
Time Slicing Assignment

HansVangheluwe

Fall Term2000

The Tool

Implement(in Python)a modellingandsimulationsystemcom-
posedof

� A causalblock-diagramgraphicalmodeleditor. The look
as well as behaviour of basicbuilding blocks (integrator,
adder, . . .) may be hard-coded. It must be possibleto
create/delete/move (instancesof) basicbuilding blocks as
well asedit their parameters.Building blockscanbe con-
nected.It mustbepossibleto save/loada model. Hint: ex-
port Pythoncodewhich instantiatesthe appropriategraph-
ical objects. This would be exactly the samecodecalled
from the GUI interactively. It mustbe possibleto export a
modelsuitableasinput for a Time Slicing simulator. Hint:
export Pythoncodewhich instantiatesclassesin the Time
Slicingsimulator.� A Time Slicing simulator (pseudocode given in class)
whichtakestheoutputof thegraphicalmodeleditorasinput
aswell as“experiment”informationsuchas

� modelinitial conditionsandparameters,� solverparameterssuchasstep-size.� whereoutputshouldgo (file of outputprocessor).

Structurethesimulatorsoit is easilyembeddedin different
scripts(suchasoptimization).� A graphicaloutput (plot) of generatedtrajectories. Both
time-andphase-plotsareneeded.

The “Cir cle Test”

Testyour time-slicingsimulatorby meansof theequationd2x
dt2

�
� x. Whenx anddx

dt areplottedin functionof oneanother(aphase
plot), acircleshouldresult.

1. Re-writetheequationin theform of asetof first orderequa-
tions.

2. Draw thecorrespondingblock-diagramin thegraphicaled-
itor.

3. Runthesimulationandplot thedatain timeandphaseplots.

4. do the above for a “good” (sufficiently small) integrator
step-sizeas well as for a “bad” (large) step-size(which
shouldnot result in a circle plot). Explain. The “good”
step-sizewill give you an ideaof what step-sizeto usefor
therestof theassignment.Explainwhy it shouldbesmaller
thanthevalueyouusedfor thecircle test.

W
A

L
L

RestLength [m]

W
A

L
L

position x [m]

Mass m [kg]

Mass m [kg]

Figure1: Mass-springsystem

Mass-spring: sim ulation and calibration

Theabovemechanicalsystemconsistsof a massm which glides
without friction over a surface.Themassis connectedto a rigid
wall by meansof an “ideal” spring. In the absenceof external
forces,thesystemis in “rest” stateandthedistanceof thecentre
of gravity of the massobject to the wall is RestLength. At any
instantin time, theposition(distancefrom thewall) of themass
is x.

An experimenthasbeencarriedout wherebythe massm was
measuredaswell asthe RestLength of the spring. m � 0 � 23kg,
RestLength � 0 � 2m. To determinethe springconstantK

�
kg � s2 �

of the ideal spring, the spring is extendedto bring the massat
initial positionx � t � 0 � with initial velocity v � t � 0 � . x � t � 0 � �
0 � 3m, v � t � 0� � 0m � s. (note:in many cases,in asimulation,one
may have to setx(t=0) and/orv(t=0) to a small, non-zerovalue
to avoid the simulatorproviding a trivial (zero)solution to the
systemequations).

Thisexperimentwherebythemassis releasedandobserveddur-
ing thetime interval

�
0 	 4 �

yieldsthefollowing measurementdata
xmeasured in functionof time.

Note: this plot wasproducedin gnuplotfrom the xmeasured data
file (afterremovalof thefirst line) with thefollowing commands:

set xlabel "time t [s]"
set ylabel "position x [m]"
plot "data" title ’measured position x’

1

Figure2: Measureddisplacement(noisy)

When you want a smooth curve rather than points, append
with lines to theplot command.To plot columnB of thedata
file in functionof columnA, appendusing A:B to theplot com-
mand.

With this “noisy” data,we needto “estimate” spring constant
valueK which,whenusedin asimulationof thedynamicsof the
systemx � t � optimally “fits” the measureddata. Notice how we
startwith parameterestimationdirectly andwe skip the “struc-
turecharacterizationphase”in which themostappropriatemath-
ematicalmodelfor this systemis determined.This, aswe have
the a-priori knowledgethat this is a frictionlesssystemandthe
springis “ideal”.

Assignment:

1. Describethe mathematicalequationsfor the dynamicsof
this system(giventheabovea-priori knowledge).

2. As this will yield a higher order differential equation,
rewrite this asasetof first orderdifferentialequations.

3. Representthissetof differentialequationsasacausalblock
diagram.

4. Representthis blockdiagramin your tool.

5. Usethis asinput to your time-slicingsimulator.

6. runmultiplesimulations,varying(with asmallenoughstep-
size)K valuein

�
1 	 10� .

7. Checkwhich of theK valuesgivesthe “bestfit”. Fit is de-
finedin the“sumof squarederrors”sense.Hereby, for each
measuredpoint in time, the differencebetweenthe mea-
suredvalueand the simulatedvalue is taken andsquared.
Thesumof all squarederrorsis ameasurefor thefit.

Note: to give accurateresults,the simulatormay needa
small step-size. To comparewith measureddata which
is quite far apart,you simulatorwill have to implementa
“communicationinterval” which allows theuserto specify
how oftensimulatedvalueshaveto beoutput.

Whetheryouuseaverynaiveexhaustivesearchasdescribed
above or an advancedoptimizationalgorithm (feel free to

x

x_measured

s i m p l e f r i c t i o n l e s s m a s s - s p r i n g s y s t e m

t ime [s]

0 1 2 3

p
o

s
it

io
n

[m

]

0

0.1

0.2

0.3

Figure3: Calibratedmodeloutput

applysomeof your optimizationknowledge),anoptimalK
will result.Simulationwith the“true” K ¿valuewill yield a
graphasbelow.

Repor t

Thefull analysis,design(usingUML notation),implementation
(in Python)andsimulationresultsshouldbedocumentedanput
on theweb. Explicit links to codeanddatamustbepresent.

2

