i \times \Omega \rightarrow \times_{j \in E_d} Q_j$
- λ_d is the *output function* of d $\lambda_d: \times_{i \in I_d} Q_i \times \Omega \rightarrow Y$

Constraints to keep DTSS and ODE meaningful

- $E_d = \{d\}$
- $Y = \times_{d \in D} Y_d$
- $Q = \times_{d \in D} Q_d$
- $\delta(q, \omega).d = \delta_d(\times_{i \in I_d} q_i, \omega)$
- $\lambda(q, \omega).d = \lambda_d(\times_{i \in I_d} q_i, \omega)$
- Less constrained for Discrete Event

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

37/44

Example: GPSS model

Coupled or Network System

$$N = \langle T, X_N, Y_N, D, \{M_d | d \in D\}, \{I_d | d \in D \cup \{N\}\}, \{Z_d | d \in D \cup \{N\}\} \rangle$$

- X_N and Y_N are external network inputs and outputs
- *D* is a set of component *references* or *names*
- ullet M_d is an I/O system, for all components d
- $I_d \subseteq D \cup \{N\}$ is the set of *influencers* of d
- $ullet Z_d: imes_{i\in I_d} YX_i o XY_d ext{ is the } ext{interface map for } d \ YX_i = X_i ext{ if } i = N, YX_i = Y_i ext{ if } i
 eq N \ XY_d = Y_d ext{ if } d = N, YX_d = Y_d ext{ if } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 eq N \ XY_d = Y_d ext{ of } d
 ext{ of$

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

39/44

Example

Flattening/Closure under coupling

$$\langle T, X_N, Y_N, D, \{M_d | d \in D\}, \{I_d | d \in D \cup \{N\}\}, \{Z_d | d \in D \cup \{N\}\}\} \rangle$$
$$\rightarrow \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$$

- Discrete Event (later, DEVS)
- Continuous
 - unique names (scope resolution)
 - connect(M1.o,M2.i) $\equiv M2.i := M1.o \rightarrow \#I_d \leq 1$
 - closure of the ALG+ODE formalism
- Allows for *hierarchy*

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

41/44

Structured Coupled System Specification

- Structured interfaces (ports)
- External Input Coupling (EIC)
- External Output Coupling (EOC)
- Internal Coupling (IC)
- $N = \langle T, X_N, Y_N, D, \{M_d | d \in D\}, EIC, EOC, IC \rangle$
- range constraints
- special case of Coupled System
 - Influencers
 - Interface Map

Transforming Non-modular into Modular Specification

McGill, 18/20 September, 2000

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

43/44

Hierarchy of system specification

