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1. Introduction

uondNPOIU| e

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programming lan-
guage which allows Python programmers to efficiently manipulate large sets of objects organized in grid-like
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dimensional
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from linear al-
gebra. Note that one-dimensional arrays are differentfrom any other Python sequence, and that two-dimen-
sional matrices are alstifferentfrom the matrices of linear algebra, in ways which we will mention later in this

text.

Why are these extensions needed? The core reason is a very prosaic one, and that is that manipulating a set of
a million numbers in Python with the standard data structures such as lists, tuples or classes is much too slow
and uses too much space. Anything which we can do in NumPy we can do in standard Python — we just may
not be alive to see the program finish. A more subtle reason for these extensions however is that the kinds of
operations that programmers typically want to do on arrays, while sometimes very complex, can often be de-
composed into a set of fairly standard operations. This decomposition has been developed similarly in many
array languages. In some ways, NumPYy is simply the application of this experience to the Python language —
thus many of the operations described in NumPy work the way they do because experience has shown that way
to be a good one, in a variety of contexts. The languages which were used to guide the development of NumPy
include the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This her-
itage will be obvious to users of NumPy who already have experience with these other languages. This tutorial,
however, does not assume any such background, and all that is expected of the reader is a reasonable working
knowledge of the standard Python language.

This document is the “official” documentation for NumPy. Itis both a tutorial and the most authoritative source
of information about NumPy with the exception of the source code. The tutorial material will walk you through

a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was made be-
cause:

« Aconcrete data set makes explaining the behavior of some functions much easier to motivate than simply
talking about abstract operations on abstract data sets;

< Every reader will at least antuition as to the meaning of the data and organization of image files, and

< The result of various manipulations can be displayed simply since the data set has a natural graphical rep-
resentation.

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutorial with
a working NumPy installation at their side, testing the examples, and, more importantly, transferring the under-
standing gained by working on images to their specific domain. The best way to learn is by doing — the aim of
this tutorial is to guide you along this “doing.”



Here is what the rest of this manual contains:

e Chapter 2 provides information on testing Python, NumPy, and compiling and installing NumPy if neces-
sary.

e Chapter 3 provides information on testing and installing the NumTut package, which allows easy visualiza-
tion of arrays.

¢ Chapter 4 gives a high-level overview of the components of the NumPy system as a whole.

« Chapter 5 provides a detailed step-by-step introduction to the most important aspect of NumPy, the multi-
dimensional array objects.

« Chapter 6 provides information on universal functions, the mathematical functions which operate on arrays
and other sequences elementwise.

¢ Chapter 7 covers pseudo-indices.

e Chapter 8 is a catalog of each of the utility functions which allow easy algorithmic processing of arrays.
e Chapter 9 discusses the methods of array objects.

e Chapter 10 presents the attributes of array objects.

e Chapter 11 is a collection of special topics, from the organization of the codebase to the mechanisms for
customizing printing.

e Chapter 12 is an tutorial on how to write a C extension which uses NumPy arrays.

* Chapter 13 is a reference for the C API to NumPy objects (both PyArrayObjects and UFuncObijects).
e Chapter 14 is a reference for the Fast Fourier Transform module

e Chapter 15 is a reference for the Linear Algebra module

e Chapter 16 is a reference for the RandomArray random number generator module

e Chapter 17 is a glossary of terms

Where to get information and code

Numerical Python is available via SourceForge. Visit the Numerical Python Project web page at:
http://numpy.sourceforge.net

There you will find a link to the main project page at SourceForge, where you can obtain complete information
about Numerical Python, report bugs, have access to the source repository, and download the latest releases.
The Python web site is

www.python.org

If the above link should ever become “stale”, the Python web page should contain an appropriate link to the cor-
rect one.

The project ftp site may contain other files of interest, such as binary versions of the distributions.
ftp://numpy.sourceforge.net/pub/numpy

Acknowledgments

Numerical Python is the outgrowth of a long collaborative design process carried out by the Matrix SIG of the
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the code and
initial documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to main-
tain Numerical Python so Paul Dubois at LLNL agreed to become the maintainer of Numerical Python. David
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rad Hinsen and Travis Oliphant, both of whom are major contributors to Numerical Python.

10



Many other people have contributed to Numerical Python by making suggestions and sending in bug fixes. Nu-*
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In January 2000 we moved the Numerical Python project to SourceForge, http://sourceforge.net, and expand
the set of maintainers to improve the pace of changes to Numerical Python. Paul Duboais is presently “chair-5;
man” of this set of equal peers. Decisions about Numerical Python are made by this set. Who is in this set? Nat=

urally, you can see this list on the project page.
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2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow along the
examples step by step. These steps including installing Python, the NumPy extensions, and some tools and sam-
ple files used in the examples of this tutorial.

Testing the Python installation

The first step is to install Python if you haven't already. Python is available from the Python website’s download
directory athttp://www.python.org/downloacClick on the link corresponding to your platform, and follow the
instructions described there. When installed, starting Python by typitigon  at the shell or double-clicking

on the Python interpreter should give a prompt such as:

Python 1.5.1 (#0, Apr 13 1998, 20:22:04) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

If you have problems getting this part to work, consider contacting a local support person or emgitiog-
help@python.ordor help. If neither solution works, consider posting on the comp.lang.python newsgroup (de-
tails on the newsgroup/mailing list are availablatgt://www.python.org/psa/MailingLists.html#glp

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of this writing with the Numeric Python extensions installed,
but your system administrator may have installed them already. To find out if your Python interpreter has
NumPy installed, typ@mport Numeric  at the Python prompt. You'll see one of two behaviors (throughout
this documenthold Courier New  fontindicates user input, arsfandard Courier New  fontindicates
output):

>>> import Numeric

Traceback (innermost last):

File "<stdin>", line 1, in ?

ImportError: No module named Numeric
>>>

indicating that you don’'t have NumPYy installed, or:

>>> import Numeric
>>>

indicating that you do. If you do, go on to the next step. If you don't, you have to get the NumPy extensions.

12



Installing NumPy

Obtain the distribution. Follow the instructions in the README file of the toplevel directory for compilation
and installation. For non-Unix platforms, check the project FTP site

ftp://numpy.sourceforge.net/pub/numpy
for binary installations that may be available.

The standard Python installer for the Macintosh (availablétap://www.python.org/download/
download_mac.hthlklso optionally installs the NumPy extensions, although these are typically not the most
up-to-date. .

If you have problems getting this part to work, consider contacting a local support person or emgtiog-
help@python.org Alternatively, you can send a description of your problem to the Matrix-SIG (a special in-
terest group devoted to the NumPy extension — details are availdiite #www.python.org/sigs/matrix-sjg/

Just like all Python modules and packages, the Numeric module can be invoked us-
I ing either themport Numeric form, or thefrom Numeric import ...
form. Because most of the functions we’'ll talk about are in the Numeric module, in
this document, all of the code samples will assume that they have been preceded by
a statement:
from Numeric import *

13
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3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which is in the Demo directory of the distribution.

Testing the NumTut package

This tutorial assumes that the NumTut package has been installed. This package contains a few sample images
and utility functions for displaying arrays and the like. To find out if NumTut has been installed, do:

>>> from NumTut import *
>>> view(greece)

If a picture of a greek street shows up on your screen, you're all set, and you can go to the next chapter.

Possible reasons for failure:

>>> jmport NumTut
Traceback (innermost last):
File "<stdin>", line 1, in ?
ImportError: No module named NumTut

This message indicates that you do not have the NumTut package installed in your PythonPath. NumTut is dis-
tributed along with this document. (See “Where to get information and code” on page 10.) To install NumTut,
simply untar the NumTut.tar.gz file so that it is in your PythonPath. For example, on Win32, it can be placed in
the main directory of your Python installation. On Unix, it can be placed in the site-packages directory of your
installation.

Win32

>>> import NumTut
Traceback (innermost last):

[..]

14



ConfigurationError: view needs Tkinter on Win32, and either threads or
the IDLE editor”

or:

ConfigurationError: view needs either threads or the IDLE editor to be
enabled.

On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the Python
interpreter needs to be compiled with thread support (which is true in the standard win32 distribution) or you
need to call the NumTut program from the IDLE interactive development environment.

abexoed InJWnNN 8yl e

If you do not wish to modify your Python installation to match these requirements, you can simply ignore the
references to the demonstrations which usevtee() command later in this document. Using NumPy does
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the default
configuration), with the Tkinter GUI framework available and optionally with the tkimaging add-on (part of the
Python Imaging Library). If this is not the case, it will try to use an external viewer which is able to read PPM
files. The default viewer is 'xv’, a common image viewer available fifypr/ftp.cis.upenn.edu/pub/xi xv is

not installed, you will get an error message similar to:

>>> import NumTut
Traceback (innermost last):

[..]

ConfigurationError: PPM image viewer 'xv’ not found

You can configure NumTut to use a different image viewer, by typing e.g.:

>>> jmport NumTut

>>> NumTut.view.PPMVIEWER = 'ppmviewer’
>>> from NumTut import *

>>> view(greece)

If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations which use

theview() command later in this document. Using NumPy does not require image display tools, they just
make some array operations easier to understand.
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4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system. This section defines the concepts used by
the remaining sections.

Numeric Python consists of a set of modules:
¢ Numeric.py (and its helper modulesultiarray andumath .)

This module defines two new object types, and a set of functions which manipulate these objects, as well as
convert between them and other Python types. The objects are the new array object (technically called
multiarray objects), and universal functions (technicaifync objects).

* RandomArray.py (and its helper modulanlib )
This module provides a high-level interface to a random-number generator.
 FFT.py (and its helper modul&pack )

This module provides a high-level interface to the fast Fourier transform routines implemente&kTthe
PACKlibrary if it is available, or to the compatible but less optimized fftpack library which is shipped with
Numeric Python..

¢ LinearAlgebra.py (and its helper modulapack_litemodule )

This module provides a high-level interface to the linear algebra routines implementediARBCKIi-
brary if it is available, or to the compatible but less optimitaguhck_lite library which is shipped with
Numeric Python.

Array Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers. All numbers
in a multiarray are the same kind (i.e. number representation, such as double-precision floating point). Array
objects must be full (no empty cells are allowed), and their size is immutable. The specific numbers within
them can change throughout the life of the array.

Mathematical operations on arrays return new arrays containing the results of these operations petéermed
mentwiseon the arguments of the operation.

Thesizeof an array is the total number of elements therein (it can be 0 or more). It does not change throughout
the life of the array.

Theshapeof an array is the number of dimensions of the array and its extent in each of these dimensions (it can
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array is a tuple
of integers, one integer for each dimension that represents the extent in that dimension.

Therankof an array is the number of dimensions along which it is defined. It can change throughout the life of
the array. Thus, the rank is the length of the shape.

Thetypecodeof an array is a single character description of the kind of element it contains (number format,
character or Python reference). It determines the itemsize of the array.
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Theitemsizeof an array is the number of 8-bit bytes used to store a single element in the array. The total mem- *®
ory used by an array tends to its size times its itemsize, as the size goes to infinity (there is a fixed overhead p%
array, as well as a fixed overhead per dimension). ':_T
¢’}
To put this in more familiar mathematicial language: A vector is a rank-1 array (it has only one dimension along cj
which it can be indexed). A matrix as used in linear algebra is a rank-2 array (it has two dimensions along o
which it can be indexed). There are also rank-0 arrays, which can hold single scalars -- they have no dimensio@
along which they can be indexed, but they contain a single number.

M3IA

Here is an example of Python code using the array objects (bold text refers to user input, non-bold text to com-
puter output):

>>> vectorl = array((1,2,4,5))

>>> print vectorl

[12345]

>>> matrix1 = array(([0,1],[1,3]))

>>> print matrix1

[[01]

[13]

>>> print vectorl.shape, matrix1l.shape

(5)(2.2)

>>> print vectorl + vectorl

[2 4 6 8 10]]

>>> print matrix1 * matrix1

[[0 1] # note that this is not the matrix
[19]] # multiplication of linear algebra

If this example does not work for you because it complains of an unknown name “array”, you forgot to begin
your session with

from Numeric import *
See page 13.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences. Most ufuncs perform
mathematical operations on their arguments, also elementwise.

Here is an example of Python code using the ufunc objects:
>>> print sin([pi/2., pi/4., pi/6.])

[1. , 0.70710678, 0.5 ]

>>> print greater([1,2,4,5], [5,4,3,2])

[0011]

>>> print add([1,2,4,5], [5,4,3,2])

[6677]

>>> print add.reduce([1,2,4,5])

12 #1+2+3+4+5

Ufuncs are covered in detail in “Ufuncs” on page 36.

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects above, a set
of powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arrays, and
other array-processing operations.
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>>> data = arange(10) # convenient homolog of builtin
range()

>>> print data

[0123456789]

>>> print where(greater(data, 5), -1, data)
[012345-1-1-1-1] # selection facility
>>> data = resize(array((0,1)), (9, 9))

>>> print data

[010101010]

[L01010101]

[010101010]

[L01010101]

[010101010]

[L01010101]

[010101010]

[L01010101]

[010101010]

All of the functions which operate on NumPy arrays are described in “Array Functions” on page 44.

RandomArray

TheRandomArray module provides a high-level interface to the ranlib number generator. It provides a uni-
form distribution generator of pseudo-random numbers, as well as some convenience functions:

>>> from RandomArray import random, uniform, randint, permutation
>>> print random((5,5))

[[ 0.45456091 0.53438765 0.72412336 0.12156525 0.79255972]
[ 0.14763653 0.93401444 0.38913983 0.97293309 0.45860398]
[ 0.57528652 0.9801351 0.19893601 0.3396503 0.12224415]
[0.9067847 0.37667559 0.71613152 0.24334284 0.68907028]
[ 0.9655151 0.29746972 0.42734603 0.72314573 0.66344323]]
>>> print uniform(-1.0,1.0, (5,))

[[0.2637264 0.12331069 0.11497829 -0.25969645 0.36571342]
>>> print randint(10, 20, (4,2))

[[19 14]

[14 11]

[13 11]

[13 11]]

>>> print permutation(10)

[0594216837]

>>> print permutation(10)

[3712904856]

The reader should also be aware that LLNL provides an alternative random number generator, called RNG,
which also provides normal, log-normal and exponential distribution number generators. It is compatible with
the Cray random number generator and most importantly is designed for producing multiple independent ran-
dom number streams. It is available as part of the LLNL distribution. See “RandomArray Reference” on
page 89 for details.

FFT

The FFT module provides a high-level interface to the fast Fourier transform routines which are implemented
in the FFTPACK library. It performs one and two-dimensional FFT’s, forward and backwards (inverse FFTs),
and includes efficient routines for FFTs of real-valued arrays. Itis most efficient for arrays whose size is a pow-
er of two.
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>>> from FFT import fft, inverse_fft

>>> data = array((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
>>> print data

[1. 0. 0. 0. 1. 0. 0. 0]

>>> print fft(data)

[2.+0.j 0.4+0.) 2.+0.j 0.+0.j 2.+0.j 0.+0.) 2.+0.j 0.+0.j]
>>> print inverse_fft(fft(data))

[1.+0,j 0.4+0.) 0.+0.j 0.+0.j 1.+0.j 0.+0.j 0.+0.j 0.+0.j]

MBIAIBAQ [9AST-YBIH

See “FFT Reference” on page 84 for details.

LinearAlgebra

The LinearAlgebra module provides a high-level interface to the most commonly used functionality of the
LAPACK library, in a Python-friendly fashion. It includes functions to solve systems of linear equations and
linear least squares problems, invert matrices, compute eigenvalues and eigenvectors, generalized inverses, de-
terminants, as well as perform singular value decomposition.

>>> from LinearAlgebra import inverse
>>> data = array(((1.0,2), (4,5)))
>>> print data

[[1. 2]

[4. 5]]

>>> print inverse(data)
[[-1.66666667 0.66666667]

[ 1.33333333 -0.33333333]]
>>> print inverse(inverse(data))
[[1. 2]

[4. 5]]
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5. Array Basics

This chapter introduces some of the basic functions which will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should first de-
fine a few terms which we’ll use over and over again. Discussions of arrays and matrices and vectors can get
confusing due to disagreements on the nomenclature. Here is a brief definition of the terms used in this tutorial,
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we’'ll just call
them “array” objects or just “arrays.” These are different from the array objects defined in the standard Python
array module (which is an older module designed for processing one-dimensional data such as sound files).

These array objects hold their data in a homogeneous block of elements, i.e. their elements all have the same C
type (such as a 64-bit floating-point number). This is quite different from most Python container objects, which
can contain heterogeneous collections. (You can, however, have an array of Python objects, as discussed later).

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a point
in 3D space [1, 2, 1] is an array of rank 1 — it has one dimension. That dimensidergthaf 3.

As another example, the array

1.00.00.0
0.01.020

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimension has a
length of 3. Because the word “dimension” has many different meanings to different folks, in general the word

“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can also be
counted from the end, so that axis -1 is the last axis of an array, axis -2 is the penultimate axis, etc.

There are two important and potentially unintuitive behaviors of NumPy arrays which take some getting used
to. The first is that by default, operations on arrays are performed element-wise. This means that when adding
two arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is true for all
operations, including multiplication. Thus, array multiplication using the * operator will default to element-
wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arrays as
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix class pro-
vides a more intuitive interface. We defer discussion of the Matrix class until later.

The second behavior which will catch many users by surprise is that functions which return arrays which are
simply different views at the same data will in fettaretheir data. This will be discussed at length when we
have more concrete examples of what exactly this means.

Now that all of these definitions and warnings are laid out, let's see what we can do with these arrays.
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Creating arrays from scratch

array() and typecodes

There are many ways to create arrays. The most basic one is the usaraftf)e function:
>>> a=array([1.2, 3.5, -1])

soiseg Aelly .

to make sure this worked, do:

>>> printa
[1.2 35-1.]

Thearray(numbers, typecode=None) ! function takes two arguments — the first one is the values,
which have to be in a Python sequence object (such as a list or a tuple). The optional second argument is the
typecode of the elements. If it is omitted, as in the example above, Python tries to find the one type which can
represent all the elements. Since the elements we gave our example were two floats and one integer, it chose
“float' as the type of the resulting array. If one specifies the typecode, one can specify unequivocally the type of
the elements — this is especially useful when, for example, one wants to make sure that an array contains floats
even though in some cases all of its elements are integers:

>>> x,y,z=1,2,3

>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> print a

[123]

>>> a = array([x,y,z], Float) # not the default type

>>> print a

[1. 2. 3]

Pop Quiz:hat will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])
Hint; -3j is an imaginary number.
Answer: try it out!

A very common mistake is to call array with a set of numbers as arguments, as in
I array(1,2,3,4,5) . This doesn’t produce the expected result as soon as at least
two numbers are used, because the first argumenmtag()  must be the entire
data for the array -- thus, in most cases, a sequence of numbers. The correct way to
write the preceding invocation is most likelyray((1,2,3,4,5))

Possible values for the second argument tcattiey creator function (and indeed to any function which ac-
cepts a so-called typecode for arrays) are:

1. One type corresponding to single ASCII charactéhsiracter
2. One unsigned numeric typdnsignedint8 , used to store numbers between 0 and 255.
3. Many signed numeric types:

1. When giving “function signatures,” only the most commonly used arguments and their default values
will be listed. For complete function signatures, consult the Numeric Python Reference Manual.
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« Signed integer choice$nt , Int0 , Int8 , Int16 , Int32 , and on some platform$t64 and
Int128 (their ranges depend on their size).

¢ Floating point choices:loat , Float0 ,Float8 ,Floatl6 ,Float32 ,Float64 ,andonsome
platforms,Float128

e Complex number choicesComplex, Complex0, Complex8, Complex16 , Complex32 ,
Complex64 , Complex128 .

The meaning of these is as follows:

* The versions without any numbens , Float , Complex) correspond to thnt , float and
complex datatypes in Python. They are thus long integers and double-precision floating point
numbers, with a complex number corresponding to two double-precision floats.

e The versions with a number following correspond to whatever words are available on the specific
platform you are using which haa leastthat many bits in them. ThuftO corresponds to the
smallest integer word size availablat8 corresponds to the smallest integer word size available
which has at least 8 bits, etc. The word sizes for the complex numbers refer to the total number of
bits used by both the real and imaginary parts (in other words, the data portion of an array of N
Complex128 elements uses up the same amount of memory as the data portions of two arrays of
typecodeFloat64 with 2N elements).

4. One non-numeric typ&yObject . Arrays of typecodéyObject are arrays of Python references, and
as such their data area can contain references to any kind of Python objects.

The last typecode deserves a little comment. Indeed, it seems to indicate that arrays can be filled with any Py-
thon objects. This appears to violate the notion that arrays are homogeneous. In fact, the tipy€iudet

doesallow heterogeneous arrays. However, if you plan to do numerical computation, you're much better off
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is because a
heterogeneous array stores references to objects, which incurs a memory cost, and because the speed of com-
putation is much slower with arrays BiObject 's than with uniform number arrays. Why does it exist, then?

A very useful features of arrays is the ability to slice them, dice them, select and choose from them, etc. This
feature is so nice that sometimes one wants to do the same operations with, e.g., arrays of class instances. In
such cases, computation speed is not as important as convenience. Also, if the array is filled with objects which
are instances of classes which define the appropriate methods, then NumPy will let you do math with those ob-
jects. For example, if one creates an object class which hasadd__ method, then arrays (created with the
PyObject typecode) of instances of such a class can be added together. [XXXXXX make sure that'’s true!].

Multidimensional Arrays

The following example shows one way of creating multidimensional arrays:

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma

[[123]

[4 5 6]]

The first argument tarray()  in the code above is a single list containing two lists, each containing three el-
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the optional type-
code we wished:

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats

1. 2. 3]

[4. 5. 6]
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This array allows us to introduce the notion of “shape'. The shape of an array is the set of numbers which define*
its dimensions. The shape of the arragdefined above is 2 by 3. More precisely, all arrays have a shape at-
tribute which is a tuple of integers. So, in this case:

>>> print ma.shape
2,3)

soiseg Aelly

Using the earlier definitions, this is a shaperaink 2, where the first axis has length 2, and the seond axis has
length 3. The rank of an arrdyis always equal ten(A.shape)

Note thatshape is anattributeof array objects. It is the first of several which we will see throughout this
tutorial. If you're not used to object-oriented programming, you can think of attributes as “features” or “quali-
ties” of individual arrays. The relation between an array and its shape is similar to the relation between a person
and their hair color. In Python, it's called an object/attribute relation.

What if one wants to change the dimensions of an array? For now, let us consider changing the shape of an array
without making it “grow.” Say, for example, we want to make the 2x3 array defined abwgaf array of rank
1

>>> flattened_ma = reshape(ma, (6,))
>>> print flattened_ma
[L23456]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the axes is kept
constant (in other words, as long as the number of elements in the array doesn’t change):

>>> a=array([1,2,3,4,5,6,7,8])

[12345678]

>>> print a

>>> b =reshape(a, (2,4)) #2%4 ==
[[1234]

[5678]

>>> print b

>>> ¢ =reshape(b, (4,2) #4*%2 ==
>>> print ¢

[[12]

[3 4]

[5 6]

[7 8]

Notice that we used a new functiogeshape() . It, like array() , is a function defined in th&lumeric

module. It expects an array as its first argument, and a shape as its second argument. The shape has to be a se-
quence of integers (a list or a tuple). Keep in mind that a tuple with a single element needs a comma at the end;
the right shape tuple for a rank-1 array with 5 elemen()s , not(5) .

One nice feature of shape tuples is that one entry in the shape tuple is allowed.to bae-1 will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of the array.
Thus:

>>> a = reshape(array(range(25)), (5,-1))
>>> print a, a.shape

[[01234]

[56 7 8 9]

[1011 12 13 14]

[15 16 17 18 19]

[20 21 22 23 24]] (5, 5)
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The shape of an array is a modifiable attribute of the array. You can therefore change the shape of an array sim-
ply by assigning a new shape to it:

>>> a=array([1,2,3,4,5,6,7,8,9,10])
>>> a.shape

(10,)

>>> a.shape = (2,5)
>>> printa
[[12345]

[6 7 8 910]]

>>> a.shape = (10,1) # second axis has length 1
>>> printa

(1]

[2]

[3]

[ 4]

[ 5]

[ 6]

[7]

[ 8]

[9]

(10]]

>>> a.shape = (5,-1) # note the -1 trick described above
>>> printa

M1 2]

[3 4]

[5 6]

[7 8]

[910]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exceptions:

>>> a.shape = (6,-1)
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: total size of new array must be unchanged

The default printing routine provided by the Numeric module prints arrays as fol-
N lows:
1 The last axis is always printed left to right
2 The next-to-last axis is printed top to bottom
3 The remaining axes are printed top to bottom with increasing numbers of sepa-
rators

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first dimension going
down the screen and the second dimension going from left to right, etc.

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow it), then
you have many options: One solution is to usedbrcat() method discussed later. An alternative is to use
thearray()  creator function with existing arrays as arguments:

>>> print a
[012345667]
>>> b = array([a,a])
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>>> print b
[[12345678]
[12345678]
>>> print b.shape
(2,8)

XXX reshape

A final possibility is theresize()  function, which takes a “base” array as its first argument and the desired
shape as the second argument. Untiéghape() , the shape argument tesize()  can corresponds to a

soiseg Aelly .

smaller or larger shape than the input array. Smaller shapes will result in arrays with the data at the “beginning”
of the input array, and larger shapes result in arrays with data containing as many replications of the input array

as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0,1])

one can quickly build a large array with replicated data:

>>> big = resize(base, (9,9))
>>> print big
[0O10101010]
[L01010101]
[010101010]
[L01010101]
[010101010]
[L01010101]
[010101010]
[L01010101]
[010101010]

and if you imported theiew function from theNumTut package, you can do:

>>> view(resize(base, (100,100)))

# grey grid of horizontal lines is shown

>>> view(resize(base, (101,101)))

# grey grid of alternating black and white pixels is shown

Sections denoted such as this one withey® symbol will be used to indicate as-
N pects of the functions which may not be needed for a firstintroduction at NumPy, but

which should be mentioned for the sake of completeness.

Thearray constructor takes a mandataigta argument, an optional typecode,

and an optionatopy argument. If thelata argument is a sequence, then array

creates a new object of type multiarray, and fills the array with the elements of the

data object. The shape of the array is determined by the size and nesting arrange-

ment of the elements of data.

If data is nota sequence, then the array returned is an array of $hajlee empty
tuple), of typecod&)’ , containing a single element, whichdista .
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Creating arrays with values specified “on-the-fly'

zeros() and ones()

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The Numeric
module provides a few functions which create arrays from scratch:

zeros() andones() simply create arrays of a given shape filled with zeros and ones respectively:

>>> z = zeros((3,3))
>>> print z

[[000]

[000]

[000]]

>>> 0 =ones([2,3])
>>> print o

[[111]

(111]]

Note that the first argument is a shape — it needs to be a list or a tuple of integers. Also note that the default type
for the returned arrays st , which you can feel free to override using something like:

>>> 0 = ones((2,3), Float)
>>> print 0
M1 1. 1]
[1. 1. 1]]

arrayrange()

Thearrayrange() function is similar to theange() function in Python, except that it returns an array as
opposed to a list.

>>> r = arrayrange(10)
>>> printr
[0123456789]

Combining thearrayrange() with thereshape()  function, we can get:

>>> big = reshape(arrayrange(100),(10,10))

>>> print big

[01234567829]

[1011 121314151617 18 19]

[20 21 22 23 24 25 26 27 28 29]

[30 31 32 33 34 35 36 37 38 39]

[40 41 42 43 44 45 46 47 48 49]

[50 51 52 53 54 55 56 57 58 59]

[60 61 62 63 64 65 66 67 68 69]

[70717273 74757677 78 79]

[80 81 82 83 84 85 86 87 88 89]

[90 91 92 93 94 95 96 97 98 99]]

>>> view(reshape(arrayrange(10000),(100,100)))
# array of increasing lightness from top down (slowly) and from left to
# right (faster) is shown

arange() is a shorthand faarrayrange()

One can set the start, stop and step arguments, which allows for more varied ranges:
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>>> print arrayrange(10,-10,-2)
[10 86 420 -2 -4 -6 -8]

An important feature of arrayrange is that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)
[0.1.2.3.4]

>>> print arrayrange(0, 1, .2)
[0. 0.2 0.4 0.6 0.8]

soiseg Aelly .

If you want to create an array with just one value, repeated over and over, you can use the * operator applied to
lists

>>> a = array([[3]*5]*5)
>>> print a
[[33333]
[33333]
[33333]
[33333]
[333373]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to start with
0's and add 3:

>>> a = zeros([5,5]) +3
>>> print a

[[33333]

[33333]

[33333]

[33333]

[33333]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “highest”
of the starting and stopping arguments. The starting argument defaults to 0 if not specdiege is a syn-

onym forarrayrange . Note thatif a typecode is specified which is “lower” than that which arrayrange would
normally use, the array is the result of a precision-losing cast (a round-down, as that useakiglee meth-

od for arrays.)

Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of a function evaluation. This is done
using thefromfunction() function, which takes two arguments, a shape and a callable object (usually a
function). For example:

>>> def dist(x,y):
return (x-5)**2+(y-5)**2 # distance from point (5,5) squared

>>> m = fromfunction(dist, (10,10))
>>> printm

[[50 41 34 29 26 25 26 29 34 41]
[41 32252017 16 17 20 25 32]
[342518 1310 9101318 25]
[292013 8 5 4 5 813 20]
[26 1710 52 1 2 51017]
[2516 9 4 1 0 1 4 916]
[26 1710 52 1 2 51017]
[292013 8 5 4 5 813 20]
[342518 1310 9101318 25]
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[41 32252017 16 17 20 25 32]]
>>> view(fromfunction(dist, (100,100))
# shows image which is dark in topleft corner, and lighter away from it.
>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]
[121 122 123]]
[[211 212 213]
[221 222 223]]
[[311 312 313]
[321 322 323]]
[[411 412 413]
[421 422 423]]]

By examining the above examples, one can sedtbiafunction() creates an array of the shape specified

by its second argument, and with the contents corresponding to the value of the function argument (the first ar-
gument) evaluated at the indices of the array. Thus the valog#] in the first example above is the value
ofdist whenx=3 andy=4. Similarly for the lambda function in the second example, but with a rank-3 array.

The implementation of fromfunction consists of:

def fromfunction(function, dimensions):
return apply(function, tuple(indices(dimensions)))

which means that the function function is called for each element in the sequence indices(dimensions). As de-
scribed in the definition of indices, this consists of arrays of indices which will be of rank one less than that
specified by dimensions. This means that the function argument must accept the same number of arguments as
there are dimensions in dimensions, and that each argument will be an array of the same shape as that specified
by dimensions. Furthermore, the array which is passed as the first argument corresponds to the indices of each
element in the resulting array along the first axis, that which is passed as the second argument corresponds to
the indices of each element in the resulting array along the second axis, etc. A consequence of this is that the
function which is used with fromfunction will work as expected only if it performs a separable computation on

its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on the argu-
ments can be performed, or any non-shape preserving operation. The first example below satisfies these re-
quirements, hence works (tiieandy arrays both get 10x10 arrays as input corresponding to the values of the
indices along the two dimensions), while the second array attemps to do a comparison test on an array of indi-
ces, which fails.

>>> def buggy(test):
if test > 4: return 1
else: return O

>>> print fromfunction(buggy, (10,))
Traceback (innermost last):
File "<stdin>", line 1, in ?
File "C:\PYTHON\LIB\Numeric.py", line 157, in fromfunction
return apply(function, tuple(indices(dimensions)))
File "<stdin>", line 2, in buggy
TypeError: Comparison of multiarray objects is not implemented.

If you need to fill an array with the result of a function which does not meet these criteria, you can always use
a function like:

def slowfromfunction(function, shape):
# XXXXXX | need to come up with a version of that...
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identity()

The simplest array constructor is thientity(n) function, which takes a single integer argument and re-
turns a square identity array of that size of integers:

>>> print identity(5)

[[10000Q]

[01000]

[00100]

[00010Q]

[00001]]

>>> view(identity(100))

# shows black square with a single white diagonal

soiseg Aelly .

Coercion and Casting

We've mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we haven’t cov-
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Python in
general. Operations between numeric and non-numeric types are not allowed (e.g. an array of characters can’t
be added to an array of numbers), and operations between mixed number types (e.g. floats and integers, floats
and omplex numbers, or in the case of NumPy, operations between any two arrays with different numeric type-
codes) first perform a coercion of the 'smaller’ numeric type to the type of the ‘larger’ numeric type. Finally,
when scalars and arrays are operated on together, the scalar is converted to a rank-0 array first. Thus, adding a
“small” integer to a “large” floating point array is equivalent to first casting the integer “up” to the typecode of

the array:

>>> arange(0, 1.0, .1) + 12
array( 12. , 121, 122, 123, 124, 125, 126, 127, 128,
12.9])

The automatic coercions are described in Figure 1.
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—— Same-type coercion

UnsignedInt8 }\ | Int8 }——)l Float8 |

——————— » Different-type coercion

3 Int16 }->[  Fioat1s k.

y A \
[ 2 > Foad2 | 5[ Complecz |
\ 4 A 4 :‘\ A 4
| Int64 f——)l Float64 f\\ \‘)I Complex64 |
h 4 \ 4 t‘\ h 4
| Int128 }->[  Fioat12s | o complexizs | | Char

Figure 1 Up-casts are indicated with arrows. Down-casts are allowed by the
astype() method, but may result in loss of information.

Deliberate up-casting: The asarray function

One more array constructor is thsarray()  function. It is used if you want to have an array of a specific
typecode and you don't know what typecode array you have (for example, in a generic function which can op-
erate on all kinds of arrays, but needs them to be converted to complex arrays). If the array it gets as an argu-
ment is of the right typecode, it will get sent back unchanged. If the array is not of the right typecode, each
element of the new array will be the result of the coercion to the new type of the old elenasatsay()

will refuse to operate if there might be loss of information -- in other wardsray()  only casts 'up’.

asarray is also used when you have a function that operates on arrays, but you want to allow people to call

it with an arbitrary python sequence object. This gives your function a behavior similar to that of most of the
builtin functions that operate on arrays.

The typecode value table

The typecodes identifiers-{oat0 , etc.) have as values single-character strings. The mapping between type-

code and character strings is machine dependent. An example of the correspondences between typecode char-
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Table 1. Typecode character/identifier table on a Pentium computer

Character t?; ;)efs ﬁig Identifiers
D 16 128 Complex, Complex64
F 8 64 Complex0, Complex16, Complex32, Complex8
d 8 64 Float, Float64
f 4 32 FloatO, Float16, Float32, Float8
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Table 1: Typecode character/identifier table on a Pentium computer

Character tfy gafs #bifc)sf Identifiers
I 4 32 Int
1 1 8 IntO, Int8
S 2 16 Int16
[ 4 32 Int32

Consequences of silent upcasting

When dealing with very large arrays of floats and if precision is not important (or arrays of small integers), then
it may be worthwhile to cast the arrays to “small” typecodes, sudht8s , Int16 or Float32
dard Python integers and floats correspond to the typedot@? andFloat64
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays. For

example:

>>> mylargearray.typecode()

>>> mylargearray.itemsize()

>>> mylargearray = mylargearray + 1
>>> mylargearray.typecode()

>>> mylargearray.itemsize()

# a.k.a. Float32 on a Pentium

# 1 is an Int64 on a Pentium
# see Fig. 1 for explanation.

Note that the sizes returned by tteamsize() method are expressed in bytes.

. As the stan-
, using them in apparently

soiseg Aelly .

To prevent this problem, one should use arrays containing a single number, with the appropriate bytecode. This
can be facilitated by a few convenience functions, such as:

toChar = lambda x: array(x, Character)

toInt8 = lambda x: array(x, Int8)# or use variable names such as Byte
tolntl6 = lambda x: array(x, Int16)

toInt32 = lambda x: array(x, Int32)

toFloat32 = lambda x: array(x, Float32)

toFloat64 = lambda x: array(x, Float64)

>>> mylargearray.typecode(), mylargearray.itemsize()

(f. 4)

# start again

>>> mylargearray = mylargearray + toFloat32(1)
>>> mylargearray.typecode(), mylargearray.itemsize()

(f. 4)

# no up-casting, no size change

Deliberate casts (potentially down): the astype method

You may also force NumPy to cast any number array to another number array. For example, to take an array

of any numeric type (IntX or FloatX or ComplexX or UnsignedInt8) and convert it to a 64-bit float, one can do:

>>> floatarray = otherarray.astype(Float64)
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The typecode can be any of the number typecodes, “larger” or “smaller”. If it is larger, this is a cast-up, as if
asarray() had been used. If itis smaller, the standard casting rules of the underlying language (C) are used,
which means that truncation or loss of precision can occur:

>>> print X

[0. 0.4 0.8 1.2 1.6]
>>> x.astype(Int)
array([0, 0, 0, 1, 1])

If the typecode used withstype() s the original array’s typecode, then a copy of the original array is re-
turned.

Operating on Arrays

Simple operations

If you have a keen eye, you have noticed that some of the previous examples did something new. It added a
number to an array. Indeed, most Python operations applicable to numbers are directly applicable to arrays:

>>> print a
[123]

>>> printa* 3
[369]

>>> printa + 3
[45 6]

Note that the mathematical operators behave differently depending on the types of their operands. When one of
the operands is an array and the other is a number, the number is added to all the elements of the array and the
resulting array is returned. This is callecbadcasting This also occurs for unary mathematical operations such

as sin and the negative sign

>>> print sin(a)

[ 0.84147098 0.90929743 0.14112001]

>>> print -a

[-1-2-3]
When both elements are arrays with the same shape, then a new array is created, where each element is the sum
of the corresponding elements in the original arrays:

>>> printa+a

[2 4 6]

If the operands of operations such as addition are arrays which have the same rank but different non-integer di-
mensions, then an exception is generated:

>>> printa
[123]
>>> b = array([4,5,6,7]) # note this has four elements

>>> printa+b
Traceback (innermost last):

File “<stdin>"", line 1, in ?
ArrayError: frames are not aligned

This is because there is no reasonable way for NumPy to interpret additidB,0f ashaped array and(4,)
shaped array.

Note what happens when adding arrays with different rank

>>> print a
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[123]

>>> print b
[[4 812]
[5 913]
[6 10 14]
[7 11 15]]
>>> printa+b
[[51015]
[6 11 16]
[71217]
[8 13 18]]

soiseg Aelly .

This is another form of broadcasting. To understand this, one needs to look carefully at the slzapedinf

>>> a.shape

3.)
>>> p.shape
(4.3)

Because arrag’s last dimension had length 3 and artzyg last dimension also had length 3, those two dimen-
sions were “matched” and a new dimension was created and automatically “assumed” for array a. The data al-
ready ina was “replicated” as many times as needed (4, in this case) to make the two shapes of the operand
arrays conform. This replication (broadcasting) occurs when arrays are operands to binary operations and their
shapes differ and when the following conditions are true:

« starting from the last axis, the axis lengths (dimensions) of the operands are compared
< if both arrays have an axis length greater than 1, an exception is raised

< if one array has an axis length greater than 1, then the other array’s axis is “stretched” to match the
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has smaller
rank), then a new axis of the same length is created.

This algorithm is complex, but intuitive in practice. For more details, consult the Numeric Reference.

Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the [] notation. For rank-1 arrays, there
are no differences between list and array notations:

>>> a = arrayrange(10)

>>> print a[0] # get first element

0

>>> print a[1:5] # get second through fifth element
[1234]

>>> print af:-1] # get last element

9

The first difference with lists comes with multidimensional indexing. If an array is multidimensional (of rank
> 1), then specifying a single integer index will return an array of dimension one less than the original array.

>>> a = arrayrange(9)

>>> a.shape = (3,3)

>>> printa

([012]

[345]

(67 8]]

>>> print a[0] # get first row, not first element!
[012]
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>>> print a[1] # get second row
[345]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

>>> print a[0,0] # get elt at first row, first column
g>> print a[0,1] # get elt at first row, second column
i>> print a[1,0] # get elt at second row, first column
§>> print a[2,-1] # get elt at third row, last column

8

Of course, thg] notation can be used setvalues as well:

>>> g[0,0] = 123
>>> print a
123 1 2]
[ 3 4 5]
[6 7 8]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “fits” in
the referred array subset (in the code sample below, a 3-element row):

>>> a[1] =[10,11,12]
>>> print a
[[123 1 2]
[10 11 12]
[6 7 8]

Slicing Arrays

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a

[[012]

[345]

[6 7 8]]

The plain [:] operator slices from beginning to end:

>>> printal;,:]
[[012]
[345]
[6 7 8]]

In other words, [:] with no arguments is the same as [:] for lists — it can be read ""all indices along this axis. So,
to get the second row along the second dimension:

>>> print a[;,1]

[147]

Note that what was a “column” vector is now a “row” vector -- any “integer slice” (as in the 1 in the example
above) results in a returned array with rank one less than the input array.

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are assumed
to be Tall". IfAis a rank-3 array, then
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All] == A[1,:] == A[L,;,]

=

Aely o

There is one addition to the slice notation for arrays which does not exist for lists, and that is the optional third
argument, meaning the ““step size" also called stride or increment. Its default value is 1, meaning return ever
element in the specified range. Alternate values allow one to skip some of the elements in the slice:

soised

>>> a = arange(12)
>>> print a
[01234567 891011]

>>> print a[::2] # return every *other* element
[0 246 810]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
(012

[345]

[678]

>>> print a[;, 0]

[0 3 6]

>>> print a[0:3, 0]
[0 3 6]

>>> print a[2:-1, O]
[6 3 0]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of axis” and
“beginning of axis” respectively. Thus, the following two statements are equivalent for the array given:

>>> print a[2:-1, 0]

[630]

>>> print af::-1, 0]

[630]

>>> print a[::-1] # this reverses only the first axis
[[678]

[345]

012]

>>> print a[::-1,::-1] # this reverses both axes
[[8 7 6]

[543]

[210]]

One final way of slicing arrays is with the keyword This keyword is somewhat complicated. It stands for
“however many “:' | need depending on the rank of the object I'm indexing, so that the indices | *do* specify
are at the end of the index list as opposed to the usual beginning.™

So, if one has a rank-3 array, thenA...,0] is the same thing aA[:,:,0] but if B is rank-4, then

B[...,0] is the same thing a8][:,:,:,0] .Only one... is expanded in an index expression, so if one
has a rank-5 arra@, then: CJ...,0,...] is the same thing a€[:,:,:,0,:]
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6. Ufuncs

What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multiplication,
etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wise oper-
ation". Just like standard addition is available in Python through the add function in the operator module, array
operations are available through callable objects as well. Thus, the following objects are available in the Nu-
meric module:

Table 2: Universal Functions, arfunc s. The operators which invoke them when
applied to arrays are indicated in parentheses. The entries in slanted
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) multiply (*) divide (/)

remainder (%) power (**) arccos arccosh
arcsin arcsinh arctan arctanh

cos cosh exp log

log10 sin sinh sqrt

tan tanh maximum minimum
conjugate equal (== not_equal (!=) greater (>)
greater_equal (>=) less (<) less_equal (<=) logical_and (and)
logical_or (or) logical_xor  logical_not (not) bitwise_and (&)
bitwise_or (|) bitwise_xor  bitwise_not (~)

All of these ufuncs can be used as functions. For example, tadggwhich is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)

>>> print add(a,a)

[02 46 810121416 18]
>>> printa + a

[02 46 810121416 18]

In other words, the + operator on arrays performs exactly the same thing addh&unc when operated on
arrays. For a unary ufunc suchsas , one can do, e.g.:

>>> a = arange(10)

>>> print sin(a)

[ 0. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427
-0.2794155 0.6569866 0.98935825 0.41211849]

Unary ufuncs return arrays with the same shape as their arguments, but with the contents corresponding to the
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).
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There are three additional features of ufuncs which make them different from standard Python functions. They*
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they have as
tributes which are themselves callable with arrays and sequences. Each of these will be described in turn.

saun

Ufuncs can operate on any Python sequence

Ufuncs have so far been described as callable objects which take either one or two arrays as arguments (depend-
ing on whether they are unary or binary). In fact, any Python sequence which can be the input to the array()
constructor can be used. The return value from ufuncs is always an array. Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once. For example, a computation
on a large set of numbers could involve the following step

dataset = dataset * 1.20

This operation as written needs to create a temporary array to store the results of the computation, and then
eventually free the memory used by the original dataset array (provided there are no other references to the data
it contains). Itis more efficient, both in terms of memory and computation time, to do an “in-place” operation.
This can be done by specifying an existing array as the place to store the result of the ufunc. In this example,
one can write:

multiply(dataset, 1.20, dataset)
This is not a step to take lightly, however. For example, the “big and slow” verdetiaget = dataset
*1.20 ) and the “small and fast” version above will yield different results in two cases:

» Ifthe typecode of the target array is not that which would normally be computed, the operation will
fail and raise a TypeError exception.

« If the target array corresponds to a different “view” on the same data as either of the source arrays,
inconsistencies will result. For example,

>>> a = arange(5, typecode=Float64)
>>> print a[::-1] * 1.2

[48 3.6 24 1.2 0.]

>>> multiply(a[::-1], 1.2, a)
array([4.8, 3.6, 2.4, 4.32, 5.76])

>>> print a

[48 3.6 2.4 4.32 5.76]

This is because the ufunc does not know which arrays share which data, and in this case the over-
writing of the data contents follows a different path through the shared data space of the two arrays,
thus resulting in strangely distorted data.

Ufuncs have special methods
The reduce ufunc method

If you don't know about theeduce command in Python, review section 5.1.1 of the Python Tutohigb(//
www.python.org/doc/tut/functional.htmBriefly, reduce is most often used with two arguments, a callable
object (such as a function), and a sequence. It calls the callable object with the first two element of the se-
quence, then with the result of that operation and the third element, and so on, returning at the end the succes-
sive “reduction” of the specified callable object over the sequence elements. Similargdtioe method of

ufuncs is called with a sequence as an argument, and performs the reduction of that ufunc on the sequence. As
an example, adding all of the elements in a rank-1 array can be done with:
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>>> a=array([1,2,3,4])
>>> print add.reduce(a)
10

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the first axis:

>>> b =array([[1,2,3,4],[6,7,8,9]])
>>> printb

[[1234]

[6789]

>>> print add.reduce(b)

[7 91113]

A different axis of reduction can be specified with a second integer argument:

>>> print b

[[1234]

[6789]

>>> print add.reduce(b, 1)
[10 30]

The accumulate ufunc method

Theaccumulate ufunc method is simular teeduce , except that it returns an array containing the interme-
diate results of the reduction:

>>> a = arange(10)

>>> printa

[0123456789]

>>> print add.accumulate(a)

[0136101521283645] #0,0+1,0+1+2, 0+1+2+3, ... 0+...+9

>>> print add.reduce(a)

45 # same as add.accumulate(...)[-1]

The outer ufunc method

The third ufunc method isuter , which takes two arrays as arguments and returns the “outer ufunc” of the two
arguments. Thus theuter method of thanultiply  ufunc, results in the outer product. The outer method is
only supported for binary methods.

>>> printa

[01234]

>>> print b

[0123]

>>> print add.outer(a,b)
[0123]

[1234]

[2345]

[3456]

[456 7]

>>> print multiply.outer(b,a)
[[000O0Q]
[01234]

[02 46 8]

[0 36 912]

>>> print power.outer(a,b)
[[1 00 0]

[1111]
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[12 4 8]
[13927]
[1 416 64]]
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The reduceat ufunc method

The final ufunc method is theeduceat method, which I'd love to explain it, but I don’t understand it (XXX).

Ufuncs always return new arrays

Except when the 'output’ argument are used as described above, ufuncs always return new arrays which do not
share any data with the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations very sim-
ilar to the functions in thenath andcmath modules, albeit elementwise, on arrays. These come in two forms,
unary and binary:

Unary Mathematical Ufuncs (take only one argument)

The following ufuncs apply the predictable functions on their single array arguments, one element at a time:
arccos ,arccosh , arcsin , arcsinh , arctan , arctanh , cos, cosh, exp, log, logl0 ,
sin , sinh , sgrt , tan , tanh

As an example:

>>> print X

[01234]

>>> print cos(x)

[1. 0.54030231 -0.41614684 -0.9899925 -0.65364362]
>>> print arccos(cos(x))

[O. 1. 2. 3. 2.28318531]

# not a bug, but wraparound: 2*pi%4 is 2.28318531

Theconjugate ufunc takes an array of complex numbers and returns the array with entries which are the
complex conjugates of the entries in the input array. If itis called with real numbers, a copy of the array is re-
turned unchanged.

Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them, one pair
of elements at a timexdd, subtract , multiply , divide ,remainder , power .

Logical Ufuncs

The ““logical" ufuncs also perform their operations on arrays in elementwise fashion, just like the ““mathemat-
ical" ones.

Two are specialfiaximumandmiminum) in that they return arrays with entries taken from their input arrays:

>>> print X

[01234]

>>> printy

[2. 25 3. 35 4.]
>>> print maximum(x, y)
[2. 25 3. 35 4.]
>>> print minimum(x, y)
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[0. 1. 2. 3. 4]

The others all return arrays of 0's or 1'squal , not_equal , greater , greater_equal ,less ,
less_equal ,logical_and |, logical or , logical xor , logical_not , bitwise_and
bitwise_or , bitwise_xor , bitwise_not

These are fairly self-explanatory, especially with the associated symbols from the standard Python version of
the same operations in Table 1 above. Tdgcal * ufuncs perform their operations (and, or, etc.) using

the truth value of the elements in the array (equality to O for numbers and the standard truth test for PyObject
arrays). Thebitwise_*  ufuncs, on the other hand, can be used only with integer arrays (of any word size),
and will return integer arrays of the larger bit size of the two input arrays:

>>> X
array([7, 7, 0],'1)

>>> vy

array([4, 5, 6])

>>> bitwise_and(x,y)
array([4, 5, 0],"1")

We've already discussed how to find out about the contents of arrays based on the indices in the arrays — that's
what the various slice mechanisms are for. Often, especially when dealing with the result of computations or
data analysis, one needs to ““pick out" parts of matrices based on the content of those matrices. For example, it
might be useful to find out which elements of an array are negative, and which are positive. The comparison
ufuncs are designed for just this type of operation. Assume an array with various positive and negative numbers
in it (for the sake of the example we'll generate it from scratch):

>>> print a

[012314]

[56 7 89]

[10 11 12 13 14]

[15 16 17 18 19]

[20 21 22 23 24]]

>>> b =sin(a)

>>> print b

[[o. 0.84147098 0.90929743 0.14112001 -0.7568025 ]
[-0.95892427 -0.2794155 0.6569866 0.98935825 0.41211849]
[-0.54402111 -0.99999021 -0.53657292 0.42016704 0.99060736]
[ 0.65028784 -0.28790332 -0.96139749 -0.75098725 0.14987721]
[ 0.91294525 0.83665564 -0.00885131 -0.8462204 -0.90557836]]
>>> print less_equal(b, 0)

[10001]

[L1000]

[L1100]

[01110]

[00111]]

This last example has 1's where the corresponding elements are less than or equal to 0, and 0’s everywhere else.

>>> view(greater(greeceBW, .3))
# shows a binary image with white where the pixel value was greater than
3

Ufunc shorthands

Numeric defines a few functions which correspond to often-used uses of ufuncs: for exadgles-
duce() is synonymous with theum() utility function:

>>> a = arange(5) #[01234]
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>>> print sum(a) #0+1+2+3+4

10

Similarly, cumsumis equivalent toadd.accumulate  (for ““cumulative sum™ )product to multi-

ply.reduce , andcumproduct tomultiply.accumulate

Additional ""utility" functions which are often useful aaditrue

andsometrue , which are defined as

logical_and.reduce andlogical_or.reduce respectively:

>>> a=array([0,1,2,3,4])
>>> print greater(a,0)
[011117]

>>> alltrue(greater(a,0))

0

>>> sometrue(greater(a,0))
1
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7. Pseudo Indices

This chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar:

>>> a = array([1,2,3])
>>> g *2
[24 6]

This should be trivial to you by now. We've just multiplied a rank-1 array by a scalar (which is converted to a
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding some two
rank-1 arrays as well:

>>> print a
[123]

>>> a + array([4])
[567]

but it won't work if either of the two rank-1 arrays have non-matching dimensions which areput another
way, broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dimensions
of 1.

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row vector
[10,20] by the column vector [1,2,3].

>>> a = array([10,20])
>>> b =array([1,2,3])
>>> a*b
Traceback (innermost last):
File "<stdin>", line 1, in ?
ValueError: frames are not aligned example

This makes sense — we're trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3,). This
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape (3,1), so
that the first vector can be broadcast accross the second axis of the second vector. One way to do this is to use
the reshape function:

>>> a.shape
(2)

>>> b.shape
(3)

>>> b2 =reshape(b, (3,1))
>>> print b2
[[1]

(2]

(3]

>>> p2.shape
3. 1)

>>> printa* b2
[[10 20]
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[20 40]
[30 60]]

nasd

This is such a common operation that a special feature was added (it turns out to be useful in many other placeg
as well) — theNewAxis ““pseudo-index", originally developed in the Yorick langualyewAxis is an index, =
just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning “add a new axis%
here,” in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help clarify tff
situation:

>>> printb
[123]

>>> p.shape
(3.)

>>> ¢ = b[:, NewAXxis]
>>> print c
(1]

(2]

(311

>>> c.shape
3.1)

Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't really want a
new array with a new axis, one just wants it for an intermediate computation. Witness the array multiplication
mentioned above, without and with pseudo-indices:

>>> without = a * reshape(b, (3,1))
>>> with = a * b[:,NewAXis]

The second is much more readable (once you understantNbomixis works), and it's much closer to the in-
tended meaning. Also, it's independent of the dimensions of the array b You might counter that using something
like reshape(b, (-1,1)) is also dimension-independent, but 1) would you argue that it's as readable? 2)
how would you deal with rank-3 or rank-N arrays? TXewAxis -based idiom also works nicely with higher

rank arrays, and with the.  ““rubber index" mentioned earlier. Adding an axis before the last axis in an array
can be done simply with:

>>> gl...,NewAXis,:]
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8. Array Functions

Most of the useful manipulations on arrays are done with functions. This might be surprising given Python's ob-
ject-oriented framework, and that many of these functions could have been implemented using methods in-
stead. Choosing functions means that the same procedures can be applied to arbitrary python sequences, not just
to arrays. For example, whildranspose([[1,2],[3,4]]) works just fine,
[[1,2],[3,4]]-transpose() can’'t work. This approach also allows uniformity in interface between
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions defined

in extension modules. The use of array methods is limited to functionality which depends critically on the im-
plementation details of array objects. Array methods are discussed in the next chapter.

We've already covered two functions which operate on arraghape andresize
take(a, indices, axis=0)

take isin some ways like the slice operations. It selects the elements of the array it gets as first argument based
on the indices it gets as a second argument. Unlike slicing, however, the array retuta&d blas the same
rank as the input array. This is again much easier to understand with an illustration:

>>> print a

[[01234]

[56 7 89]

[10 11 12 13 14]

[15 16 17 18 19]]

>>> print take(a, (0,)) # first row
[[01234]]

>>> print take(a, (0,1)) # first and second row
[[01234]

[56789]

>>> print take(a, (0,-1)) # first and last row
[01234]

[15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (as in the
examples above) is 0, the first axis. If you want another axis, then you can specify it:

>>> print take(a, (0,), 1) # first column

[[ 0]

[5]

[10]

[15]]

>>> print take(a, (0,1), 1) # first and second column
([0 1]

[5 6]

[10 11]

[15 16]]

>>> print take(a, (0,-1), 1) # first and last column
[0 4]

[5 9]

[10 14]

[15 19]]
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This is considered to be a ““structural" operation, because its result does not depend on the content of the arrays
or the result of a computation on those contents but uniquely on the structure of the array. Like all such struc—:{?
tural operations, the default axis is 0 (the first rank). | mention it here because later in this tutorial, we will see &
functions which have a default axis of -1.

oun4

Take is often used to create multidimensional arrays with the indices from a rank-1 array. As in the earlier ex-5-
amples, the shape of the array returneddke() is a combination of the shape of its first argument and the 3
shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the returned array

has the same shape as the index sequence. [XXX vague]

>>> x = arange(10) * 100

>>> print X

[ 0100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])

[[200 400]

[100 200]]

Atypical example of usingake() is to replace the grey values in an image according to a “translation table".

For example, let’s consider a brightening of a greyscale image.viehe) function defined in the NumTut
package automatically scales the input arrays to use the entire range of grey values, except if the input arrays
are of typecodd&y unsigned bytes -- thus to test this brightening function, we’ll first start by converting the
greyscale floating point array to a greyscale byte array:

>>> BW = (greeceBW*256).astype('b’)
>>> view(BW) # shows black and white picture

We then create a table mapping the integers 0-255 to integers 0-255 using a “compressive nonlinearity":

>>> table = (255- arange(256)**2 / 256).astype('b")
>>> view(table) # shows the conversion curve

To do the “taking” into an array of the right kind, we first create a blank image array with the same shape and
typecode as the original array:

>>> BW2 = zeros(BW.shape, BW.typecode())

and then perform the take() operation

>>> BWa2.flat[:] = take(table, BW.flat)
>>> view(BW2)

transpose(a, axes=None)

transpose takes an array and returns a new array which corresponds to a with the order of axes specified by
the second argument. The default corresponds to flipping the order of all the axes (it is equivalent to
a.shape[::-1] if a is the input array).

>>> print a
[[01234]

[56 7 8 9]

[1011 12 13 14]

[15 16 17 18 19]]

>>> print transpose(a)
[[0 510 15]

[1 61116]

[2 71217]

[3 81318]

[4 91419]]

>>> greece.shape # it's a 355x242 RGB picture
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(355, 242, 3)

>>> view(greece)

# picture of greek street is shown

>>> view(transpose(greece, (1,0,2))) # swap x and y, not color axis!
# picture of greek street is shown sideways

repeat(a, repeats, axis=0)

repeat takes an array and returns an array with each element in the input array repeated as often as indicated
by the corresponding elements in the second array. It operates along the specified axis. So, to stretch an array
evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the size of the
specified axis:

>>> view(repeat(greece, 2*ones(greece.shape|[0]))) # double in X

>>> view(repeat(greece, 2*ones(greece.shape[1]), 1)) # double inY

choose(a, (b0, ..., bn))

ais an array of integers between 0 and n. The resulting array will have the same shape as a, with element select-
ed from b0,...,bn as indicating by the value of the corresponding element in a.

Assume a is an arraythat you want to “clip” so that no values are greater than 100.0.
>>> choose(greater(a, 100.0), (a, 100.0))

Everywhere that greater(a, 100.0) is false (ie. 0) this will “choose" the corresponding value in a. Everywhere
else it will “choose" 100.0.

This works as well with arrays. Try to figure out what the following does:

>>> ret = choose(greater_than(a,b), (c,d))
ravel(a)

returns the argument arrayas a 1d array. It is equivalent teshape(a, (-1,)) ora.flat . Unlike
a.flat , howeverravel works with non-contiguous arrays.

>>> print X

[0123]

[56 7 8]

[10 11 12 13]]

>>> x.iscontiguous()

0

>>> x.flat

Traceback (innermost last):

File "<stdin>", line 1, in ?

ValueError: flattened indexing only available for contiguous array
>>> ravel(x)

array([ 0, 1, 2, 3, 5, 6, 7, 8,10, 11, 12, 13])

nonzero(a)
nonzero() returns an array containing the indices of the elements in a that are nonzero. These indices only make

sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not work for
complex arrays.
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where(condition, X, y)

where(condition,X,y) returns an array shaped like condition and has elements of x and y where condition is re
spectively true or false

compress(condition, a, axis=0)

suonoun4 Aeily .

returns those elements of a corresponding to those elements of condition that are nonzero. condition must be the
same size as the given axis of a.

>>> print X

[0123]

>>> print greater(x, 2)

[0001]

>>> print compress(greater(x, 2), X)

3]
diagonal(a, k=0)

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). This is designed for 2d
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print X

[[01 234

[56 7 89

[1011 12 13 14]

[1516 17 18 19]

[20 21 22 23 24]]

>>> print diagonal(x)
[0 61218 24]

>>> print diagonal(x, 1)
[1 71319]

>>> print diagonal(x, -1)
[51117 23]

trace(a, k=0)

returns the sum of the elements in a along the k th diagonal.

>>> print X
[[01234]
[56 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]

>>> print trace(x) #0+6+12+18+24
60

>>> print trace(x, -1) #5+11+17+23

56

>>> print trace(x, 1) #1+7+13+19

40

searchsorted(a, values)

Called with a rank-1 array sorted in ascending ordegrchsorted() will return the indices of the posi-
tions in a where the corresponding values would fit.
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>>> print bin_boundaries

[0. 0.1 0.2 0.3 04 05 0.6 0.7 0809 1.]

>>> print data

[ 0.3029573 0.79585496 0.82714031 0.77993884 0.55069605 0.76043182
0.28511823 0.29987358 0.40286206 0.68617903]

>>> print searchsorted(bin_boundaries, data)

[4898683357]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
n = searchsorted(sort(a), bins)
n = concatenate([n, [len(a)]])
return n[1:]-n[:-1]

>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7003000000]

>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[004222021213131323234900]

sort(a, axis=-1)

This function returns an array containing a copy of the data with the same shape as but with the order

of the elements along the specified axis sorted. The shape of the returned array is the samndlass,

sort(a, 3) will be an array of the same shape as a, where the elements of a have been sorted along the fourth
axis.

>>> print data
[50198]

[25832]

[80370]

[96950]
[90977]

>>> print sort(data) # Axis -1 by default
[[01589]

[22358]

[00378]

[05699]
[07799]

>>> print sort(data, 0)
[20130]

[50350]

[80872]

[95977]
[96998]]

argsort(a, axis=-1)

argsort  will return the indices of the elements of a needed to prodacga) . In other words, for a rank-
1 array take(a, argsort(a)) == sort(a)

>>> print data
[50198]

>>> print sort(data)
[01589]

>>> print argsort(data)
[12043]
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>>> print take(data, argsort(data))
[015809]

argmax(a, axis=-1), argmin(a, axis=-1)
Theargmax() function returns an array with the arguments of the maximum values of its input array a along

the given axis. The returned array will have one less dimension tteagmin()  is just likeargmax() , ex-
cept that it returns the indices of the minima along the given axis.

suonoun4 Aelly e

>>> print data
[[06130]

[00891]

[74540]

[52771]

[99797]

>>> print argmax(data)
[03020]

>>> print argmax(data, 0)
[04114]

>>> print argmin(data)
[40442]

>>> print argmin(data, 0)
[L1000]

fromstring(string, typecode)

Will return the array formed by the binary data given in string of the specified typecode. This is mainly used for
reading binary data to and from files, it can also be used to exchange binary data with other modules that use
python strings as storage.(J.PIL). Note that this representation is dependent on the byte order. To find out the
byte ordering used, use thgteswapped() = method described on page 55.

dot(ml1, m2)

Thedot() function returns the dot product oflandm2 This is equivalent to matrix multiply for rank-2 ar-
rays (without the transpose). Somebody who does more linear algebra really needs to do this function right
some day!

matrixmultiply(ml, m2)

Thematrixmultiply() function is..

XXX
clip(m, m_min, m_max)

The clip function creates an array with the same shape and typecode as m, but where every entry in m that is
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max. Entries
within the range [m_min, m_max] are left unchanged.

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000
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indices(shape, typecode=None)

The indices function returns an array corresponding to the shape given. The array returned is an array of a new
shape which is based on the specified shape, but has an added dimension of length the number of dimensions
in the specified shape. For example, if the shape specified bshidgge argument is (3,4), then the shape of

the array returned will be (2,3,4) since the length of (3,4) is 2. The contents of the returned arrays are such that
the ith subarray (along index 0, the first dimension) contains the indices for that axis of the elements in the array.
An example makes things clearer:

>>> | = indices((4,3))
>>> j.shape
(2,4,3)

>>> print i[0]
[[000]
[111]
[222]
[333]]

>>> printi[1]
[[012]
[012]
[012]
[012]]

S0,i[0] has an array of the specified shape, and each element in that array specifies the index of that position
in the subarray for axis 0. Similarly, each element in the subarrd{]in contains the index of that position
in the subarray for axis 1.

swapaxes(a, axisl, axis2)

Returns a new array which shares the data,dfut which has the two axes specified éisl andaxis2
swapped. If is of rank 0 or 1, swapaxes simply returns a new refererece to

>>> x = arange(10)
>>> x.shape = (5,2,1)
>>> print X
[{[0]
[1]]
[[2]
[3]]
[[4]
[5]]
[[6]
[7]]
[[8]
(911
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
(1,2,5)
>>> printy
[[[0246 8]
[L3579]]]
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concatenate((a0, al, ..., an), axis=0)

Aelly e

Returns a new array containing copies of the data contained in all a@ays. an . The arrays ai will be

concatenated along the specified axis (0 by default). All arrays ai must have the same shape along every axis
except for the one given. To concatenate arrays along a newly created axis, you aaayge0, ..., %
an)) as long as all arrays have the same shape. 5
>>> print X @
[[0123]
[5 6 7 8]

[10 11 12 13]]
>>> print concatenate((x,x))
[[0123]
[56 7 8]
[10 11 12 13]
[0123]
[56 7 8]
[10 11 12 13]]
>>> print concatenate((x,x), 1)
[01230123]
[56 78567 8]
[10 11 12 1310 11 12 13]]
>>> print array((X,X) )
([0123]
[56 7 8]
[10 11 12 13]]
[0123]
[56 7 8]
[10 11 12 13]]]

innerproduct(a, b)

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.

resize(a, new_shape)

Theresize function takes an array and a shape, and returns a new array with the specified shape, and filled
with the data in the input array. Unlike theshape function, the new shape does not have to yield the same
size as the original array. If the new size of is less than that of the input array, the returned array contains the
appropriate data from the “beginning” of the old array. If the new size is greater than that of the input array, the
data in the input array is repeated as many times as needed to fill the new array.

>>> x = arange(10)

>>> y =resize(X, (4,2)) # note that 4*2 < 10
>>> print X

[0123456789]

>>> printy

[[0 1]

(23]

[4 5]

(6 7]]
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>>> print resize(array((0,1)), (5,5)) # note that 5*5 > 2
[[01010]
[LO101]
[01010]
[LO101]
[01010]

diagonal(a, offset=0, axis1l=-2, axis2=-1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements of a such
that the difference between their indices along the specified axes is equal to the specified offset. With the default
values, this corresponds to all of the elements of the diagonal of a along the last twGarrestly this is bro-

ken for offsets other than -1, 0 and 1, and for non-square arrays.

repeat (a, counts, axis=0)

The repeat function uses repeated copies of a to create a result. The axis argument refers to the axis of x which
will be replicated. The counts argument tells how many copies of each element to make. The length of counts
must be the len(shape(a)[axis]).

In one dimension this is straightforward:

>>>y
array([0, 1, 2, 3, 4, 5])

>>> repeat(y, (1,2,0,2,2,3))
array([0, 1,1, 3, 3,4,4,5,5, 5]

In more than one dimension it sometimes gets harder to understand. Consider for example this array x whose
shape is (2,3).

>>> X
array([[0, 1, 2],
(3, 4, 5]])

>>> repeat(x, (2,6))
array([[0, 1, 2],

[0, 1, 2],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5],

[3, 4, 5]))

>>> repeat(x, (6,3), 1)
array([[0, 0,0, 0, 0,0, 1, 1, 1],
[2,2,2,2,2,2,3,3,3])

convolve (a, v, mode=0)

The convolve function returns the linear convolution of two rank 1 arrays. The output is a rank 1 array whose
length depends on the value of mode which is zero by default. Linear convolution can be used to find the re-
sponse of a linear system to an arbitrary input. If the input arrays correspond to the coefficients of a polynomial
and mode=2, the output of linear convolution corresponds to the coefficients of the product of the polynomials.
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The mode parameter requires a bit of explanation. True linear convolution is only defined over infinite sequenc- *
es. As both input arrays must represent finite sequences, the convolve operation assumes that the infinite sé?
guences represented by the finite inputs are zero outside of their domain of definition. In other words, theZ
sequences are zero-padded. If mode is 2, then the non-zero part of the full linear convolution is returned, so than
output has length len (a)+len (v)-1. Call this output f. If mode is 0, then any part of f which was affected by the 3
zero-padding is chopped from the result. In other words, let b be the input with smallest length and let ¢ be thed'
other input. The output when mode is 0 is the middle len (c)-len (b)+1 elements of f. When mode is 1, the outputa
is the same size as ¢ and is equal to the middle len (c) elements of f.

cross_correlate (a, v, mode=0)

The cross_correlate function computes the cross_correlation between two rank 1 arrays. The output is a rank 1
array representing the inner product of a with shifted versions of v. This is very similar to convolution. The dif-
ference is that convolution reverses the axis of one of the input sequences but cross_correlation does not. In fact
it is easy to verify that convolve (a, v, mode) = cross_correlate (a, v [::-1], mode)

where (condition, X, y)

The where function creates an array whose values are those of x at those indicesanitienis true, and

those of y otherwise. The shape of the result is the shape of condition. The type of the result is determined by
the types of x and y. Either or both of x and y and be a scalar, which is then used for any element of condition
which is true.

identity(n)

The identity function returns an n by n array where the diagonal elements are 1, and the off-diagonal elements
are 0.

>>> print identity(5)
[[A0000Q]
[01000]
[00100]
[00010]
[00001]

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the elements
in the sequence given along the specified axis (first axis by default).

>>> print X
[[0123]
[456 7]

[8 91011]

[12 13 14 15]
[16 17 18 19]]
>>> print sum(x)

[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17,
2+6+10+14+18, ...

>>> print sum(x, 1)

[6 223854 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, index=0)

Thecumsumfunction is a synonym for theccumulate  method of thedd ufunc.
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product(a, index=0)

Theproduct function is a synonym for theduce method of thenultiply  ufunc.

cumproduct(a, index=0)

Thecumproduct function is a synonym for theccumulate  method of thenultiply  ufunc.

alltrue(a, index=0)

Thealltrue  function is a synonym for theduce method of thdogical_and ufunc.

sometrue(a, index=0)

Thesometrue function is a synonym for ttreduce method of théogical_or ufunc.
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9. Array Methods

ZpoyloN Aelry »

As we discussed at the beginning of the last chapter, there are very few array methods for good reasons, a
these all depend on the the implementation details. They're worth knowing, though:

itemsize()

The itemsize() method applied to an array returns the number of bytes used by any one of its elements.

>>> a = arange(10)

>>> a.itemsize()

4

>>> a = array([1.0])

>>> a.itemsize()

8

>>> a = array([1], Complex)
>>> a.itemsize()

16

iscontiguous()

Calling an array's iscontiguous() method returns true if the memory used by A is contiguous. A non-contiguous
array can be converted to a contiguous one by the copy() method. This is useful for interfacing to C routines
only, as far as | know.

>>> XXX example
typecode()

The “typecode()' method returns the typecode of the array it is applied to. While we've been talking about them
as Float, Int, etc., they are represented internally as characters, so this is what you'll get:

>>> a = array([1,2,3])

>>> a.typecode()

III

>>> a = array([1], Complex)
>>> a.typecode()

D

byteswapped()

Thebyteswapped method performs a byte swapping operation on all the elements in the array.

>>> printa

[123]

>>> print a.byteswapped()
[16777216 33554432 50331648]

tostring()

Thetostring method returns a string representation of the data portion of the array it is applied to.
>>> a = arange(65,100)
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>>> print a.tostring()
A B C D E F G H I J K L M N O P Q R
UVWXYZ[\]A_ " abec

tolist()

Calling an array's tolist() method returns a hierarchical python list version of the same array:

>>> printa

[[65 66 67 68 69 70 71]

[72 73747576 77 78]

[79 80 81 82 83 84 85]

[86 87 88 89 90 91 92]

[93 94 95 96 97 98 99]]

>>> print a.tolist()

[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80,

81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97,
98, 99]]
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10. Array Attributes >
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g'_’.
We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, real ang

imaginary.
flat

Accessing thdlat  attribute of an array returns the flattenedravel() 'ed version of that array, without
having to do a function call. The returner array has the same number of elements as the input array, but is of
rank-1. One cannot set the flat attribute of an array, but one can use the indexing and slicing notations to modify
the contents of the array:

>>> print a

(012

[345]

[678]

>>> print a.flat

[012345678]

>>> a.flat = arange(9,18)

Traceback (innermost last):
File "<stdin>", line 1, in ?

AttributeError: Attribute does not exist or cannot be set

>>> a.flat[4] = 100

>>> print a

[0 12

[ 3100 5]

[6 7 8]

>>> a.flat[:] = arange(9, 18)

>>> print a

[[91011]

[12 13 14]

[15 16 17]]

real and imaginary

These attributes exist only for complex arrays. They return respectively arrays filled with the real and imagi-
nary parts of their elementsmag is a synonym forimaginary . The arrays returned are not contiguous
(except for arrays of length 1, which are always contiguougl ,.imag and.imaginary  are modifi-

able:

>>> print X

[ O +1 0.84147098+0.54030231j 0.90929743-0.41614684j]
>>> print x.real

[O. 0.84147098 0.90929743]

>>> print x.imag

[1. 0.54030231 -0.41614684]

>>> x.imag = arange(3)

>>> print X

[O. +0.j 0.84147098+1.j 0.90929743+2.]]

>>> x = reshape(arange(10), (2,5)) + Qj # make complex array
>>> print X
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[[0.+0.j 1.+0.j 2.+0.j 3.+0.j 4.+0.j]
[5.40.j 6.+0.j 7.+0.j 8.+0.j 9.+0.j]]
>>> print x.real

[[0. 1. 2. 3. 4]

[5. 6. 7. 8. 9]

>>> print X.typecode(), x.real.typecode()
Dd

>>> print x.itemsize(), x.imag.itemsize()
16 8



11. Special Topics P
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This chapter holds miscellaneous information which did not neatly fit in any of the other 7
chapters.
Subclassing

Starting with Release 12, arrayobjects are ExtensionClass types by default. This means that arrays can be sub-
classed in Python, and that new, specialized kinds of arrays can be built, which inherit most but not all of their
behavior from the standard type. There are thus two kinds of arrays: the “multiarrayobject” type which is ac-
cessible in the _numpy module, and the Array subclass of that type. The array() method described throughout
this documentation corresponds to creating Array objects. Array objects are just like multiarray objects, except
that they allow somewhat more generalized “setting” behavior. The logical ufuncs (greater, equal, etc.) now re-
turn a subclass of Array objects called MaskArrays, and these mask arrays can be used as the index in a “setting
operation:

>>> print X
[[01234]

[56 7 8 9]

[10 11 12 13 14]

[15 16 17 18 19]

[20 21 22 23 24]]
>>> mask = greater(x, 10)
>>> print mask
[[bo00Q]

[0000Q]
[01111]

[11111]
[11111]

>>> x[mask] = -x
>>> print X

[0 1 2 3 4]

[5 6 7 8 9]
[10-11-12-13 -14]
[[15-16 -17 -18 -19]
[-20 -21 -22 -23 -24]]

The features of the Array objects are still evolving. Candidate features under consideration are: support for
missing values, different casting rules, more efficient pickling, generalized “set” facility, etc.

Code Organization

Numeric.py and friends

Numeric.py is the most commonly used interface to the Numeric extensions. Itis a Python module which
imports all of the exported functions and attributes fromrthétiarray module, and then defines some util-

ity functions. As some of the functions definedNlumeric.py could someday be moved into a supporting

C module, the utility functions and thaultiarray object are documented together, in this section. The

59



multiarray objects are the core of Numeric Python — they are extension types written in C which are de-
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous data types,
with special emphasis to numeric data types.

UserArray.py

In the tradition ofUserList.py andUserDict.py ,theUserArray.py  module defines a class whose
instances act in many ways like array objects.

Matrix.py

TheMatrix.py  python module defines a clabatrix  which is a subclass dfserArray . The only dif-
ferences betweeMatrix instances antlserArray instances is that the operator orMatrix performs a
matrix multiplication, as opposed to element-wise multiplication, and that the power operatodisallowed
for Matrix instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecode names
and values, by building small arrays and looking at the number of bytes they use per element.

ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on Textual
Representations of arrays on page 66,

Milab.py

The Mlab.py module provides some functions which are compatible with the functions of the same name in the
MATLAB programming language. These are:

bartlett(M)

returns the M-point Bartlett window.

blackman(M)

returns the M-point Blackman window.

corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m)

returns the cumulative product of the elments along the first dimension of m.
cumsum(m)

returns the cumulative sum of the elements along the first dimension of m.
diag(v, k=0)

returns the k-th diagonal if v is a matrix or returns a matrix with v as the k-th diagonal if v is a vector.
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diff(x, n=1)
calculates the first-order, discrete difference approximation to the derivative.

eig(m)

soido] [e10ads .

returns the the eigenvalues of m in x and the corresponding eigenvectors in the rows of v.
eye(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where the k-th diagonal is all ones, and everything else is zeros.
fliplr(m)

returns a 2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only works with
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only works with
2-D arrays.

hamming(M)

returns the M-point Hamming window.
hanning(M)

returns the M-point Hanning window.
kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for the mod-
ified bessel function i0.

max(m)

returns the maximum along the first dimension of m.

mean(m)

returns the mean along the first dimension of m. Note: if m is an integer array, integer division will occur.
median(m)

returns a mean of m along the first dimension of m.

min(m)

returns the minimum along the first dimension of m.

msort(m)

returns a sort along the first dimension of m as in MATLAB.
prod(m)

returns the product of the elements along the first dimension of m.
ptp(m)

returns the maximum - minimum along the first dimension of m.
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rand(dl, ..., dn)

returns a matrix of the given dimensions which is initialized to random numbers from a uniform distribution in
the range [0,1).

rot90(m,k=1)

returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.
sinc(x)

returns sin(pi*x)/(pi*x) at all points of array x.

squeeze(a)

removes any ones from the shape of a

std(m)

returns the standard deviation along the first dimension of m. The result is unbiased meaning division by
len(m)-1.

sum(m)

returns the sum of the elements along the first dimension of m.

svd(m)

return the singular value decomposition of m [u,x,V]

trapz(y,x=None)

integrates y = f(x) using the trapezoidal rule.

tri(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all ones.
tril(m,k=0)

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > 0 is ab&ve &l
below the main diagonal.

triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and k < 0 is
below the main diagonal.

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given this name to distin-
guish it from the one-dimensional array object defined in the standard array module. From here on, however,
the terms array and multiarray will be used interchangeably to refer to the new object type. multiarray objects
are homogeneous multidimensional sequences. Starting from the back, they are sequences. This means that
they are container (compound) objects, which contain references to other objects. They are multidimensional,
meaning that unlike standard Python sequences which define only a single dimension along which one can it-

erate through the contents, multiarray objects can have up to 40 dimeﬁsﬁjnally, they are homogeneous.

1. This limit is modifiable in the source code if higher dimensionality is needed.
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This means that every object in a multiarray must be of the same type. This is done for efficiency reasons --*
storing the type of the contained objects once in the array means that the process of finding the type-specifi¢?
operation to operate on each element in the array needs to be done only once per array, as opposed to once @gr
element. Furthemore, as the main purpose of these arrays is to process numbers, the numbers can be stored®i-
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings. It is however pos- S
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but allow%-
heterogeneous contents (as we shall see, these arrays are still homogeneous from the Numeric perspective, tHay
are just arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a single-
character Python string, but more descriptive names corresponding to the typecodes are made available to the
Python programmer in the Precision.py module. The typecodes are defined as follows:

Table 3: Typecode Listing

Variable defined in Typecode Description
Typecode module character P

Char 'c’ Single-character strings

PyObiject O’ Reference to Python object

UnsignedInt8 o Unsigned integer using a single byte.

Int I Python standard integers (i.e. C long integers)

Float d’ Python standard floating point numbers
(i.e. C double-precision floats)

n/a ' Single-precision floating point numbers

Complex D’ Complex numbers consisting of two double-preci
sion floats

n/a ' Complex numbers consisting of two single-precisipn
floats

IntO, Int8, Int16, n/a These correspond to machine-dependent typecoges:

Int32, Int64, Int128 Int0 returns the typecode corresponding to the
smallest available integdnt8 that corresponding
to the smallest available integer with at least 8 bits,
Int16 that with at least 16 bits, etc. If a typecode |s
not available (e.gnt64 on a 32-bit machine), the|
variable is not defined.

FloatO, Float8, Floatl6, n/a Same akit0 , Int8 etc. except for floating point

Float32, Float64, numbers.

Float128

Complex0, Complex8, n/a Same aBloat0 , etc., except that the number of

Complex16, Complex32, bits refers to the precision of each of the two (rea|

Complex64, Complex128 and imaginary) parts of the complex number.

Note on number fomat: the binary format used by Python is that of the underlying C library. [notes about IEEE

formats, etc?]
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Indexing in and out, slicing

Indexing arrays works like indexing of other Python sequences, but supports some extensions which are as of

yet not implemented for other sequence typdhe standard [start:stop] notation is supported, with start de-
faulting to O (the first index position) and stop defaulting to the length of the sequence, as for lists and tuples.
In addition, there is an optional stride argument, which specifies the stride size between successive indices in
the slice. It is expressed by a integer following a second : immediately after the usual start:stop slice. Thus
[0:11:2]  will slice the array at indices 0, 2, 4, .. 10. The start and stop indices are optional, but the first : must
be specified for the stride interpretation to occur. Thereforg, means slice from beginning to end, with a

stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the indexing
starts from the end of the sequence and works towards the beginning of the sequence. If the stop index is omitted
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print X
[012345678910111213141516171819]
>>> print x[10]

10

>>> print x[:10]

[01234567809]

>>> print x[5:15:3]

[5 811 14]

>>> print x[:10:2]

[02468]

>>> print x[10::-2]

[10 8 6 4 2 (]

>>> print x[::-1]

[1918171615141312111098 7 6 54321 0]

It is important to note that the out-of-bounds conditions follow the same rules as standard Python indexing, so
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bound in-
dices yields an IndexError:

>>> print x[:100]
[012345678910111213141516171819]
>>> print x[-200:4]
[0123]
>>> x[100]
Traceback (innermost last):
File "<stdin>", line 1, in ?
IndexError: index out of bounds

The second difference between array indexing and other sequences is that arrays provide multidimensional in-
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. Indices
should be integers (with negative integers indicating offsets from the end of the dimension, as for other Python
sequences), and slices can have, as explained above, one or two :'s separating integer arguments. These indices
and slies must be separated by commas, and correspond to sequential dimensions starting from the leftmost
(first) index on. Thusa[3] means index 3 along dimensiond}3,:,-4] means the slice of a along three
dimensions: index 3 along the first dimension, the entire range of indices along the second dimension, and the
4th from the end index along the third dimension. If the array being indexed has more dimensions than are spec-
ified in the multidimensional slice, those dimensions are assumed to be sliced from beginning to end. Thus, if
ais arank 3 array,

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidimen-
sional indexing, and it is relatively simple to write Python classes which support these operations. See
the Python Reference manual for details.
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a[0] == a[0,:] == a[0,:,’]

Ellipses

0] [enads .

A special slice element called Ellipses (and written ) is used to refer to a variable number of slices from
beginning to end along the current dimension. It is a shorthand for a set of such slices, specifically the number.
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmost) El- @
lipses in an multidimensional slice is expanded, while the others are single dimensional slices from beginning
to end.

Thus, ifa is a rank-6 array,
a[3,:,;,;,-1,;] == a[3,...,-1,;)] == a[3,...,-1,...]

NewAxis

There is another special symbol which can be used inside indexing operations to create new dimensions in the
returned array. The reference NewAxis, used as one of the comma-separated slice elements, does not change
the selection of the subset of the array being indexed, but changes the shape of the array returned by the indexing
operation, so that an additional dimension (of length 1) is created, at the dimension position corresponding to

the location of NewAxis within the indexing sequence. Ttajs3,NewAxis,-3] will perform the index-
ing of a corresponding to the slifa:,3,-3] , but will also modify the shape of a so that the new shapee of
is (a.shape[0], a.shape[1], 1, a.shape[2]) . This operation is especially useful in conjunction

with the broadcasting feature described next, as it replaces a lengthy but common operation with a simple no-
tation (in the example above, the same effect can be had with

reshape(a[:,3,-1], (a.shape[0], a.shape[1], 1, a.shape[2])).

Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the rules are

exactly the same, and describe the slice of the array on the left hand side of the assignment operator which is
the target of the assignment. The only point left to mention is the process of assigning from the source (on the

right hand side of the assignment) to the target (on the left hand side).

If both source and target have the same shape, then the assignment is done element by element. The typecode
of the target specifies the casting which can be applied in the case of a typecode mismatch between source and
target. If the typecode of the source is “lower” than that of the target, then an 'up-cast’ is performed and no loss

in precision results. If the typecode of the source is “higher” than that of the target, then a downcast is per-
formed, which may lose precision (as discussed in the description of the array call, these casts are truncating
casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the contents of the
source over the range of the target. This broadcasting occurs for all dimensions where the source has dimension
lorO (i.e., is absent). If there exists a dimension for which the two arrays have differing lengths, and the length
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raised, noti-
fying the user that the arrays are not aligned.

Axis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering scheme is
the same as that used by indexing in Python: the first (leftmost) axis is axis 0, the second axis is axis 1, etc. Axis
-1 refers to the last axis, -2 refers to the next-to-last axis, etc.
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Textual representations of arrays

The algorithm used to display arrays as text strings is defined in the file ArrayPrinter.py, which defines a func-
tion array2string (imported into Numeric’'s namespace) which offers considerable control over how arrays are
output. The range of options to the array2string function will be described first, followed by a description of
which options are used by default&ty andrepr .

array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator="", array_output=0):

Thearray2string function takes an array and returns a textual representation of it. Each dimension is in-
dicated by a pair of matching square brackgts)( within which each subset of the array is output. The orien-
tation of the dimensions is as follows: the last (rightmost) dimension is always horizontal, so that the frequent
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed vertically if present,
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23]
>>> a.shape = (2,10)
>>> print array2string(a)
[0123456 78 91011]
[121314 1516 17 18 19 20 21 22 23]]
>>> a.shape = (2,3,4)
>>> print array2string(a)
([0 12 3]

[456 7]

[8 910 11]]

[[12 13 14 15]

[16 17 18 19]

[20 21 22 23]]]

The max_line_width argument specifies the maximum number of characters which the array2string rou-
tine uses in a single line. If it is set tdone, then the value of theys.output_line_width attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.

>>> print array2string(x)
[01 2 3 45 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25
26 27 28 29]
>>> sys.output_line_width = 30
>>> print array2string(x)
[0123456789
1011121314 1516 17
1819202122232425
26 27 28 29]

Theprecision  argument specifies the number of digits after the decimal point which are used. If a value of
None is used, the value of treys.float_output_precision is looked up. If it exists, it is used. If not,
the default of 8 digits is used.

>>> x = array((10.11111111111123123111, pi))
>>> print array2string(x)

[10.11111111 3.14159265]

>>> print array2string(x, precision=3)

[10.111 3.142]

>>> gys.float_output_precision = 2

>>> print array2string(x)
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[10.11 3.14]

dS-

Thesuppress_small  argument specifies whether small values should be suppressed (and output as 0). If a
value ofNone is used, the value of theys.float_output_suppress_small is looked up. If it exists,
itis used (all that matters is whether it evaluates to true or false). If not, the default of 0 (false) is used. This vari- 5

[e1na

able also interacts with the precision parameters, as it can be used to suppress the use of exponential notati@n.
[72)

>>> print X

[ 1.00000000e-005 3.14159265e+000]

>>> print array2string(x)

[ 1.00000000e-005 3.14159265e+000]

>>> print array2string(x, suppress_small=1)

[0.00001 3.14159265]

>>> print array2string(x, precision=3)

[ 1.000e-005 3.142e+000]

>>> print array2string(x, precision=3, suppress_small=1)
[0. 3.142]

Theseparator argument is used to specify what character string should be placed between two numbers
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)

[ O 100 200 300 400 500 600 700 800 900 100]

>>> print array2string(x, separator ="', ")

[ 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 100]

Finally, the last attribute, array_output, specifies whether to prepend the string "array(” and append either the
string ")" or ", 'X")" where X is a typecode for non-default typecodes (in other words, the typecode will only be
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes associated
with floating point numbers, complex numbers and integers respectively). The array() is so that an eval of the
returned string will return an array object (provided a comma separator is also used).

>>> array2string(arange(3))
[012]
>>> eval(array2string(arange(3), array_output=1))
Traceback (innermost last):

File "<stdin>", line 1, in ?

File "<string>", line 1

array([0 1 2])
N

SyntaxError: invalid syntax

>>> type(eval(array2string(arange(3), array_output=1, separator=",")))
<type 'array™>

>>> array2string(arange(3), array_output=1)

‘array([0, 1, 2])'

>>> array2string(zeros((3,), 'i") + arange(3), array_output=1)
"array([0, 1, 2],i")"

Thestr andrepr operations on arrays calray2string with themax_line_width |, precision
andsuppress_small  all set to None, meaning that the defaults are used, but that modifying the attributes
in thesys module will affect array printing. str uses the default separator and does not use the array() text,
while repr uses a comma as a separator and does use the array(...) text.

>>> x = arange(3)
>>> print X

[012]

>>> str(x)
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>>> repr(x)

‘array([0, 1, 2])' # note the array(...) and ,’'s

>>> x = arange(0,.01,.001)

>>> print X

[ O. 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009]

>>> jmport sys

>>> sys.float_output_precision = 2

>>> print X

[0. 0. 0. 0. 0. 0.01 0.01 0.01 0.01 0.01]

Comparisons

Currently, comparisons of multiarray objects results in exceptions, since reasonable results (arrays of booleans)
are not doable without non-trivial changes to the Python core. These changes are planned for Python 1.6, at
which point array object comparisons will be updated.

>>> print X, y
[012][345]
>>> printx <y
Traceback (innermost last):
File "<stdin>", line 1, in ?
TypeError: Comparison of multiarray objects is not implemented.

Pickling and Unpickling -- storing arrays on disk

HowTo
byte-order independence
Dealing with floating point exceptions

Dealing with floating point exceptions

fpectl, NaNs, etc.
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12. Writing a C extension to NumPy <
=3

«Q

o}

@]

i 2
Introduction ®
>

@,

There are two applications that require using the NumPy array type in C extension modules: S
3

« Access to numerical libraries: Extension modules can be used to make numerical libraries written in C (or
languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type has the a
vantage of using the same data layout as arrays in C and Fortran.

dwanN

<
« Mixed-language numerical code: In most numerical applications, only a small part of the total code is CPU

time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy arrays
are important for the interface between these two parts, because they provide equally simple access to their
contents from Python and from C.

This document is a tutorial for using NumPy arrays in C extensions.

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the headerafjlebject.h ,

after the header file Python.h that is obligatory for all extension modules. Tharfdgobject.h comes

with the NumPYy distribution; depending on where it was installed on your system you might have to tell your
compiler how to find it. In addition to includin@rrayobject.h , the extension must call
import_array() in its initialization function, after the call tBy_InitModule() . This call makes sure

that the module which implements the array type has been imported, and initializes a pointer array through
which the NumPy functions are called. If you forget this call, your extension module will crash on the first call
to a NumPy function! If you will be manipulating ufunc objects, you should also include theffilecob-

ject.h , also available as part of the NumPy distribution initlotude  directory.

All of the rules related to writing extension modules for Python apply. The reader unfamiliar with these rules
is encouraged to read the standard text on the topic, “Extending and Embedding the Python Interpreter,” avail-
able as part of the standard Python documentation distribution.

Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structiyArrayObject , which is an extension of the structuPgOb-

ject . Pointers tdPyArrayObject  can thus safely be cast RyObject pointers, whereas the inverse is
safe only if the object is known to be an array. The type structure corresponding to array objects is
PyArray_Type . The structuréyArrayObject has four elements that are needed in order to access the ar-
ray's data from C code:

int nd
The number of dimensions in the array.
int *dimensions

A pointer to an array ohd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd])
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int *strides

A pointer to an array ohd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative! Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For exanmpygtif cur-

rently points to element of a rank-5 array at indi@e3,5,3,2  and you want it to point to element
1,0,5,4,2 then you should adstrides[3] to the pointermyptr += strides[3] . This

works even if (and is especially useful when) the array is not contiguous in memory.

char *data

A pointer to the first data element of the array.

The address of a data element can be calculated from its indices and the data and strides pointers. For example,
elementi, |] of a two-dimensional array has the addréata + i*array->strides[0] + j*ar-

ray->strides[1] . Note that the stride offsets are in bytes, not in storage units of the array elements. There-
fore address calculations must be made in bytes as well, starting from the data pointer, which is always a char
pointer. To access the element, the result of the address calculation must be cast to a pointer of the required
type. The advantage of this arrangement is that purely structural array operations (indexing, extraction of sub-
arrays, etc.) do not have to know the type of the array elements.

Element data types

The type of the array elements is indicated by a type number, whose possible values are defined as constants in
arrayobject.h , as given in Table 3.

Table 4: C constants corresponding to storage types

Constant element data type
PyArray CHAR char
PyArray UBYTE unsigned char
PyArray_SBYTE signed char
PyArray SHORT short
PyArray INT int
PyArray_LONG long
PyArray FLOAT float
PyArray DOUBLE double
PyArray_CFLOAT float[2]
PyArray CDOUBLE double[2]
PyArray OBJECT PyObject *
The type number is stored array->descr->type_num . Note that the names of the element type con-

stants refer to the C data types, not the Python data types. A Piythors equivalent to a Qdong , and a Py-
thonfloat corresponds to a @ouble . Many of the element types listed above do not have corresponding
Python scalar types (e.ByArray INT ).
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Contiguous arrays

M e

1

An important special case of a NumPy array is the contiguous array. This is an array whose elements occupy &
single contiguous block of memory and have the same order as a standard C array. In a contiguous array, tke
value ofarray->strides]i] is equal to the size of a single array element times the produatraf- ?%
>dimensionsj] forj uptoi-1 . Arrays that are created from scratch are always contiguous; non-contig- o
uous arrays are the result of indexing and other structural array operations. The main advantage of contiguo@*
arrays is easier handling in C; the poinderay->data  is cast to the required type and then used like a C ar-
ray, without any reference to the stride values. This is particularly important when interfacing to existing librar-
ies in C or Fortran, which typically require this standard data layout. A function that requires input arrays to be &
contiguous must call the conversion functiBgArray_ContiguousFromObject() , described in the
section “Accepting input data from any sequence type".

uoisu

Adqunp

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalars and higher-
dimensional arrays in the same way. However, library routines for general use should not return zero-demen-
sional arrays, because most Python code is not prepared to handle them. Moreover, zero-dimensional arrays can
create confusion because they behave like ordinary Python scalars in many circumstances but are of a different
type. A comparison between a Python scalar and a zero-dimensional array will always fail, for example, even

if the values are the same. NumPy provides a conversion function from zero-dimensional arrays to Python sca-
lars, which is described in the section “Returning arrays from C functions".

A simple example

The following function calculates the sum of the diagonal elements of a two-dimensional array, verifying that
the array is in fact two-dimensional and of typeArray DOUBLE .

static PyObject *
trace(PyObiject *self, PyObject *args)
{

PyArrayObject *array;

double sum;

inti, n;

if (IPyArg_ParseTuple(args, "O!",
&PyArray Type, &array))
return NULL;
if (array->nd != 2 || array->descr->type_num != PyArray_DOUBLE) {
PyErr_SetString(PyExc_ValueError,
"array must be two-dimensional and of type float");
return NULL;

}

n = array->dimensions|[0];
if (n > array->dimensions[1])
n = array->dimensions[1];
sum =0.;
for i=0;i<n;i++)
sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

return PyFloat_FromDouble(sum);

}

71



Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstances this is
sufficient, but often, especially in the case of library routines for general use, it would be preferable to accept
input data from any sequence (lists, tuples, etc.) and to convert the element type to double automatically where
possible. NumPy provides a function that accepts arbitrary sequence objects as input and returns an equivalent
array of specified type (this is in fact exactly what the array constridtoneric.array() does in Python

code):

PyObject *
PyArray_ContiguousFromObject(PyObject *object,
int type_num,

int min_dimensions,
int max_dimensions);

The first argument, object, is the sequence object from which the data is taken. The second argument,
type_num, specifies the array element type (see the table in the section “Element data types". If you want the
function to the select the ““smallest"” type that is sufficient to store the data, you can pass the special value
PyArray_NOTYPE. The remaining two arguments let you specify the number of dimensions of the resulting
array, which is guaranteed to be no smaller tan_dimensions  and no larger thamax_dimensions

except for the casmax_dimensions == , which means that no upper limit is imposed.

If the input data is not compatible with the type or dimension restrictions, an exception is raised. Since the array
returned byPyArray ContiguousFromObject() is guaranteed to be contiguous, this function also pro-
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already a con-
tiguous array of the specified type, it is passed on directly; there is thus no performance or memory penalty for
calling the conversion function when it is not required. Using this function, the example from the last section
becomes

static PyObject *
trace(PyObject *self, PyObject *args)

PyObject *input;
PyArrayObject *array;
double sum;

inti, n;

if (IPyArg_ParseTuple(args, "O", &input))
return NULL;
array = (PyArrayObject *)
PyArray_ContiguousFromObiject(input, PyArray_DOUBLE, 2, 2);
if (array == NULL)
return NULL;

n = array->dimensions[0];
if (n > array->dimensions[1])
n = array->dimensions[1];
sum =0.;
for i=0;i<n;i++)
sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

Py_DECREF(array);
return PyFloat_FromDouble(sum);

}

72



Note that no explicit error checking is necessary in this version, and that the array reference that is returned by*
PyArray_ContiguousFromObiject() must be destroyed by calliity DECREF().

Creating NumPy arrays

NumPy arrays can be created by calling the function

PyObject *

PyArray _FromDims(int n_dimensions,
int dimensions[n_dimensions],
int type_num);

NN 01 UOISUdIXa D © Bunup

The first argument specifies the number of dimensions, the second one the length of each dimension, and th%
third one the element data type (see the table in the section “Element data types". The array that is returned 1§
contiguous, but the contents of its data space are undefined. There is a second function which permits the cre-
ation of an array object that uses a given memory block for its data space:

PyObject *

PyArray_FromDimsAndData(int n_dimensions,
int dimensions[n_dimensions]
int item_type
char *data);

The first three arguments are the same a®fckrray_FromDims() . The fourth argument is a pointer to the
memory block that is to be used as the array's data space. It is the caller's responsibility to ensure that this mem-
ory block is not freed before the array object is destroyed. With few exceptions (such as the creation of a tem-
porary array object to which no reference is passed to other functions), this means that the memaory block may
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function can be
useful in special cases, for example for providing Python access to arrays in Fortran common blocks.

Returning arrays from C functions

Array objects can of course be passed out of a C function just like any other object. However, as has been men-
tioned before, care should be taken not to return zero-dimensional arrays unless the receiver is known to be pre-
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate this step,

NumPy provides a special function

PyObject *
PyArray_Return(PyArrayObiject *array);

which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar object in
case of a zero-dimensional array.

A less simple example

The function shown below performs a matrix-vector multiplication by callingBh&S function DGEMWVIt

takes three arguments: a scalar prefactor, the matrix (a two-dimensional array), and the vector (a one-dimen-
sional array). The return value is a one-dimensional array. The input values are checked for consistency. In ad-
dition to providing an illustration of the functions explained above, this example also demonstrates how a
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machine-spe-
cific peculiarities. In this example, two assumptions have been made:

e The Fortran functiodGEM\Vnust be called from C adgemv_. Many Fortran compilers apply this rule,
but the C name could also dgemv or DGEM\{or in principle anything else; there is no fixed standard).

« Fortraninteger s are equivalent to ®ng s, and Fortran double precision numbers are equivalent  to
C doubles. This works for all systems that | have personally used, but again there is no standard.
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Also note that the libraries that this function must be linked to are system-dependent; on my Linux system (us-
inggcc /g77), the libraries arblas andf2c . So here is the code:

static PyObject *
matrix_vector(PyObject *self, PyObject *args)
{

PyObject *inputl, *input2;

PyArrayObject *matrix, *vector, *result;

int dimensions[1];

double factor[1];

double real_zero[1] ={0.};

long int_one[1] = {1};

long dimO[1], dim1[1];

extern dgemv_(char *trans, long *m, long *n,
double *alpha, double *a, long *Ida,
double *x, long *incx,
double *beta, double *Y, long *incy);

if (\PyArg_ParseTuple(args, "dOQ", factor, &inputl, &input2))
return NULL,;
matrix = (PyArrayObject *)
PyArray_ContiguousFromObject(inputl, PyArray DOUBLE, 2, 2);
if (matrix == NULL)
return NULL,;
vector = (PyArrayObiject *)
PyArray_ContiguousFromObject(input2, PyArray DOUBLE, 1, 1);
if (vector == NULL)
return NULL,;
if (matrix->dimensions[1] != vector->dimensions[0]) {
PyErr_SetString(PyExc_ValueError,
"array dimensions are not compatible");
return NULL,;

}

dimensions[0] = matrix->dimensions[0];
result = (PyArrayObject *)PyArray_FromDims(1, dimensions,
PyArray DOUBLE);
if (result == NULL)
return NULL,;

dim0[0] = (long)matrix->dimensions|[0];

dim1[0] = (long)matrix->dimensions[1];

dgemv_("T", diml1, dimO, factor, (double *)matrix->data, dim1,
(double *)vector->data, int_one,
real_zero, (double *)result->data, int_one);

return PyArray Return(result);

}

Note thatPyArray_Return() is not really necessary in this case, since we know that the array being re-
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance cost is
practically zero.
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13. C API Reference

This chapter describes the API for ArrayObjects and Ufuncs.
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ArrayObject C Structure and API

Structures
The PyArrayObject is, like all Python types, a kind of PyObject. Its definition is:

typedef struct {
PyObject_ HEAD
char *data;
int nd;
int *dimensions, *strides;
PyObject *base;
PyArray Descr *descr;
int flags;

} PyArrayObiject;

WherePyObject HEAD is the standarByObject header, and the other fields are:
char *data
A pointer to the first data element of the array.
int nd
The number of dimensions in the array.
int *dimensions

A pointer to an array ofd integers, describing the number of elements along each dimension. The
sizes are in the conventional order, so that for any array
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd])

int *strides

A pointer to an array ohd integers, describing the address offset between two successive data ele-
ments along each dimension. Note that strides can also be negative! Each number gives the number
of bytes to add to a pointer to get to the next element in that dimension. For exanmpygtif cur-

rently points to an element in a rank-5 array at inditgs5,3,2  and you want it to point to ele-
ment1,0,5,4,2  then you should adstrides[3] to the pointermyptr += strides|[3]

This works even if (and is especially useful when) the array is not contiguous in memory.

PyObject *base

Used internally in arrays that are created as slices of other arrays. Since the new array shares its data
area with the old one, the original array’s reference count is incremented. When the subarray is gar-
bage collected, the base array’s reference count is decremented.

PyArray Desc *descr

See below.
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int flags
A bitfield indicating whether the array:
e s contiguous (rightmost bit)
e owns the dimensions (next bit to the left) (??7?)
* owns the strides (next bit to the left) (??7?)
* owns the data area

The ownership bits are used by NumPy internally to manage memory allocation and deallocation.
They can be false if the array is the result of e.g. a slicing operation on an existing array.

PyArrayDescr *descr

a pointer to a data structure that describes the array and has some handy functions. The slots in this
structure are:

PyArray_VectorUnaryFunc *cast[]
an array of function pointers which will cast this arraytype to each of the other data types.
PyArray_GetltemFunc *getitem

a pointer to a function which returns a PyObject of the appropriate type given a (char) pointer to
the data to get.

PyArray SetltemFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to converted
Python Ojbect given as the first argument.

int type_num
A number indicating the datatype of the array (i.ByArray XXXX )
char *one
A pointer to a representation of one for this datatype.
char *zero
A pointer to a representation of zero for this datatype (especially useful for PyArray OBJECT
types)
char type
A character representing the array’s typecode (ofebagilfdFDO’ ).

The ArrayObject API

In the followingop is a pointer to &@yObject andarp is a pointer to &@yArrayObject . Routines which
returnPyObject * returnNULLto indicate failure (and follow the standard exception-setting mechanism).
Functions followed by a dagget ) are functions which return PyObjects whose reference count has been in-
creased by one (new references). See the Python Extending/Embedding manual for details on reference-count
management.

int PyArray_Check(op)
returnsl if op is aPyArrayObject  orO if it is not.
int PyArray_SetNumericOps(d)
internally used byimath to setup some of its functions.
int PyArray INCREF(op)
Used for arrays of python objectByArray_OBJECT ) to increment the reference count of every
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python object in the arragp. User code does not typically need to call this.
int PyArray XDECREF(op)

Used for arrays of python objectByArray _OBJECT ) to decrement the reference count of every
python object in the arrayp.

PyArrayError
Exports the array error object. | don't know its use.
void PyArray_SetStringFunction(op,repr)

Sets the function for representation of all array®po which should be a callableyObject . If
repr is non-zero then the function corresponding tor@  string representationis set, otherwise,
that for thestr string representation is set.

PyArray_Descr PyArray _DescrFromType(type)

returns éPyArray_Descr  structure for the datatype given bype . The input type can be either
the enumerated typeByArray Float , etc.) or a characteicbl1silfdFDO’ ).
PyObject *PyArray_Cast(arp, type) T

returns a pointer to RyArrayObject  that isarp cast to the array type specified bype . It is
just a wrapper around the function definedairp->descr->cast that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray _CanCastSafely(fromtype,totype)

returnsl if the array with typeromtype can be cast to an array of typetype without loss of
accuracy, otherwise it retur®s It allows conversion ofong s toint s which is not safe on 64-bit
machines. The inputsfromtype and totype are the enumerated array types (e.g.
PyArray_SBYTE ).

int PyArray_ObjectType(op, min_type)

20uaIaey IdV D

returns the typecode to use for a call to an array creation function given an input python sequence

objectop and a minimum type valuemin_type . It looks at the datatypes usedap, compares
this with min_type and returns a consistent type value that can be used to store all of the data in
op and satisfying at the minimum the precisiomonh_type .

int _PyArray_multiply_list(list,n)
is a utility routine to multiply an array of integers pointed to hljst

int PyArray_Size(op)
is a useful function for returning the total number of elementsgrif op is aPyArrayObject
0 otherwise.

PyObject *PyArray FromDims(nd,dims,type)

returns a pointer to a newly constructegArrayObject  (returned as &yObject ) given the
number of dimensions ind, an arraydims of nd integers specifying the size of the array, and the
enumerated type of the arraytype .

PyObject *PyArray_FromDimsAndData(nd,dims,type,data) t

This function should only be used to access global data that will never be freed (like FORTRAN
common blocks). It builds RyArrayObject  in the same way aByArray_FromDims butin-

stead of allocating new memory for the array elements it uses the bytes pointeddaiaby(a

char * ).
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PyObject *PyArray_ContiguousFromObiject(op,type,min_dim,max_dim) t

returns a contiguous array of typgpe from the (possibly nested) sequence obget If op is a
contiguousPyArrayObject  then a reference is made;ap is a non-contiguous then a copy is
performed to get a contiguous arrayp is not aPyArrayObject  then a newPyArrayObject

is created from the sequence object and returned. The two param@&tedim andmax_dim let

you specify the expected rank of the input sequence. An error will result if the resBitiugay-

Object does not have rank bounded by these limits. To specify an exact rank requirement set
min_dim = max_dim . To allow for an arbitrary number of dimensions spegaifyn_dim =
max_dim =0

PyObject *PyArray_CopyFromObject(op,type,min_dim,max_dim) T

returns a contiguous array similarRyArray _ContiguousFromObject except that a copy of
op is performed even if a shared array could have been used.

PyObject *PyArray_FromObject(op,type,min_dim,max_dim) 1

returns a reference wp if op is aPyArrayObject  and a newly constructdelyArrayObject
if op is any other (nested) sequence object. You must use strides to access the elements of this pos-
sibly discontiguous array correctly.

PyObject *PyArray_Return(apr)

returns a pointer tapr with some extra code to check for errors and be sure that zero-dimensional
arrays are returned as scalars. If a scalar is returned instesgat athenapr 's reference count is
decremented, so it is safe to use this function in the form :

return PyArray_Return (apr);

PyObject *PyArray_Reshape(apr,op) T

returns a reference &pr with a new shape specified lmp which must be a one dimensional se-
quence object. One dimension may be specified as unknown by giving a value less than zero, its val-
ue will be calculated from the size aybr .

PyObject *PyArray_Copy(apr) T
returns an element-for-element copyapf
PyObject *PyArray_ Take(a,indices,axis) t

the equivalent ofake(a, indices, axis) which is a method defined in the Numeric module
that just calls this function.

int PyArray_As1D(*op, char **ptr, int *n, int type)

This function replacesop with a pointer to a contiguous 1-0PyArrayObject (using
PyArray_ContiguousFromObject ) and sets as output parameters a pointer to the first byte of
the array inptr and the number of elements in the arrayint returns-1 on failure Ep is not a

1-D array or sequence object that can be cast taypee) and0 on success.

int PyArray_As2D(*op, char **ptr, int *m, int *n, int type)

This function replacesop with a pointer to a contiguous 2-0PyArrayObject (using
PyArray_ContiguousFromObject ). It returns -1 on failure (op is not a 2-D array or nested
sequence object that can be cast to type type) and 0 on success. It also sets as output parameters: an
array of pointers imptr which can be used to access the data as a 2-D array so that ptr[i][j] is a point-

er to the first byte of element [i,j] in the arragnandn are set to respectively the number of rows and
columns of the array.

int PyArray_Free(op,ptr)

is supposed to free the allocated data structures and decrease object references when using
PyArray_As1D andPyArray As2D but there are suspicions that this code is buggy.



Notes

Number formats, overflow issues, NaN/Inf representations, fpectl module, how to deal with 'missing’ values.

UfuncObject C Structure and API
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C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric Arrays
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and its API
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All of the
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, etc.) are
implemented using this object. The hooks are all in place to make it very easy to add any function that takes one
or two (double) arguments and returns a single (double) argument. It is not difficult to add support routines in
order to handle arbitrary functions whose total number of input/output arguments is less than some maximum
number (currently 10).

typedef struct {
PyObject HEAD
int *ranks, *canonical_ranks;
int nin, nout, nargs;
int identity;
PyUFuncGenericFunction *functions;
void **data;
int ntypes, nranks, attributes;
char *name, *types;
int check_return;
} PyUFuncObject;
where:
int *ranks
unused.
int *canonical_ranks
unused
int nin
the number of input arguments to function
int nout
the number of output arguments for the function
int nargs
the total number of argumentsnin + nout
int identity

a flag telling whether the identity for this functionG@sor 1 for use in thaeduce method for a zero
size array input.

PyUFuncGenericFunction *functions

an array of functions that perform the innermost looping over the input and output arrays (I think this
is over a single axis). These functions call the underlying math function with the data from the input
arguments along this axis and return the outputs of the function into the correct place in the output
arrayobject (with appropriate typecasting). These functions are called by the general looping code.
There is one function for each of the supported datatypes. Function pointers to do this looping for
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typest ,'d" ,'F ,and'D' , are provided in the C-API for functions that take one or two argu-
ments and return one argument. ERgftuFuncGenericFunction returnsvoid and has the fol-
lowing argument list (in order):

args

an array of pointers to the data for each of the input and output arguments with input arguments
first and output arguments immediately following. Each elemerdrgé is achar * to the
first byte in the corresponding input or output array.

dimensions
a pointer to a singlimt giving the size of the axis being looped over.
steps

an array ofnt s giving the number of bytes to skip to go to the next element of the array for this
loop. There is an entry in the array for each of the input and output arguments, with input argu-
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in this inner loop. This is a
void * and must be recast to the required type before actually calling the function e.g. to a
pointer to a function that takes twimuble s and returns double ). If you need to write your
ownPyUFuncGenericFunction  ,itis most readable to also havéypedef statement that
defines your specific underlying function type so the function pointer cast is somewhat readable.

void **data

a pointer to an array of functions (each castoid * ) that compute the actual mathematical func-
tion for each set of inputs and outputs. There should be a function in the array for each supported data
type. This function will be called from thByUFuncGenericFunction for the corresponding

type.
int ntypes

the number of datatypes supported by this function. For datatypes that are not directly supported, a
coercion will be performed if possible safely, otherwise an error will be reported.

int nranks
unused.

int attributes
unused.

char *name

the name of this function (not the same as the dictionary label for this function object, but it is usually
set to the same string). It is printed whenrepr__ is called for this object, defaults t@" if set
to NULL

char *types

an array of supported types for this function object. I'm not sure why but each supported datatype
(PyArray_FLOAT , etc.) is entered as many times as there are arguments for this funotiogs ()

int check_return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that rank-0
arrays will be returned as python scalars. Also, if non-zero, then any math error that sstaithe
global variable will cause an appropriate Python exception to be raised.



UfuncObject C API
There are currently 15 pointers in the C-API array for the ufuncobject which is loadetpoyt _ufunc()
The macros implemented by this API, available by including thafilexcobject.h ,"are given below. The

only function normally called by user code is the ufuncobject creation function
PyUFunc_FromFuncAndData .Some of the other functions can be used as elements of an array to be passed
to this creation function.
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int PyUFunc_Check(op)
returnsl if op is a ufunc object otherwise retus

PyObject *PyUFunc_FromFuncAndData(functions, data, types, ntypes, nin,
nout, identity, name, check_return)

returns the ufunc object given its parameters. This is the most important function call. It requires de-
fining three arrays to be passed as parametenstions |, data , andtypes . The arguments to
be passed are:

functions

an array of functions of typPyUFuncGenericFunction , there should be one function for
each supported datatype. The functions should be in order so that datatypes listed toward the be-
ginning of the array could be cast as datatypes listed toward the end.

data

an array of pointers to void* the same size as the functions array and in the same datatype order.
Each element of this array is the actual underlying math function (recastdiola* ) that will
be called from one of thByUFuncGenericFunctions . It will operate on each element of
the input NumPyarrayobject  (s) and return its element-by-element result in the output
NumPy arrayobject(s). There is one function call for each datatype supported, (though functions
can be repeated if you handle the typecasting appropriately wittsti&uncGenericFunc-
tion ).

types

an array of PyArray_Type s. The size of this array should beirf+nout ) times the size of

one of the previous two arrays. There shouldnirernout  copies ofPyArray XXXXX for

each datatype explicitly supported. (Remember datatypes not explicitly supported will still be ac-
cepted as input arguments to the ufunc if they can be cast safely to a supported type.)

ntypes
the number of supported types for this ufunc.
nin
the number of input arguments
nout
the number of output arguments
identity

PyUFunc_One, PyUFunc_Zero , orPyUFunc_None, depending on the desired value for the
identity. This is only relevant for functions that take two input arguments and return one output
argument. If not relevant ug&yUFunc_None.

name
the name of thisfuncobject  for use inthe repr__  method.

check _return
the desired value for check_return for this ufuncobject.

81



int PyUFunc_GenericFunction(self,args,mps)

allows calling the ufunc from user C routine. It returns 0 on success and -1 on any failures. This is
the core of what happens when a ufunc is called from Python. Its arguments are:

self
the ufunc object to be called. INPUT
args

a Python tuple object containing the input arguments to the ufunc (should be Python sequence
objects). INPUT

mps
an array of pointers to PyArrayObijects for the input and output arguments to this function. The
input NumPy arrays are elememtgps[0]...mps[self->nin-1] . The output NumPy ar-
rays are elementaps[self->nin]...mps[self->nargs-1] . OUTPUT

The following are all functions of typByUFuncGenericFunction and are suitable for use in tifienc-
tions argument passed RyUFunc_FromFuncAndData :

PyUFunc_f f As d d

for a unary function that takesdouble input and returns double output as a ufunc that takes
PyArray_FLOAT input and return®yArray_FLOAT output.

PyUFunc_d d

for a using a unary function that takesl@uble input and returns double output as a ufunc that
takesPyArray_DOUBLE input and returnByArray_DOUBLE output.

PyUFunc_F F_ As D D

for a unary function that takesRy _complex input and returns By _complex output as a ufunc
that takesPyArray_CFLOAT input and return®yArray_CFLOAT output.

PyUFunc_D_D

for a unary function that takesRy _complex input and returns By _complex output as a ufunc
that takesPyArray_CFLOAT input and return®yArray_CFLOAT output.

PyUFunc_O_O

for a unary function that takesRy Object * input and returns #y_Object * output as a
ufunc that take®yArray OBJECT input and return®yArray_OBJECT output

PyUFunc_ff f As_dd d

for a binary function that takes twaouble inputs and returns ordouble output as a ufunc that
takesPyArray FLOAT input and returnByArray FLOAT output.

PyUFunc_dd_d

for a binary function that takes twaouble inputs and returns ordouble output as a ufunc that
takesPyArray_DOUBLE input and returnByArray_DOUBLE output.

PyUFunc_FF_F As DD D

for a binary function that takes twBy _complex inputs and returns By _complex output as a
ufunc that take®yArray_CFLOAT input and returnByArray_CFLOAT output.

PyUFunc_DD_D

for a binary function that takes twBy complex inputs and returns By _complex output as a
ufunc that take®yArray_CFLOAT input and returnByArray_CFLOAT output
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PyUFunc_0OO_O
for a unary function that takes twey_ Object * input and returns 8y_Object *  output as
a ufunc that takeByArray OBJECT input and return®yArray OBJECT output
PyUFunc_O_O_method

for a unary function that takesRy_Object * input and returns 8y_Object * output and is
pointed to by a Python method as a ufunc that takes PyArray OBJECT input and returns

PyArray OBJECT output
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PyArrayMap
an exported API that was apparently considered but never implemented probably because the func-
tionality is already available with Pythomfsp function.
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14. FFT Reference

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which is a powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface. On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 86).

Python Interface

The Python user imports the FFT module, which provides a set of utility functions which provide access to the
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input arrays
are to be used for the FFT’s. These routines are:

fft(data, n=None, axis=-1)

Performs a n-point discrete Fourier transform of the array datiefaults to the size of data. Itis most efficient
for n a power of two. If nis larger thasiata , thendata will be zero-padded to make up the difference. If n

is smaller than data, thedata will be aliased to reduce its size. This also stores a cache of working memory
for different sizes of fft's, so you could theoretically run into memory problems if you call this too many times
with too many different n's.

The FFT is performed along the axis indicated bydles argument, which defaults to be the last dimension
of data .

The format of the returned array is a complex array of the same shajataas where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ...XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[84. 0. 0. 0. 4. 0. 0. 0]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[84. 0. 0. 0. 4. 0. 0. 0]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[82. 0. 0. 0. -2. 0. 0. 0]

inverse_fft(data, n=None, axis=-1)

Will return then point inverse discrete Fourier transformdta . n defaults to the length adata . This is
most efficient forn a power of two. Ifn is larger thardata , thendata will be zero-padded to make up the
difference. Ifn is smaller thardata , thendata will be aliased to reduce its size. This also stores a cache of
working memory for different sizes of FFT’s, so you could theoretically run into memory problems if you call
this too many times with too many differeris.

real_fft(data, n=None, axis=-1)

Will return then point discrete Fourier transform of the real valued adata . n defaults to the length afa-
ta . This is most efficient fon a power of two. The returned array will be one half of the symmetric complex
transform of the real array.
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>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print real_fft(x)
[-1. +0.j 13.69406641+2.91076367]

-0.91354546-0.40673664j -0.80901699-0.58778525j
-0.66913061-0.74314483j -0.5 -0.8660254]
-0.30901699-0.95105652j -0.10452846-0.9945219j
0.10452846-0.9945219] 0.30901699-0.95105652]
0.5 -0.8660254] 0.66913061-0.74314483]
0.80901699-0.58778525] 0.91354546-0.40673664j

0.9781476 -0.20791169] 1. +0.j ]

inverse_real_fft(data, n=None, axis=-1)
Will return the inverse FFT of the real valued ardaya .

fft2d(data, s=None, axes=(-2,-1))
Will return the 2-dimensional FFT of the arrdata .

real_fft2d(data, s=None, axes=(-2,-1))
Will return the 2d FFT of the real valued ardsta .

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsible for

20UBI9)Y 14

making sure that the arrays sent to the FFTPACK routines are in the right format (contiguous memory locations,

right numerical storage format, etc). It provides interfaces to the following FFTPACK routines, which are also

the names of the Python functions:
« cffti(i)
- cfftf(data, savearea)
 cfftb(data, savearea)
o rffti(i)
« rfftf(data, savearea)
- rfftb(data, savearea)

The routines which start with expect arrays of complex numbers, the routines which startwékpect real
numbers only. The routines which end withare the initalization functions, those which end witiperform
the forward FFTs and those which end wvitperform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, and re-
turns a work array. The forward and backwards FFTs require two array arguments -- the first is the data array,
the second is the work array returned by the initialization function. They return arrays corresponding to the co-
efficients of the FFT, with the first element in the returned array corresponding to the DC component, the sec-

ond one to the first fundamental, etc.The length of the returned arhy ihalf the length of the input array in
the case of real FFTs, and the same size as the input array in the case of complex data.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = rffti(30)

>>> f = rfftf(x, w)

>>> f[0]

(-1+0j)

>>> f[1]
(13.6940664103+2.91076367145j)
>>> f[2]



(-0.913545457643-0.406736643076))

Compilation Notes

On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the operating
system, and the compilation procedure needs to be modified to force the fftpackmodule file to be linked against
those rather than the fftpacklite.c file which is shipped with NumPy.
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15. LinearAlgebra Reference

The LinearAlgebra.py module provides a simple interface to the low-level linear algebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
C library.
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Python Interface

solve_linear _equations(a, b)

This function solves a system of linear equations with a square non-singular matrix a and a right-hand-side vec-
tor b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional array (i.e.
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular matrix a by
calling solve_linear_equations(a, b) with a suitable b.

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To within
floating point precision, it should always be true that:

matrixmultiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
M1 1. 2. 3. 4]
[6. 7. 7. 8. 9]
[10. 11. 13. 13. 14)]
[15. 16. 17. 19. 19]
[20. 21. 22. 23. 25
>>> inv_a = inverse(a)
>>> printinv_a
[[ 0.20634921 -0.52380952 -0.25396825 0.01587302 0.28571429]
[-0.5026455 0.63492063 -0.22751323 -0.08994709 0.04761905]
[-0.21164021 -0.20634921 0.7989418 -0.1957672 -0.19047619]
[ 0.07936508 -0.04761905 -0.17460317 0.6984127 -0.42857143]
[0.37037037 0.11111111 -0.14814815 -0.40740741 0.33333333]]
>>> # Verify the inverse by printing the largest absolute element

# of a * an{-1} - identity(5)

print "Inversion error:", \

maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a)

This function returns the eigenvalues of the square matrix a.

>>> printa
[[1. 0. 0. 0. 0]
[0. 2. 0. 0. 1]
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[0. 0. 3. 0. 0]

[0. 0. 0. 4. 0]

[0. 0. 0. 0. 1]

>>> print eigenvalues(a)

[1. 2. 3. 4. 1]
eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (i.e. a se-
quence of vectors).

>>> printa

[[1. 0. 0. 0. 0]
[0. 2. 0. 0. 1]
[0. 0. 3. 0. 0]
[0. 0. 0. 4. 0]

[0. 0. 0. 0. 1.]]
>>> evalues, evectors = eigenvectors(a)
>>> print evalues

[1. 2. 3. 4. 1]

>>> print evectors

I[1. 0. 0. 0. 0. ]

[O. 1. 0. 0. 0. ]

[O. 0. 1. 0. 0. ]

[O. 0. 0. 1. 0. ]

[O. -0.70710678 0. 0. 0.70710678]]

singular_value_decomposition(a, full_matrices=0)

This function returns three arrays V, S, and Whose matrix product is the original matrix a. V and \ate

unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the singular-
value matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned.
generalized_inverse(a, rcond=1e-10)

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-inverse) of the
matrix a. It has numerous applications related to linear equations and least-squares problems.
determinant(a)

This function returns the determinant of the square matrix a.

linear_least squares(a, b, rcond=e-10)

This function returns the least-squares solution of an overdetermined system of linear equations. An optional
third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four return
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by the so-
lution), the rank of the matrix a, and the singular values of a in descending order.

C API
Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK library are preinstalled on the operating
system, and the compilation procedure needs to be modified to force the lapackmodule.c file to be linked
against those rather than the dlapack_lite.c and zlapack_lite.c files which are shipped with NumPy.
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16. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of a random-number generator.
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Python Interface

seed(x=0, y=0)

Theseed() function takes two integers and sets the two seeds of the random number generator to those values.
If the default values of 0 are used for both x and y, then a seed is generated from the current time, providing a
pseudo-random seed.

get_seed()

Theget_seed() function returns the two seeds used by the current random-number generator. It is most of-
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

Therandom() function takes a shape, and returns an array of double-precision floatings point numbers be-
tween 0.0 and 1.0. Neither 0.0 nor 1.0 is ever returned by this function. If no argument is specified, the function
returns a single floating point number (not an array). The array is filled from the generator following the canon-
ical array organization (see discussion of.ftat  attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uniform()  function returns an array of the specified shape and containing double-precision floating
point random numbers strictly between minimum and maximum. If no shape is specified, a single number is
returned.

randint(minimum, maximum, shape=ReturnFloat)

The randint() function returns an array of the specified shape and containing random (standard) integers
greater than or equal minimum and strictly less thamaximum. If no shape is specified, a single number is
returned.

permutation(n)

Thepermutation() function returns an array of the integers betwéemdn-1 , in an array of shap@,) ,
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray import *

>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)

>>> print random()

0.0528018975065

>>> print random((5,2))

[[ 0.14833829 0.99031458]
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[0.7526806 0.09601787]

[0.1895229 0.97674777]

[0.46134511 0.25420982]

[ 0.66132009 0.24864472]]

>>> print uniform(-1,1,(10,))

[ 0.72168852 -0.75374185 -0.73590945 0.50488248 -0.74462822 0.09293685
-0.65898308 0.9718067 -0.03252475 0.99611011]

>>> print randint(0,100, (12,))

[28 596 19 1 3269 40 56 69 53 44]

>>> print permutation(10)

[4289173650]

>>> seed(897800491, 192000) # resetting the same seeds

>>> print random() # yields the same numbers

0.0528018975065

C API
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17. Glossary

AIesso|9 «

This section will define a few of the technical words used throughout this document. [Please let us know of any
additions to this list which you feel would be helpful -- the authors]

typecode: a single character describing the format of the data stored in an array. For example, 'b’ refers to
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the elements of
its arguments, which can be lists, tuples, or arrays. Many ufuncs are definedrmathemodule.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to store and
manipulate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users wishing
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specialized for linear
algebra matrices. Most notably, it overrides the multiplication operator on Matrix instances to perform ma-
trix multiplication instead of element-wise multiplication.

rank: the rank of an array is the number of dimensions it has, or the number of integers in its shape tuple.

shape: array objects have an attribute called shape which is necessarily a tuple. An array with an empty tu-
ple shape is treated like a scalar (it holds one element).
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