
Discrete Event Modelling and Simulation

� Model : objects and relationships among objects

� Object : characterized by attributes to which values can be assigned

� Attributes:

– indicative

– relational

� Values: of a type

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 1/40

Time and State Relationships

� Indexing Attribute: enables state transitions

Time is most common.

� Instant: value of System Time at which the value of at least one attribute

of an object can be assigned.

� Interval: duration between two successive instants.

� Span: contiguous succession of one or more intervals.

� State of an object: enumeration of all attribute values at a particular

instant.

� State of the system: all object states as a particular instant.

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 2/40

Single Server Queueing System

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 3/40

Queueing System State Trajectory

state=
queue_length x cashier_state

queue_length

T

1

2

0

10 20 30 40 50

cashier_state

Busy

Idle

T10 20 30 40 50

T

Events

Arrival

Departure

10 20 30 40 50

E1 E2 E3 E4

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 4/40

Example Problem

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 5/40

Example Parameters

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 6/40

Time and State Relationships

� Activity: state of an object over an interval

� Event: change in object state, occurring at an instant. Initiates an

activity.

– Determined: occurrence based on time

– Contingent: system conditions

� Object activity: state of object between two events for that object.

� Process: succession of states of object over a span

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 7/40

Event/Object Activity/Process

Cust2 Process

Cust1 Activity

Cust2 Arrival
Cust2 Start Queueing

Cust2 End pay cashier
Cust2 Leave

t

Cust2 End Queueing
Cust2 Start pay cashier

Cust2 Activity

Event

Cust1 Arrival
Cust1 Start pay cashier

Cust1 End pay cashier
Cust1 Leave

Cust1 Process

Cust2 Activity
queue pay cashier

pay cashier

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 8/40

Event vs. Activity vs. Process

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 9/40

Cashier-queue Event List
ARR

10

ARR

20

DEP

30

DEP

30

DEP

50

ARR

110

DEP
50

ARR
110

Current_event

Current_event

Current_event
Update state: Size_of_Q x C

Current_event

Update state: Size_of_Q x C
Schedule next ARRival
Schedule DEParture

Update state: Size_of_Q x C
Schedule next ARRival
Schedule DEParture

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 10/40

Event Scheduling

� Identify objects and attributes

� Identify attributes of the system

� Define what causes changes in attribute value as event

� Write event routine for each event

� Follow event scheduling logic

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 11/40

Event Scheduling Kernel (1)

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 12/40

Event Scheduling Kernel (2)

YES

NO

YES NO

advance t_curr_event
to next event time

remove event from top
of current event list

current event list
empty

?

process top of
current event list
(highest priority)

processing may
schedule new events
at same or
later timefuture event list

empty
?

setup initial events:
 - trace driven
 - self generating

start

stop

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 13/40

Input Generation

� Trace driven

� Auto generating (a model)

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 14/40

Cashier-queue Event Scheduling Model
declare (and initialise) variables:

queue_length in PosInt = 0

cashier_state in {Idle, Busy} = Idle

declare events:

arrival

departure

define events:

arrival event

schedule arrival relative Random(mean, spread)

if (queue_length == 0)

if (cashier_state == Idle)

cashier_state = Busy

schedule departure relative Random(mean, spread)

else

queue_length++

else /* queue_length != 0 */

queue_length++

departure event

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--

schedule departure relative Random(mean, spread)

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 15/40

Termination Conditions

� Empty Event List

Need to stop generating arrivals after tend when auto-generating arrivals

� Schedule Termination Event (caveat)

– process statistics

– cleanup

– stop

� Similarly: schedule initialisation/setup

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 16/40

Activity Scanning (rule-based)

� condition: must be satisfied for activity to take place.

Becomes true only at event times.

� actions: operations performed when condition becomes true

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 17/40

Activity Scanning

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 18/40

Cashier-queue Activity Scanning Model
declare (and initialise) variables:

queue_length in PosInt = 0

cashier_state in {Idle, Busy} = Idle

t_arrival = 0, t_depart = plusInf

define conditions:

arrival condition: t >= t_arrival

if (queue_length == 0)

if (cashier_state == Idle)

keep queue_length == 0

cashier_state = Busy

t_depart = t + Random(mean, spread) /* service time */

else

queue_length++

else /* queue_length != 0 */

queue_length++, keep cashier_state == Busy

t_arrival = t + Random(mean, spread) /* inter arrival time */

departure condition: t >= t_departure

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--, keep cashier_state == Busy

t_depart = t + Random(mean, spread) /* service time */

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 19/40

Three Phase Approach

� Bound to occur activities: unconditional state changes. Pre-scheduled.

� Conditional activites

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 20/40

Three Phase Approach

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 21/40

Process Interaction

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 22/40

Cashier-Queue: GPSS Process Interaction View

 GENERATE 10, 5
 QUEUE wait
 SEIZE cashier
 DEPART wait
 ADVANCE 5, 3
 RELEASE cashier
 TERMINATE 1

M,S

M,S

Q

Q

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 23/40

World Views: Classification

Discrete Formalisms

Discrete Event Formalisms

State Charts

DEVS

Event Scheduling

Activity Scanning

Process Interaction

Discrete Time Formalisms

Finite State
Automata

Difference
Equations

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 24/40

(Pseudo-) Random-number Generators

� SY S model is deterministic + random constructs

� randomness � not enough detail known or don’t care

� randomness: characterized by distribution

� In SY S: draw from distribution and Monte-Carlo run multiple

deterministic simulations.

� Alternative: Markov Chains (analytical).

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 25/40

Probability Distributions

� Continuous vs. discrete

� Probability Density Function (f
�
x �)

� Cumulative Probability Function (F
�
X �)

� see probability course: Poisson, Erlang, . . .

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 26/40

Pseudo-random
� Sample from distribution (U

�
0 � 1 �)

� Reproducability/comparison of experiments !

– science needs reproducable results

– makes debugging easier

– identical random numbers to compare different systems

� Quality of generator:

– appear uniformly distributed

– non-correlated

– fast and doesn’t need much storage

– long period, dense (full) coverage

– provision for streams (subsegments)

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 27/40

Linear Congruential Generators

Zi �
�
aZi � 1 � c � mod m

m is modulus

a is multiplier

c is increment

Z0 is seed

c � 0 is called multiplicative LCG

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 28/40

Generators ctd.

� Composite Generators

� Tausworthe generators (operate on bits)

� L’Ecuyer, Devroye (non-uniform)

� Testing RNG: empirical vs. theoretical

� References: Knuth, Law & Kelton

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 29/40

Marse and Roberts’ portable RNG

Z � i 	 �
�
630360016
 Z � i � 1 	�� mod

�
231 � 1 �

� Prime modulus multiplicative linear congruential generator.

� Based on Fortran UNIRAN code.

� Multiple (100) streams are supported with seeds spaced 100,000 apart.

� Include file: rand.h

� C file: rand.c

� Example use: randtest.c

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 30/40

Non-uniform continuously distributed RNG

Inverse Transformation Method

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 31/40

Gathering Statistics (report generation)

1. counters

2. summary measures

3. utilization

4. occupancy

5. distributions and transit times

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 32/40

Counters

In all previous examples: keep/update counters !

� numbers of entities of different types in the system

� number of times a particular event occurred

� basis for statistics (performance metrics)

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 33/40

Summary Measures

� minima and maxima:

compare new values to current min and max, update when necessary

� mean of a set of N observations xi � i � 1 � 2 ��
�
�
�� N

m � 1
N

N

∑
i � 1

xi

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 34/40

Summary Measures (ctd.)

� standard deviation (from mean)

s � 1
N � 1

N

∑
i � 1

�
m � xi � 2

– need to calculate m first � need to keep all observations

– sum of squares may grow very large (accuracy �)

N

∑
i � 1

�
m � xi � 2 �

N

∑
i � 1

x2
i � Nm2

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 35/40

Utilization

The fraction (or %) of time each individual entity is engaged

idle

busy

t_b t_et_start t_end
t_b t_e

1 2 i N

time

U � 1
tend � tstart

N

∑
i � 1

�
te � tb � i

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 36/40

Average Use and Occupancy

for groups and classes of entities

t_b t_et_start t_end
t_b t_e

time

0

2

4

6

n

MAX

i

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 37/40

Average Use and Occupancy (ctd.)

� Average use over time

A � 1
tend � tstart

N

∑
i � 1

ni
�
te � tb � i

� Occupancy: average number in use with respect to MAX

O � 1
N � MAX

N

∑
i � 1

ni
�
te � tb � i

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 38/40

Distributions and Transit Times

underflow
zone

overflow
zone

N intervals

L L+∆ L+2∆ L+(N-1)∆

∆

...

Lower Limit Upper Limit

Number of intervals N, Uniform interval size ∆, Lower tabulation limit L.

Implementation: table of interval counters.

Global accumulation: number of entries, sum of entries, sum of squares.

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 39/40

Distributions and Transit Times (ctd.)

� Transit times: use clock as time stamp, enter in table at end of transit.

� Distribution of number of entitities: measure at uniform intervals of time.

McGill, 16 October, 2000 hv@cs.mcgill.ca CS 308-767B Modelling and Simulation 40/40

