
Discrete Event Modelling and Simulation

� Model : objects and relationships among objects

� Object : characterized by attributes to which values can be assigned

� Attributes:

– indicative

– relational

� Values: of a type
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Time and State Relationships

� Indexing Attribute: enables state transitions

Time is most common.

� Instant: value of System Time at which the value of at least one attribute

of an object can be assigned.

� Interval: duration between two successive instants.

� Span: contiguous succession of one or more intervals.

� State of an object: enumeration of all attribute values at a particular

instant.

� State of the system: all object states as a particular instant.
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Single Server Queueing System
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Queueing System State Trajectory
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Example Problem
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Example Parameters
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Time and State Relationships

� Activity: state of an object over an interval

� Event: change in object state, occurring at an instant. Initiates an

activity.

– Determined: occurrence based on time

– Contingent: system conditions

� Object activity: state of object between two events for that object.

� Process: succession of states of object over a span
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Event/Object Activity/Process
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Event vs. Activity vs. Process
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Cashier-queue Event List
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Event Scheduling

� Identify objects and attributes

� Identify attributes of the system

� Define what causes changes in attribute value as event

� Write event routine for each event

� Follow event scheduling logic
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Event Scheduling Kernel (1)
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Event Scheduling Kernel (2)
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Input Generation

� Trace driven

� Auto generating (a model)
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Cashier-queue Event Scheduling Model
declare (and initialise) variables:

queue_length in PosInt = 0

cashier_state in {Idle, Busy} = Idle

declare events:

arrival

departure

define events:

arrival event

schedule arrival relative Random(mean, spread)

if (queue_length == 0)

if (cashier_state == Idle)

cashier_state = Busy

schedule departure relative Random(mean, spread)

else

queue_length++

else /* queue_length != 0 */

queue_length++

departure event

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--

schedule departure relative Random(mean, spread)
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Termination Conditions

� Empty Event List

Need to stop generating arrivals after tend when auto-generating arrivals

� Schedule Termination Event (caveat)

– process statistics

– cleanup

– stop

� Similarly: schedule initialisation/setup
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Activity Scanning (rule-based)

� condition: must be satisfied for activity to take place.

Becomes true only at event times.

� actions: operations performed when condition becomes true
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Activity Scanning
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Cashier-queue Activity Scanning Model
declare (and initialise) variables:

queue_length in PosInt = 0

cashier_state in {Idle, Busy} = Idle

t_arrival = 0, t_depart = plusInf

define conditions:

arrival condition: t >= t_arrival

if (queue_length == 0)

if (cashier_state == Idle)

keep queue_length == 0

cashier_state = Busy

t_depart = t + Random(mean, spread) /* service time */

else

queue_length++

else /* queue_length != 0 */

queue_length++, keep cashier_state == Busy

t_arrival = t + Random(mean, spread) /* inter arrival time */

departure condition: t >= t_departure

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--, keep cashier_state == Busy

t_depart = t + Random(mean, spread) /* service time */
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Three Phase Approach

� Bound to occur activities: unconditional state changes. Pre-scheduled.

� Conditional activites
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Three Phase Approach
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Process Interaction
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Cashier-Queue: GPSS Process Interaction View
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World Views: Classification

Discrete Formalisms

Discrete Event Formalisms
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McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 24/40



(Pseudo-) Random-number Generators

� SY S model is deterministic + random constructs

� randomness � not enough detail known or don’t care

� randomness: characterized by distribution

� In SY S: draw from distribution and Monte-Carlo run multiple

deterministic simulations.

� Alternative: Markov Chains (analytical).
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Probability Distributions

� Continuous vs. discrete

� Probability Density Function ( f
�
x � )

� Cumulative Probability Function (F
�
X � )

� see probability course: Poisson, Erlang, . . .
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Pseudo-random
� Sample from distribution (U

�
0 � 1 � )

� Reproducability/comparison of experiments !

– science needs reproducable results

– makes debugging easier

– identical random numbers to compare different systems

� Quality of generator:

– appear uniformly distributed

– non-correlated

– fast and doesn’t need much storage

– long period, dense (full) coverage

– provision for streams (subsegments)
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Linear Congruential Generators

Zi �
�
aZi � 1 � c � mod m

m is modulus

a is multiplier

c is increment

Z0 is seed

c � 0 is called multiplicative LCG
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Generators ctd.

� Composite Generators

� Tausworthe generators (operate on bits)

� L’Ecuyer, Devroye (non-uniform)

� Testing RNG: empirical vs. theoretical

� References: Knuth, Law & Kelton
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Marse and Roberts’ portable RNG

Z � i 	 �
�
630360016 
 Z � i � 1 	�� mod

�
231 � 1 �

� Prime modulus multiplicative linear congruential generator.

� Based on Fortran UNIRAN code.

� Multiple (100) streams are supported with seeds spaced 100,000 apart.

� Include file: rand.h

� C file: rand.c

� Example use: randtest.c
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Non-uniform continuously distributed RNG

Inverse Transformation Method
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Gathering Statistics (report generation)

1. counters

2. summary measures

3. utilization

4. occupancy

5. distributions and transit times
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Counters

In all previous examples: keep/update counters !

� numbers of entities of different types in the system

� number of times a particular event occurred

� basis for statistics (performance metrics)
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Summary Measures

� minima and maxima:

compare new values to current min and max, update when necessary

� mean of a set of N observations xi � i � 1 � 2 ��
�
�
�� N

m � 1
N

N

∑
i � 1

xi
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Summary Measures (ctd.)

� standard deviation (from mean)

s � 1
N � 1

N

∑
i � 1

�
m � xi � 2

– need to calculate m first � need to keep all observations

– sum of squares may grow very large (accuracy � )

N

∑
i � 1

�
m � xi � 2 �

N

∑
i � 1

x2
i � Nm2
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Utilization

The fraction (or %) of time each individual entity is engaged

idle

busy

t_b t_et_start t_end
t_b t_e

1 2 i N

time

U � 1
tend � tstart

N

∑
i � 1

�
te � tb � i
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Average Use and Occupancy

for groups and classes of entities
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Average Use and Occupancy (ctd.)

� Average use over time

A � 1
tend � tstart

N

∑
i � 1

ni
�
te � tb � i

� Occupancy: average number in use with respect to MAX

O � 1
N � MAX

N

∑
i � 1

ni
�
te � tb � i
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Distributions and Transit Times

underflow 
zone

overflow 
zone

N intervals

L L+∆ L+2∆ L+(N-1)∆

∆

...

Lower Limit Upper Limit

Number of intervals N, Uniform interval size ∆, Lower tabulation limit L.

Implementation: table of interval counters.

Global accumulation: number of entries, sum of entries, sum of squares.
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Distributions and Transit Times (ctd.)

� Transit times: use clock as time stamp, enter in table at end of transit.

� Distribution of number of entitities: measure at uniform intervals of time.
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