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Legal Notice

Numerical Python and this manual are an Open Source software project. This manual was originally writt
der the sponsorship of Lawrence Livermore National Laboratory. Numerical Python was written by a wid
riety of people, principally Jim Hugunin when he was a student at MIT. LLNL has released this manual a
contributions to Numerical Python under the following terms. Numerical Python is generally released und
terms of the Python license.

Copyright (c) 1999. The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby gran
provided that this entire notice is included in all copies of any software which is or includes a copy or m
cation of this software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University o
fornia for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Gove
Neither the United States Government nor the University of California nor any of their employees, make
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, 
fulness of any information, apparatus, product, or process disclosed, or represents that its use would n
infringe privately-owned rights. Reference herein to any specific commercial products, process, or serv
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endors
recommendation, or favoring by the United States Government or the University of California. The views
opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov
or the University of California, and shall not be used for advertising or product endorsement purposes.
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1. Introduction

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programmin
guage which allows Python programmers to efficiently manipulate large sets of objects organized in gr
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dim
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from lin
gebra. Note that one-dimensional arrays are alsodifferentfrom any other Python sequence, and that two-dime
sional matrices are alsodifferentfrom the matrices of linear algebra, in ways which we will mention later in th
text.

Why are these extensions needed? The core reason is a very prosaic one, and that is that manipulating
a million numbers in Python with the standard data structures such as lists, tuples or classes is much to
and uses too much space. Anything which we can do in NumPy we can do in standard Python – we ju
not be alive to see the program finish. A more subtle reason for these extensions however is that the k
operations that programmers typically want to do on arrays, while sometimes very complex, can often
composed into a set of fairly standard operations. This decomposition has been developed similarly in
array languages. In some ways, NumPy is simply the application of this experience to the Python lang
thus many of the operations described in NumPy work the way they do because experience has shown t
to be a good one, in a variety of contexts. The languages which were used to guide the development of
include the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This
itage will be obvious to users of NumPy who already have experience with these other languages. This t
however, does not assume any such background, and all that is expected of the reader is a reasonable
knowledge of the standard Python language.

This document is the “official” documentation for NumPy. It is both a tutorial and the most authoritative so
of information about NumPy with the exception of the source code. The tutorial material will walk you thro
a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was ma
cause:

• Aconcrete data set makes explaining the behavior of some functions much easier to motivate than
talking about abstract operations on abstract data sets;

• Every reader will at least anintuition as to the meaning of the data and organization of image files, an

• The result of various manipulations can be displayed simply since the data set has a natural graphic
resentation.

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutoria
a working NumPy installation at their side, testing the examples, and, more importantly, transferring the u
standing gained by working on images to their specific domain. The best way to learn is by doing – the a
this tutorial is to guide you along this “doing.”
9
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Here is what the rest of this manual contains:

• Chapter 2 provides information on testing Python, NumPy, and compiling and installing NumPy if ne
sary.

• Chapter 3 provides information on testing and installing the NumTut package, which allows easy visu
tion of arrays.

• Chapter 4 gives a high-level overview of the components of the NumPy system as a whole.

• Chapter 5 provides a detailed step-by-step introduction to the most important aspect of NumPy, the
dimensional array objects.

• Chapter 6 provides information on universal functions, the mathematical functions which operate on
and other sequences elementwise.

• Chapter 7 covers pseudo-indices.

• Chapter 8 is a catalog of each of the utility functions which allow easy algorithmic processing of arra

• Chapter 9 discusses the methods of array objects.

• Chapter 10 presents the attributes of array objects.

• Chapter 11 is a collection of special topics, from the organization of the codebase to the mechanis
customizing printing.

• Chapter 12 is an tutorial on how to write a C extension which uses NumPy arrays.

• Chapter 13 is a reference for the C API to NumPy objects (both PyArrayObjects and UFuncObjects

• Chapter 14 is a reference for the Fast Fourier Transform module

• Chapter 15 is a reference for the Linear Algebra module

• Chapter 16 is a reference for the RandomArray random number generator module

• Chapter 17 is a glossary of terms

Where to get information and code

Numerical Python is available via SourceForge. Visit the Numerical Python Project web page at:

http://numpy.sourceforge.net

There you will find a link to the main project page at SourceForge, where you can obtain complete inform
about Numerical Python, report bugs, have access to the source repository, and download the latest re

The Python web site is

www.python.org

If the above link should ever become “stale”, the Python web page should contain an appropriate link to th
rect one.

The project ftp site may contain other files of interest, such as binary versions of the distributions.

ftp://numpy.sourceforge.net/pub/numpy

Acknowledgments

Numerical Python is the outgrowth of a long collaborative design process carried out by the Matrix SIG o
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the code
initial documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to m
tain Numerical Python so Paul Dubois at LLNL agreed to become the maintainer of Numerical Python. D
Ascher, working as a consultant to LLNL, wrote most of this document, incorporating contributions from K
rad Hinsen and Travis Oliphant, both of whom are major contributors to Numerical Python.
10
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merical Python illustrates the power of the open source software concept.

In January 2000 we moved the Numerical Python project to SourceForge, http://sourceforge.net, and ex
the set of maintainers to improve the pace of changes to Numerical Python. Paul Dubois is presently
man” of this set of equal peers. Decisions about Numerical Python are made by this set. Who is in this se
urally, you can see this list on the project page.
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2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow alon
examples step by step. These steps including installing Python, the NumPy extensions, and some tools a
ple files used in the examples of this tutorial.

Testing the Python installation

The first step is to install Python if you haven’t already. Python is available from the Python website’s down
directory athttp://www.python.org/download. Click on the link corresponding to your platform, and follow th
instructions described there. When installed, starting Python by typingpython at the shell or double-clicking
on the Python interpreter should give a prompt such as:

Python 1.5.1 (#0, Apr 13 1998, 20:22:04) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

If you have problems getting this part to work, consider contacting a local support person or emailingpython-
help@python.orgfor help. If neither solution works, consider posting on the comp.lang.python newsgroup
tails on the newsgroup/mailing list are available athttp://www.python.org/psa/MailingLists.html#clp).

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of this writing with the Numeric Python extensions ins
but your system administrator may have installed them already. To find out if your Python interprete
NumPy installed, typeimport Numeric at the Python prompt. You’ll see one of two behaviors (througho
this document,bold Courier New font indicates user input, andstandard Courier New font indicates
output):

>>> import Numeric
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named Numeric
>>>

indicating that you don’t have NumPy installed, or:

>>> import Numeric
>>>

indicating that you do. If you do, go on to the next step. If you don’t, you have to get the NumPy extens
12
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Installing NumPy

Obtain the distribution. Follow the instructions in the README file of the toplevel directory for compilat
and installation. For non-Unix platforms, check the project FTP site

ftp://numpy.sourceforge.net/pub/numpy

for binary installations that may be available.

The standard Python installer for the Macintosh (available athttp://www.python.org/download/
download_mac.html) also optionally installs the NumPy extensions, although these are typically not the
up-to-date. .

If you have problems getting this part to work, consider contacting a local support person or emailingpython-
help@python.org. Alternatively, you can send a description of your problem to the Matrix-SIG (a specia
terest group devoted to the NumPy extension – details are available athttp://www.python.org/sigs/matrix-sig/).

i Just like all Python modules and packages, the Numeric module can be invoked us-
ing either theimport Numeric  form, or thefrom Numeric import ...
form. Because most of the functions we’ll talk about are in the Numeric module, in
this document, all of the code samples will assume that they have been preceded by
a statement:

from Numeric import *
13
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3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which is in the Demo directory of the distribution.

Testing the NumTut package

This tutorial assumes that the NumTut package has been installed. This package contains a few sample
and utility functions for displaying arrays and the like. To find out if NumTut has been installed, do:

>>> from NumTut import *
>>> view(greece)

If a picture of a greek street shows up on your screen, you’re all set, and you can go to the next chapte

Possible reasons for failure:

>>> import NumTut
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ImportError: No module named NumTut

This message indicates that you do not have the NumTut package installed in your PythonPath. NumTu
tributed along with this document. (See “Where to get information and code” on page 10.) To install Num
simply untar the NumTut.tar.gz file so that it is in your PythonPath. For example, on Win32, it can be plac
the main directory of your Python installation. On Unix, it can be placed in the site-packages directory of
installation.

Win32

>>> import NumTut
Traceback (innermost last):
[...]
14
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ConfigurationError: view needs Tkinter on Win32, and either threads or
the IDLE editor"

or:

ConfigurationError: view needs either threads or the IDLE editor to be
enabled.

On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the Py
interpreter needs to be compiled with thread support (which is true in the standard win32 distribution) o
need to call the NumTut program from the IDLE interactive development environment.

If you do not wish to modify your Python installation to match these requirements, you can simply ignor
references to the demonstrations which use theview() command later in this document. Using NumPy doe
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the def
configuration), with the Tkinter GUI framework available and optionally with the tkImaging add-on (part of
Python Imaging Library). If this is not the case, it will try to use an external viewer which is able to read P
files. The default viewer is ’xv’, a common image viewer available fromftp://ftp.cis.upenn.edu/pub/xv.If xv is
not installed, you will get an error message similar to:

>>> import NumTut
Traceback (innermost last):
[...]
ConfigurationError: PPM image viewer ’xv’ not found

You can configure NumTut to use a different image viewer, by typing e.g.:

>>> import NumTut
>>> NumTut.view.PPMVIEWER = ’ppmviewer’
>>> from NumTut import *
>>> view(greece)

If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations wh
theview() command later in this document. Using NumPy does not require image display tools, the
make some array operations easier to understand.
15
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4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system. This section defines the concepts used by
the remaining sections.

Numeric Python consists of a set of modules:

• Numeric.py  (and its helper modulesmultiarray  andumath .)

This module defines two new object types, and a set of functions which manipulate these objects, as
convert between them and other Python types. The objects are the new array object (technically
multiarray  objects), and universal functions (technicallyufunc  objects).

• RandomArray.py  (and its helper moduleranlib )

This module provides a high-level interface to a random-number generator.

• FFT.py  (and its helper modulefftpack )

This module provides a high-level interface to the fast Fourier transform routines implemented in theFFT-
PACKlibrary if it is available, or to the compatible but less optimized fftpack library which is shipped w
Numeric Python..

• LinearAlgebra.py  (and its helper modulelapack_litemodule )

This module provides a high-level interface to the linear algebra routines implemented in theLAPACKli-
brary if it is available, or to the compatible but less optimizedlapack_lite library which is shipped with
Numeric Python.

Array Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers. All nu
in a multiarray are the same kind (i.e. number representation, such as double-precision floating point).
objects must be full (no empty cells are allowed), and their size is immutable. The specific numbers w
them can change throughout the life of the array.

Mathematical operations on arrays return new arrays containing the results of these operations performele-
mentwise on the arguments of the operation.

Thesizeof an array is the total number of elements therein (it can be 0 or more). It does not change throu
the life of the array.

Theshapeof an array is the number of dimensions of the array and its extent in each of these dimensions
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array is
of integers, one integer for each dimension that represents the extent in that dimension.

Therankof an array is the number of dimensions along which it is defined. It can change throughout the l
the array. Thus, the rank is the length of the shape.

The typecodeof an array is a single character description of the kind of element it contains (number for
character or Python reference). It determines the itemsize of the array.
16
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The itemsizeof an array is the number of 8-bit bytes used to store a single element in the array. The total
ory used by an array tends to its size times its itemsize, as the size goes to infinity (there is a fixed overhe
array, as well as a fixed overhead per dimension).

To put this in more familiar mathematicial language: A vector is a rank-1 array (it has only one dimension
which it can be indexed). A matrix as used in linear algebra is a rank-2 array (it has two dimensions
which it can be indexed). There are also rank-0 arrays, which can hold single scalars -- they have no dim
along which they can be indexed, but they contain a single number.

Here is an example of Python code using the array objects (bold text refers to user input, non-bold text t
puter output):

>>> vector1 = array((1,2,4,5))
>>> print vector1
[1 2 3 4 5]
>>> matrix1 = array(([0,1],[1,3]))
>>> print matrix1
[[0 1]
 [1 3]]
>>> print vector1.shape, matrix1.shape
(5,) (2,2)
>>> print vector1 + vector1
[ 2  4  6  8  10]]
>>> print matrix1 * matrix1
[[0 1] # note that this is not the matrix
 [1 9]] # multiplication of linear algebra

If this example does not work for you because it complains of an unknown name “array”, you forgot to b
your session with

from Numeric import *

See page 13.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences. Most ufuncs p
mathematical operations on their arguments, also elementwise.

Here is an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pi/6.])
[ 1.        ,  0.70710678,  0.5       ]
>>> print greater([1,2,4,5], [5,4,3,2])
[0 0 1 1]
>>> print add([1,2,4,5], [5,4,3,2])
[6 6 7 7]
>>> print add.reduce([1,2,4,5])
12 # 1 + 2 + 3 + 4 + 5

Ufuncs are covered in detail in “Ufuncs” on page 36.

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects abov
of powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arra
other array-processing operations.
17
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>>> data = arange(10) # convenient homolog of builtin
range()
>>> print data
[0 1 2 3 4 5 6 7 8 9]
>>> print where(greater(data, 5), -1, data)
[ 0  1  2  3  4  5 -1 -1 -1 -1] # selection facility
>>> data = resize(array((0,1)), (9, 9))
>>> print data
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

All of the functions which operate on NumPy arrays are described in “Array Functions” on page 44.

RandomArray

TheRandomArray module provides a high-level interface to the ranlib number generator. It provides a
form distribution generator of pseudo-random numbers, as well as some convenience functions:

>>> from RandomArray import random, uniform, randint, permutation
>>> print random((5,5))
[[ 0.45456091  0.53438765  0.72412336  0.12156525  0.79255972]
 [ 0.14763653  0.93401444  0.38913983  0.97293309  0.45860398]
 [ 0.57528652  0.9801351   0.19893601  0.3396503   0.12224415]
 [ 0.9067847   0.37667559  0.71613152  0.24334284  0.68907028]
 [ 0.9655151   0.29746972  0.42734603  0.72314573  0.66344323]]
>>> print uniform(-1.0,1.0, (5,))
[-0.2637264   0.12331069  0.11497829 -0.25969645  0.36571342]
>>> print randint(10, 20, (4,2))
[[19 14]
 [14 11]
 [13 11]
 [13 11]]
>>> print permutation(10)
[0 5 9 4 2 1 6 8 3 7]
>>> print permutation(10)
[3 7 1 2 9 0 4 8 5 6]

The reader should also be aware that LLNL provides an alternative random number generator, called
which also provides normal, log-normal and exponential distribution number generators. It is compatible
the Cray random number generator and most importantly is designed for producing multiple independe
dom number streams. It is available as part of the LLNL distribution. See “RandomArray Reference
page 89 for details.

FFT

The FFT module provides a high-level interface to the fast Fourier transform routines which are implem
in the FFTPACK library. It performs one and two-dimensional FFT’s, forward and backwards (inverse FF
and includes efficient routines for FFTs of real-valued arrays. It is most efficient for arrays whose size is a
er of two.
18
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>>> from FFT import fft, inverse_fft
>>> data = array((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
>>> print data
[ 1.  0.  0.  0.  1.  0.  0.  0.]
>>> print fft(data)
[ 2.+0.j  0.+0.j  2.+0.j  0.+0.j  2.+0.j  0.+0.j  2.+0.j  0.+0.j]
>>> print inverse_fft(fft(data))
[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j]

See “FFT Reference” on page 84 for details.

LinearAlgebra

The LinearAlgebra module provides a high-level interface to the most commonly used functionality o
LAPACK library, in a Python-friendly fashion. It includes functions to solve systems of linear equations
linear least squares problems, invert matrices, compute eigenvalues and eigenvectors, generalized inve
terminants, as well as perform singular value decomposition.

>>> from LinearAlgebra import inverse
>>> data = array(((1.0,2), (4,5)))
>>> print data
[[ 1.  2.]
 [ 4.  5.]]
>>> print inverse(data)
[[-1.66666667  0.66666667]
 [ 1.33333333 -0.33333333]]
>>> print inverse(inverse(data))
[[ 1.  2.]
 [ 4.  5.]]
19
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5. Array Basics

This chapter introduces some of the basic functions which will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should fir
fine a few terms which we’ll use over and over again. Discussions of arrays and matrices and vectors c
confusing due to disagreements on the nomenclature. Here is a brief definition of the terms used in this t
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we’ll just
them “array” objects or just “arrays.” These are different from the array objects defined in the standard P
array module (which is an older module designed for processing one-dimensional data such as sound

These array objects hold their data in a homogeneous block of elements, i.e. their elements all have the
type (such as a 64-bit floating-point number). This is quite different from most Python container objects, w
can contain heterogeneous collections. (You can, however, have an array of Python objects, as discusse

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a
in 3D space [1, 2, 1] is an array of rank 1 – it has one dimension. That dimension has alength of 3.

As another example, the array

1.0 0.0 0.0
0.0 1.0 2.0

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimension
length of 3. Because the word “dimension” has many different meanings to different folks, in general the
“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can a
counted from the end, so that axis -1 is the last axis of an array, axis -2 is the penultimate axis, etc.

There are two important and potentially unintuitive behaviors of NumPy arrays which take some getting
to. The first is that by default, operations on arrays are performed element-wise. This means that when
two arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is tru
operations, including multiplication. Thus, array multiplication using the * operator will default to elem
wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arra
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix clas
vides a more intuitive interface. We defer discussion of the Matrix class until later.

The second behavior which will catch many users by surprise is that functions which return arrays whi
simply different views at the same data will in factsharetheir data. This will be discussed at length when w
have more concrete examples of what exactly this means.

Now that all of these definitions and warnings are laid out, let's see what we can do with these arrays.
20
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Creating arrays from scratch

array() and typecodes

There are many ways to create arrays. The most basic one is the use of thearray()  function:

>>> a = array([1.2, 3.5, -1])

to make sure this worked, do:

>>> print a
[ 1.2  3.5 -1. ]

Thearray(numbers, typecode=None) 1 function takes two arguments – the first one is the value
which have to be in a Python sequence object (such as a list or a tuple). The optional second argumen
typecode of the elements. If it is omitted, as in the example above, Python tries to find the one type whi
represent all the elements. Since the elements we gave our example were two floats and one integer,
`float' as the type of the resulting array. If one specifies the typecode, one can specify unequivocally the
the elements – this is especially useful when, for example, one wants to make sure that an array contain
even though in some cases all of its elements are integers:

>>> x,y,z = 1,2,3
>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> print a
[1 2 3]
>>> a = array([x,y,z], Float) # not the default type
>>> print a
[ 1.  2.  3.]

i Pop Quiz: hat will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])
Hint: -3j  is an imaginary number.
Answer: try it out!

i A very common mistake is to call array with a set of numbers as arguments, as in
array(1,2,3,4,5) . This doesn’t produce the expected result as soon as at least
two numbers are used, because the first argument toarray()  must be the entire
data for the array -- thus, in most cases, a sequence of numbers. The correct way to
write the preceding invocation is most likelyarray((1,2,3,4,5)) .

Possible values for the second argument to thearray creator function (and indeed to any function which a
cepts a so-called typecode for arrays) are:

1. One type corresponding to single ASCII characters:Character .

2. One unsigned numeric type:UnsignedInt8 , used to store numbers between 0 and 255.

3. Many signed numeric types:

1. When giving “function signatures,” only the most commonly used arguments and their default value
will be listed.  For complete function signatures, consult the Numeric Python Reference Manual.
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• Signed integer choices:Int , Int0 , Int8 , Int16 , Int32 , and on some platforms,Int64 and
Int128  (their ranges depend on their size).

• Floating point choices:Float , Float0 , Float8 , Float16 , Float32 , Float64 , and on some
platforms,Float128 .

• Complex number choices:Complex , Complex0 , Complex8 , Complex16 , Complex32 ,
Complex64 , Complex128 .

The meaning of these is as follows:

• The versions without any numbers (Int , Float , Complex ) correspond to theint , float and
complex datatypes in Python. They are thus long integers and double-precision floating p
numbers, with a complex number corresponding to two double-precision floats.

• The versions with a number following correspond to whatever words are available on the sp
platform you are using which haveat leastthat many bits in them. Thus,Int0 corresponds to the
smallest integer word size available,Int8 corresponds to the smallest integer word size availab
which has at least 8 bits, etc. The word sizes for the complex numbers refer to the total num
bits used by both the real and imaginary parts (in other words, the data portion of an array
Complex128 elements uses up the same amount of memory as the data portions of two arra
typecodeFloat64  with 2N elements).

4. One non-numeric type,PyObject . Arrays of typecodePyObject are arrays of Python references, an
as such their data area can contain references to any kind of Python objects.

The last typecode deserves a little comment. Indeed, it seems to indicate that arrays can be filled with a
thon objects. This appears to violate the notion that arrays are homogeneous. In fact, the typecodePyObject
doesallow heterogeneous arrays. However, if you plan to do numerical computation, you're much bett
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is bec
heterogeneous array stores references to objects, which incurs a memory cost, and because the spee
putation is much slower with arrays ofPyObject 's than with uniform number arrays. Why does it exist, then
A very useful features of arrays is the ability to slice them, dice them, select and choose from them, etc
feature is so nice that sometimes one wants to do the same operations with, e.g., arrays of class insta
such cases, computation speed is not as important as convenience. Also, if the array is filled with objects
are instances of classes which define the appropriate methods, then NumPy will let you do math with tho
jects. For example, if one creates an object class which has an__add__ method, then arrays (created with th
PyObject typecode) of instances of such a class can be added together. [XXXXXX make sure that’s tr

Multidimensional Arrays

The following example shows one way of creating multidimensional arrays:

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma
[[1 2 3]
 [4 5 6]]

The first argument toarray() in the code above is a single list containing two lists, each containing three
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the optiona
code we wished:

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats
[[ 1.  2.  3.]
 [ 4.  5.  6.]]
22
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This array allows us to introduce the notion of `shape'. The shape of an array is the set of numbers which
its dimensions. The shape of the arraymadefined above is 2 by 3. More precisely, all arrays have a shape
tribute which is a tuple of integers.  So, in this case:

>>> print ma.shape
(2, 3)

Using the earlier definitions, this is a shape ofrank 2, where the first axis has length 2, and the seond axis
length 3. The rank of an arrayA is always equal tolen(A.shape) .

Note thatshape is anattributeof array objects. It is the first of several which we will see throughout th
tutorial. If you're not used to object-oriented programming, you can think of attributes as “features” or “q
ties” of individual arrays. The relation between an array and its shape is similar to the relation between a
and their hair color. In Python, it's called an object/attribute relation.

What if one wants to change the dimensions of an array? For now, let us consider changing the shape of
without making it “grow.” Say, for example, we want to make the 2x3 array defined above (ma) an array of rank
1:

>>> flattened_ma = reshape(ma, (6,))
>>> print flattened_ma
[1 2 3 4 5 6]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the axe
constant (in other words, as long as the number of elements in the array doesn’t change):

>>> a = array([1,2,3,4,5,6,7,8])
[1 2 3 4 5 6 7 8]
>>> print a
>>> b = reshape(a, (2,4)) # 2*4 == 8
[[1 2 3 4]
 [5 6 7 8]]
>>> print b
>>> c = reshape(b, (4,2) # 4*2 == 8
>>> print c
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

Notice that we used a new function,reshape() . It, like array() , is a function defined in theNumeric
module. It expects an array as its first argument, and a shape as its second argument. The shape has t
quence of integers (a list or a tuple). Keep in mind that a tuple with a single element needs a comma at t
the right shape tuple for a rank-1 array with 5 elements is(5,) , not(5) .

One nice feature of shape tuples is that one entry in the shape tuple is allowed to be-1 . The-1 will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of th
Thus:

>>> a = reshape(array(range(25)), (5,-1))
>>> print a, a.shape
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]] (5, 5)
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The shape of an array is a modifiable attribute of the array. You can therefore change the shape of an arr
ply by assigning a new shape to it:

>>> a = array([1,2,3,4,5,6,7,8,9,10])
>>> a.shape
(10,)
>>> a.shape = (2,5)
>>> print a
[[ 1  2  3  4  5]
 [ 6  7  8  9 10]]
>>> a.shape = (10,1) # second axis has length 1
>>> print a
[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]]
>>> a.shape = (5,-1) # note the -1 trick described above
>>> print a
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exce

>>> a.shape = (6,-1)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: total size of new array must be unchanged

N The default printing routine provided by the Numeric module prints arrays as fol-
lows:
1 The last axis is always printed left to right
2 The next-to-last axis is printed top to bottom
3 The remaining axes are printed top to bottom with increasing numbers of sepa-

rators

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first dimension g
down the screen and the second dimension going from left to right, etc.

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow it
you have many options: One solution is to use theconcat() method discussed later. An alternative is to us
thearray()  creator function with existing arrays as arguments:

>>> print a
[0 1 2 3 4 5 6 6 7]
>>> b = array([a,a])
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>>> print b
[[1 2 3 4 5 6 7 8]
 [1 2 3 4 5 6 7 8]]
>>> print b.shape
(2, 8)

XXX reshape

A final possibility is theresize() function, which takes a “base” array as its first argument and the des
shape as the second argument. Unlikereshape() , the shape argument toresize() can corresponds to a
smaller or larger shape than the input array. Smaller shapes will result in arrays with the data at the “begi
of the input array, and larger shapes result in arrays with data containing as many replications of the inpu
as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0,1])

one can quickly build a large array with replicated data:

>>> big = resize(base, (9,9))
>>> print big
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

and if you imported theview  function from theNumTut package, you can do:

>>> view(resize(base, (100,100)))
# grey grid of horizontal lines is shown
>>> view(resize(base, (101,101)))
# grey grid of alternating black and white pixels is shown

N Sections denoted such as this one with an “eye” symbol will be used to indicate as-
pects of the functions which may not be needed for a first introduction at NumPy, but
which should be mentioned for the sake of completeness.

Thearray  constructor takes a mandatorydata  argument, an optional typecode,
and an optionalcopy  argument.  If thedata  argument is a sequence, then array
creates a new object of type multiarray, and fills the array with the elements of the
data  object. The shape of the array is determined by the size and nesting arrange-
ment of the elements of data.

If data is not a sequence, then the array returned is an array of shape() (the empty
tuple), of typecode’O’ , containing a single element, which isdata .
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Creating arrays with values specified `on-the-fly'

zeros() and ones()

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The Nu
module provides a few functions which create arrays from scratch:

zeros()  andones()  simply create arrays of a given shape filled with zeros and ones respectively:

>>> z = zeros((3,3))
>>> print z
[[0 0 0]
 [0 0 0]
 [0 0 0]]
>>> o = ones([2,3])
>>> print o
[[1 1 1]
 [1 1 1]]

Note that the first argument is a shape – it needs to be a list or a tuple of integers. Also note that the defau
for the returned arrays isInt , which you can feel free to override using something like:

>>> o = ones((2,3), Float)
>>> print o
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

arrayrange()

Thearrayrange() function is similar to therange() function in Python, except that it returns an array a
opposed to a list.

>>> r = arrayrange(10)
>>> print r
[0 1 2 3 4 5 6 7 8 9]

Combining thearrayrange()  with thereshape()  function, we can get:

>>> big = reshape(arrayrange(100),(10,10))
>>> print big
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]]
>>> view(reshape(arrayrange(10000),(100,100)))
# array of increasing lightness from top down (slowly) and from left to
# right (faster) is shown

arange()  is a shorthand forarrayrange() .

One can set the start, stop and step arguments, which allows for more varied ranges:
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>>> print arrayrange(10,-10,-2)
[10  8  6  4  2  0  -2  -4  -6  -8]

An important feature of arrayrange is that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)
[ 0. 1. 2. 3. 4.]
>>> print arrayrange(0, 1, .2)
[ 0.   0.2  0.4  0.6  0.8]

If you want to create an array with just one value, repeated over and over, you can use the * operator ap
lists

>>> a = array([[3]*5]*5)
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to start
0's and add 3:

>>> a = zeros([5,5]) + 3
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “hi
of the starting and stopping arguments. The starting argument defaults to 0 if not specified.arange is a syn-
onym forarrayrange . Note that if a typecode is specified which is “lower” than that which arrayrange wo
normally use, the array is the result of a precision-losing cast (a round-down, as that used in theastype meth-
od for arrays.)

Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of a function evaluation. This is
using thefromfunction() function, which takes two arguments, a shape and a callable object (usua
function).  For example:

>>> def dist(x,y):
...   return (x-5)**2+(y-5)**2 # distance from point (5,5) squared
...
>>> m = fromfunction(dist, (10,10))
>>> print m
[[50 41 34 29 26 25 26 29 34 41]
 [41 32 25 20 17 16 17 20 25 32]
 [34 25 18 13 10  9 10 13 18 25]
 [29 20 13  8  5  4  5  8 13 20]
 [26 17 10  5  2  1  2  5 10 17]
 [25 16  9  4  1  0  1  4  9 16]
 [26 17 10  5  2  1  2  5 10 17]
 [29 20 13  8  5  4  5  8 13 20]
 [34 25 18 13 10  9 10 13 18 25]
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 [41 32 25 20 17 16 17 20 25 32]]
>>> view(fromfunction(dist, (100,100))
# shows image which is dark in topleft corner, and lighter away from it.
>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]
  [121 122 123]]
 [[211 212 213]
  [221 222 223]]
 [[311 312 313]
  [321 322 323]]
 [[411 412 413]
  [421 422 423]]]

By examining the above examples, one can see thatfromfunction() creates an array of the shape specifie
by its second argument, and with the contents corresponding to the value of the function argument (the f
gument) evaluated at the indices of the array. Thus the value ofm[3,4] in the first example above is the value
of dist whenx=3 andy=4 . Similarly for the lambda function in the second example, but with a rank-3 arr

The implementation of fromfunction consists of:

def fromfunction(function, dimensions):
    return apply(function, tuple(indices(dimensions)))

which means that the function function is called for each element in the sequence indices(dimensions).
scribed in the definition of indices, this consists of arrays of indices which will be of rank one less than
specified by dimensions. This means that the function argument must accept the same number of argum
there are dimensions in dimensions, and that each argument will be an array of the same shape as that s
by dimensions. Furthermore, the array which is passed as the first argument corresponds to the indices
element in the resulting array along the first axis, that which is passed as the second argument corresp
the indices of each element in the resulting array along the second axis, etc. A consequence of this is
function which is used with fromfunction will work as expected only if it performs a separable computatio
its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on th
ments can be performed, or any non-shape preserving operation. The first example below satisfies th
quirements, hence works (thex andy arrays both get 10x10 arrays as input corresponding to the values o
indices along the two dimensions), while the second array attemps to do a comparison test on an array
ces, which fails.

>>> def buggy(test):
... if test > 4: return 1
...  else: return 0
...
>>> print fromfunction(buggy, (10,))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "C:\PYTHON\LIB\Numeric.py", line 157, in fromfunction
    return apply(function, tuple(indices(dimensions)))
  File "<stdin>", line 2, in buggy
TypeError: Comparison of multiarray objects is not implemented.

If you need to fill an array with the result of a function which does not meet these criteria, you can alway
a function like:

def slowfromfunction(function, shape):
# XXXXXX  I need to come up with a version of that...
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The simplest array constructor is theidentity(n) function, which takes a single integer argument and r
turns a square identity array of that size of integers:

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
>>> view(identity(100))
# shows black square with a single white diagonal

Coercion and Casting

We’ve mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we haven
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Pyth
general. Operations between numeric and non-numeric types are not allowed (e.g. an array of characte
be added to an array of numbers), and operations between mixed number types (e.g. floats and integer
and omplex numbers, or in the case of NumPy, operations between any two arrays with different numeri
codes) first perform a coercion of the ’smaller’ numeric type to the type of the ‘larger’ numeric type. Fin
when scalars and arrays are operated on together, the scalar is converted to a rank-0 array first. Thus,
“small” integer to a “large” floating point array is equivalent to first casting the integer “up” to the typecod
the array:

>>> arange(0, 1.0, .1) + 12
array([ 12. , 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8,
12.9])

The automatic coercions are described in Figure 1.
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Figure 1 Up-casts are indicated with arrows.  Down-casts are allowed by the
astype()  method, but may result in loss of information.

Deliberate up-casting: The asarray function

One more array constructor is theasarray() function. It is used if you want to have an array of a specif
typecode and you don't know what typecode array you have (for example, in a generic function which c
erate on all kinds of arrays, but needs them to be converted to complex arrays). If the array it gets as a
ment is of the right typecode, it will get sent back unchanged. If the array is not of the right typecode,
element of the new array will be the result of the coercion to the new type of the old elements.asarray()
will refuse to operate if there might be loss of information -- in other words,asarray()  only casts ’up’.

asarray is also used when you have a function that operates on arrays, but you want to allow people
it with an arbitrary python sequence object. This gives your function a behavior similar to that of most o
builtin functions that operate on arrays.

The typecode value table

The typecodes identifiers (Float0 , etc.) have as values single-character strings. The mapping between
code and character strings is machine dependent. An example of the correspondences between typeco
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of
bytes

# of
bits

Identifiers

D 16 128 Complex, Complex64

F 8 64 Complex0, Complex16, Complex32, Complex8

d 8 64 Float, Float64

f 4 32 Float0, Float16, Float32, Float8

PyObject

Complex32

Complex64

Complex128

Float32

Float64

Float128

Float16

Float8

Char

Int32

Int64

Int128

Int16

Int8UnsignedInt8

Same-type coercion

Different-type coercion
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When dealing with very large arrays of floats and if precision is not important (or arrays of small integers)
it may be worthwhile to cast the arrays to “small” typecodes, such asInt8 , Int16 or Float32 . As the stan-
dard Python integers and floats correspond to the typecodesInt32 andFloat64 , using them in apparently
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays.
example:

>>> mylargearray.typecode()
’f’ #  a.k.a. Float32 on a Pentium
>>> mylargearray.itemsize()
4
>>> mylargearray = mylargearray + 1 # 1 is an Int64 on a Pentium
>>> mylargearray.typecode() # see Fig. 1 for explanation.
’d’
>>> mylargearray.itemsize()
8

Note that the sizes returned by theitemsize()  method are expressed in bytes.

To prevent this problem, one should use arrays containing a single number, with the appropriate bytecod
can be facilitated by a few convenience functions, such as:

toChar = lambda x: array(x, Character)
toInt8 = lambda x: array(x, Int8)# or use variable names such as Byte
toInt16 = lambda x: array(x, Int16)
toInt32 = lambda x: array(x, Int32)
toFloat32 = lambda x: array(x, Float32)
toFloat64 = lambda x: array(x, Float64)

>>> mylargearray.typecode(), mylargearray.itemsize()
(’f’, 4) #  start again
>>> mylargearray = mylargearray + toFloat32(1)
>>> mylargearray.typecode(), mylargearray.itemsize()
(’f’, 4) #  no up-casting, no size change

Deliberate casts (potentially down): the astype method

You may also force NumPy to cast any number array to another number array. For example, to take a
of any numeric type (IntX or FloatX or ComplexX or UnsignedInt8) and convert it to a 64-bit float, one can

>>> floatarray = otherarray.astype(Float64)

l 4 32 Int

1 1 8 Int0, Int8

s 2 16 Int16

i 4 32 Int32

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of
bytes

# of
bits

Identifiers
31



, as if
e used,

re-

dded a
rrays:

one of
and the
ch

s the sum

ger di-
The typecode can be any of the number typecodes, “larger” or “smaller". If it is larger, this is a cast-up
asarray() had been used. If it is smaller, the standard casting rules of the underlying language (C) ar
which means that truncation or loss of precision can occur:

>>> print x
[ 0.   0.4  0.8  1.2  1.6]
>>> x.astype(Int)
array([0, 0, 0, 1, 1])

If the typecode used withastype() is the original array’s typecode, then a copy of the original array is
turned.

Operating on Arrays

Simple operations

If you have a keen eye, you have noticed that some of the previous examples did something new. It a
number to an array. Indeed, most Python operations applicable to numbers are directly applicable to a

>>> print a
[1 2 3]
>>> print a * 3
[3 6 9]
>>> print a + 3
[4 5 6]

Note that the mathematical operators behave differently depending on the types of their operands. When
the operands is an array and the other is a number, the number is added to all the elements of the array
resulting array is returned. This is calledbroadcasting. This also occurs for unary mathematical operations su
as sin and the negative sign

>>> print sin(a)
[ 0.84147098  0.90929743  0.14112001]
>>> print -a
[-1 -2 -3]

When both elements are arrays with the same shape, then a new array is created, where each element i
of the corresponding elements in the original arrays:

>>> print a + a
[2 4 6]

If the operands of operations such as addition are arrays which have the same rank but different non-inte
mensions, then an exception is generated:

>>> print a
[1 2 3]
>>> b = array([4,5,6,7]) # note this has four elements
>>> print a + b
Traceback (innermost last):
  File ``<stdin>``, line 1, in ?
ArrayError: frames are not aligned

This is because there is no reasonable way for NumPy to interpret addition of a(3,) shaped array and a(4,)
shaped array.

Note what happens  when adding arrays with different rank

>>> print a
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[1 2 3]
>>> print b
[[ 4  8 12]
 [ 5  9 13]
 [ 6 10 14]
 [ 7 11 15]]
>>> print a + b
[[ 5 10 15]
 [ 6 11 16]
 [ 7 12 17]
 [ 8 13 18]]

This is another form of broadcasting. To understand this, one needs to look carefully at the shapes ofa andb:

>>> a.shape
(3,)
>>> b.shape
(4,3)

Because arraya’s last dimension had length 3 and arrayb’s last dimension also had length 3, those two dime
sions were “matched” and a new dimension was created and automatically “assumed” for array a. The d
ready ina was “replicated” as many times as needed (4, in this case) to make the two shapes of the o
arrays conform. This replication (broadcasting) occurs when arrays are operands to binary operations a
shapes differ and when the following conditions are true:

• starting from the last axis, the axis lengths (dimensions) of the operands are compared

• if both arrays have an axis length greater than 1, an exception is raised

• if one array has an axis length greater than 1, then the other array’s axis is “stretched” to mat
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has sm
rank), then a new axis of the same length is created.

This algorithm is complex, but intuitive in practice.  For more details, consult the Numeric Reference.

Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the [] notation. For rank-1 array
are no differences between list and array notations:

>>> a = arrayrange(10)
>>> print a[0] # get first element
0
>>> print a[1:5] # get second through fifth element
[1 2 3 4]
>>> print a[:-1] # get last element
9

The first difference with lists comes with multidimensional indexing. If an array is multidimensional (of r
> 1), then specifying a single integer index will return an array of dimension one less than the original a

>>> a = arrayrange(9)
>>> a.shape = (3,3)
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[0] # get first row, not first element!
[0 1 2]
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>>> print a[1] # get second row
[3 4 5]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

>>> print a[0,0] # get elt at first row, first column
0
>>> print a[0,1] # get elt at first row, second column
1
>>> print a[1,0] # get elt at second row, first column
3
>>> print a[2,-1] # get elt at third row, last column
8

Of course, the[]  notation can be used toset values as well:

>>> a[0,0] = 123
>>> print a
[[123   1   2]
 [  3   4   5]
 [  6   7   8]]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “
the referred array subset (in the code sample below, a 3-element row):

>>> a[1] = [10,11,12]
>>> print a
[[123   1   2]
 [ 10  11  12]
 [  6   7   8]]

Slicing Arrays

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]

The plain [:] operator slices from beginning to end:

>>> print a[:,:]
[[0 1 2]
 [3 4 5]
 [6 7 8]]

In other words, [:] with no arguments is the same as [:] for lists – it can be read ``all indices along this axi
to get the second row along the second dimension:

>>> print a[:,1]
[1 4 7]

Note that what was a “column” vector is now a “row” vector -- any “integer slice” (as in the 1 in the exam
above) results in a returned array with rank one less than the input array.

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are a
to be ``all''. IfA is a rank-3 array, then
34



•
A

rray B
asics

l third
n every

s” and

r
ecify

e

A[1] == A[1,:] == A[1,:,:]

There is one addition to the slice notation for arrays which does not exist for lists, and that is the optiona
argument, meaning the ``step size'' also called stride or increment. Its default value is 1, meaning retur
element in the specified range.  Alternate values allow one to skip some of the elements in the slice:

>>> a = arange(12)
>>> print a
[ 0  1  2  3  4  5  6  7  8  9 10 11]
>>> print a[::2] # return every *other* element
[ 0  2  4  6  8 10]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[:, 0]
[0 3 6]
>>> print a[0:3, 0]
[0 3 6]
>>> print a[2:-1, 0]
[6 3 0]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of axi
“beginning of axis” respectively.  Thus, the following two statements are equivalent for the array given:

>>> print a[2:-1, 0]
[6 3 0]
>>> print a[::-1, 0]
[6 3 0]
>>> print a[::-1] # this reverses only the first axis
[[6 7 8]
 [3 4 5]
 [0 1 2]]
>>> print a[::-1,::-1] # this reverses both axes
[[8 7 6]
 [5 4 3]
 [2 1 0]]

One final way of slicing arrays is with the keyword... This keyword is somewhat complicated. It stands fo
``however many `:' I need depending on the rank of the object I'm indexing, so that the indices I *do* sp
are at the end of the index list as opposed to the usual beginning.``

So, if one has a rank-3 arrayA, thenA[...,0] is the same thing asA[:,:,0] but if B is rank-4, then
B[...,0] is the same thing as:B[:,:,:,0] . Only one... is expanded in an index expression, so if on
has a rank-5 arrayC, then: C[...,0,...]  is the same thing asC[:,:,:,0,:] .
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What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multiplic
etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wise
ation". Just like standard addition is available in Python through the add function in the operator module
operations are available through callable objects as well. Thus, the following objects are available in th
meric module:

All of these ufuncs can be used as functions. For example, to useadd , which is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)
>>> print add(a,a)
[ 0  2  4  6  8 10 12 14 16 18]
>>> print a + a
[ 0  2  4  6  8 10 12 14 16 18]

In other words, the + operator on arrays performs exactly the same thing as theadd ufunc when operated on
arrays.  For a unary ufunc such assin , one can do, e.g.:

>>> a = arange(10)
>>> print sin(a)
[ 0. 0.84147098 0.90929743 0.14112001 -0.7568025 -0.95892427
      -0.2794155   0.6569866   0.98935825  0.41211849]

Unary ufuncs return arrays with the same shape as their arguments, but with the contents correspondin
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).

Table 2: Universal Functions, orufunc s. The operators which invoke them when
applied to arrays are indicated in parentheses. The entries in slanted
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) multiply (*) divide (/)

remainder (%) power (**) arccos arccosh

arcsin arcsinh arctan arctanh

cos cosh exp log

log10 sin sinh sqrt

tan tanh maximum minimum

conjugate equal (==) not_equal  (!=) greater (>)

greater_equal (>=) less (<) less_equal (<=) logical_and (and)

logical_or (or) logical_xor logical_not (not) bitwise_and (&)

bitwise_or (|) bitwise_xor bitwise_not (~)
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There are three additional features of ufuncs which make them different from standard Python functions
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they h
tributes which are themselves callable with arrays and sequences. Each of these will be described in tu

Ufuncs can operate on any Python sequence

Ufuncs have so far been described as callable objects which take either one or two arrays as arguments (
ing on whether they are unary or binary). In fact, any Python sequence which can be the input to the
constructor can be used.  The return value from ufuncs is always an array.  Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once. For example, a comp
on a large set of numbers could involve the following step

    dataset = dataset * 1.20

This operation as written needs to create a temporary array to store the results of the computation, a
eventually free the memory used by the original dataset array (provided there are no other references to
it contains). It is more efficient, both in terms of memory and computation time, to do an “in-place” opera
This can be done by specifying an existing array as the place to store the result of the ufunc. In this ex
one can write:

    multiply(dataset, 1.20, dataset)

This is not a step to take lightly, however. For example, the “big and slow” version (dataset = dataset
* 1.20 ) and the “small and fast” version above will yield different results in two cases:

• If the typecode of the target array is not that which would normally be computed, the operation
fail and raise a TypeError exception.

• If the target array corresponds to a different “view” on the same data as either of the source a
inconsistencies will result.  For example,

          >>> a = arange(5, typecode=Float64)
          >>> print a[::-1] * 1.2
          [ 4.8  3.6  2.4  1.2  0. ]
          >>> multiply(a[::-1], 1.2, a)
          array([ 4.8 ,  3.6 ,  2.4 ,  4.32,  5.76])
          >>> print a
          [ 4.8   3.6   2.4   4.32  5.76]

This is because the ufunc does not know which arrays share which data, and in this case the
writing of the data contents follows a different path through the shared data space of the two a
thus resulting in strangely distorted data.

Ufuncs have special methods

The reduce ufunc method

If you don't know about thereduce command in Python, review section 5.1.1 of the Python Tutorial (http://
www.python.org/doc/tut/functional.html). Briefly, reduce is most often used with two arguments, a callab
object (such as a function), and a sequence. It calls the callable object with the first two element of t
quence, then with the result of that operation and the third element, and so on, returning at the end the
sive “reduction” of the specified callable object over the sequence elements. Similarly, thereduce method of
ufuncs is called with a sequence as an argument, and performs the reduction of that ufunc on the seque
an example, adding all of the elements in a rank-1 array can be done with:
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>>> a = array([1,2,3,4])
>>> print add.reduce(a)
10

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the fir

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b)
[ 7  9 11 13]

A different axis of reduction can be specified with a second integer argument:

>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b, 1)
[10 30]

The accumulate ufunc method

Theaccumulate ufunc method is simular toreduce , except that it returns an array containing the interm
diate results of the reduction:

>>> a = arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print add.accumulate(a)
[ 0  1  3  6 10 15 21 28 36 45] # 0, 0+1, 0+1+2, 0+1+2+3, ... 0+...+9
>>> print add.reduce(a)
45 # same as add.accumulate(...)[-1]

The outer ufunc method

The third ufunc method isouter , which takes two arrays as arguments and returns the “outer ufunc” of the
arguments. Thus theouter method of themultiply ufunc, results in the outer product. The outer method
only supported for binary methods.

>>> print a
[0 1 2 3 4]
>>> print b
[0 1 2 3]
>>> print add.outer(a,b)
[[0 1 2 3]
 [1 2 3 4]
 [2 3 4 5]
 [3 4 5 6]
 [4 5 6 7]]
>>> print multiply.outer(b,a)
[[ 0  0  0  0  0]
 [ 0  1  2  3  4]
 [ 0  2  4  6  8]
 [ 0  3  6  9 12]]
>>> print power.outer(a,b)
[[ 1  0  0  0]
 [ 1  1  1  1]
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 [ 1  2  4  8]
 [ 1  3  9 27]
 [ 1  4 16 64]]

The reduceat ufunc method

The final ufunc method is thereduceat method, which I’d love to explain it, but I don’t understand it (XXX)

Ufuncs always return new arrays

Except when the ’output’ argument are used as described above, ufuncs always return new arrays which
share any data with the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations very
ilar to the functions in themath andcmath modules, albeit elementwise, on arrays. These come in two for
unary and binary:

Unary Mathematical Ufuncs (take only one argument)

The following ufuncs apply the predictable functions on their single array arguments, one element at a
arccos , arccosh , arcsin , arcsinh , arctan , arctanh , cos , cosh , exp , log , log10 ,
sin ,  sinh ,  sqrt ,  tan ,  tanh .

As an example:

>>> print x
[0 1 2 3 4]
>>> print cos(x)
[ 1.          0.54030231 -0.41614684 -0.9899925  -0.65364362]
>>> print arccos(cos(x))
[ 0.          1.          2.          3.          2.28318531]
# not a bug, but wraparound: 2*pi%4 is 2.28318531

Theconjugate ufunc takes an array of complex numbers and returns the array with entries which ar
complex conjugates of the entries in the input array. If it is called with real numbers, a copy of the array
turned unchanged.

Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them,
of elements at a time:add , subtract , multiply , divide , remainder , power .

Logical Ufuncs

The ``logical'' ufuncs also perform their operations on arrays in elementwise fashion, just like the ``math
ical'' ones.

Two are special (maximumandmiminum ) in that they return arrays with entries taken from their input array

>>> print x
[0 1 2 3 4]
>>> print y
[ 2.   2.5  3.   3.5  4. ]
>>> print maximum(x, y)
[ 2.   2.5  3.   3.5  4. ]
>>> print minimum(x, y)
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[ 0.  1.  2.  3.  4.]

The others all return arrays of 0’s or 1’s:equal , not_equal , greater , greater_equal , less ,
less_equal , logical_and , logical_or , logical_xor , logical_not , bitwise_and ,
bitwise_or , bitwise_xor , bitwise_not .

These are fairly self-explanatory, especially with the associated symbols from the standard Python ver
the same operations in Table 1 above. Thelogical_* ufuncs perform their operations (and, or, etc.) usin
the truth value of the elements in the array (equality to 0 for numbers and the standard truth test for Py
arrays). Thebitwise_* ufuncs, on the other hand, can be used only with integer arrays (of any word s
and will return integer arrays of the larger bit size of the two input arrays:

>>> x
array([7, 7, 0],'1')
>>> y
array([4, 5, 6])
>>> bitwise_and(x,y)
array([4, 5, 0],'i')

We've already discussed how to find out about the contents of arrays based on the indices in the arrays
what the various slice mechanisms are for. Often, especially when dealing with the result of computati
data analysis, one needs to ``pick out'' parts of matrices based on the content of those matrices. For exa
might be useful to find out which elements of an array are negative, and which are positive. The comp
ufuncs are designed for just this type of operation. Assume an array with various positive and negative nu
in it (for the sake of the example we'll generate it from scratch):

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> b = sin(a)
>>> print b
[[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825  0.41211849]
 [-0.54402111 -0.99999021 -0.53657292  0.42016704  0.99060736]
 [ 0.65028784 -0.28790332 -0.96139749 -0.75098725  0.14987721]
 [ 0.91294525  0.83665564 -0.00885131 -0.8462204  -0.90557836]]
>>> print less_equal(b, 0)
[[1 0 0 0 1]
 [1 1 0 0 0]
 [1 1 1 0 0]
 [0 1 1 1 0]
 [0 0 1 1 1]]

This last example has 1’s where the corresponding elements are less than or equal to 0, and 0’s everywh

>>> view(greater(greeceBW, .3))
# shows a binary image with white where the pixel value was greater than
.3

Ufunc shorthands

Numeric defines a few functions which correspond to often-used uses of ufuncs: for example,add.re-
duce()  is synonymous with thesum()  utility function:

>>> a = arange(5) # [0 1 2 3 4]
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>>> print sum(a) # 0 + 1 + 2 + 3 + 4
10

Similarly, cumsum is equivalent toadd.accumulate (for ``cumulative sum``),product to multi-
ply.reduce , andcumproduct  to multiply.accumulate .

Additional ``utility'' functions which are often useful arealltrue andsometrue , which are defined as
logical_and.reduce  andlogical_or.reduce  respectively:

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[0 1 1 1 1]
>>> alltrue(greater(a,0))
0
>>> sometrue(greater(a,0))
1
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7. Pseudo Indices

Tbis chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar:

>>> a = array([1,2,3])
>>> a * 2
[2 4 6]

This should be trivial to you by now. We've just multiplied a rank-1 array by a scalar (which is converted
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding som
rank-1 arrays as well:

>>> print a
[1 2 3]
>>> a + array([4])
[5 6 7]

but it won't work if either of the two rank-1 arrays have non-matching dimensions which aren't 1 – put another
way, broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dimen
of 1.

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row ve
[10,20] by the column vector [1,2,3].

>>> a = array([10,20])
>>> b = array([1,2,3])
>>> a * b
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: frames are not aligned example

This makes sense – we're trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3,
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape (3
that the first vector can be broadcast accross the second axis of the second vector. One way to do this
the reshape function:

>>> a.shape
(2,)
>>> b.shape
(3,)
>>> b2 = reshape(b, (3,1))
>>> print b2
[[1]
 [2]
 [3]]
>>> b2.shape
(3, 1)
>>> print a * b2
[[10 20]
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 [30 60]]

This is such a common operation that a special feature was added (it turns out to be useful in many othe
as well) – theNewAxis ``pseudo-index'', originally developed in the Yorick language.NewAxis is an index,
just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning ``add a ne
here,'' in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help c
situation:

>>> print b
[1 2 3]
>>> b.shape
(3,)
>>> c = b[:, NewAxis]
>>> print c
[[1]
 [2]
 [3]]
>>> c.shape
(3,1)

Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't real
new array with a new axis, one just wants it for an intermediate computation. Witness the array multiplic
mentioned above, without and with pseudo-indices:

>>> without = a * reshape(b, (3,1))
>>> with = a * b[:,NewAxis]

The second is much more readable (once you understand howNewAxis works), and it's much closer to the in-
tended meaning. Also, it's independent of the dimensions of the array b You might counter that using som
like reshape(b, (-1,1)) is also dimension-independent, but 1) would you argue that it's as readabl
how would you deal with rank-3 or rank-N arrays? TheNewAxis -based idiom also works nicely with higher
rank arrays, and with the... ``rubber index'' mentioned earlier. Adding an axis before the last axis in an a
can be done simply with:

>>> a[...,NewAxis,:]
43



's ob-
ds in-

s, not just

n
efined
e im-

t based

s in the
8. Array Functions

Most of the useful manipulations on arrays are done with functions. This might be surprising given Python
ject-oriented framework, and that many of these functions could have been implemented using metho
stead. Choosing functions means that the same procedures can be applied to arbitrary python sequence
to ar rays . For example , wh i let ranspose( [ [1 ,2 ] , [3 ,4 ] ] ) works jus t f i ne ,
[[1,2],[3,4]].transpose() can’t work. This approach also allows uniformity in interface betwee
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions d
in extension modules. The use of array methods is limited to functionality which depends critically on th
plementation details of array objects.  Array methods are discussed in the next chapter.

We've already covered two functions which operate on arrays,reshape  andresize .

take(a, indices, axis=0)

take is in some ways like the slice operations. It selects the elements of the array it gets as first argumen
on the indices it gets as a second argument. Unlike slicing, however, the array returned bytake has the same
rank as the input array. This is again much easier to understand with an illustration:

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print take(a, (0,)) # first row
[ [0 1 2 3 4]]
>>> print take(a, (0,1)) # first and second row
[[0 1 2 3 4]
 [5 6 7 8 9]]
>>> print take(a, (0,-1)) # first and last row
[[ 0  1  2  3  4]
 [15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (a
examples above) is 0, the first axis. If you want another axis, then you can specify it:

>>> print take(a, (0,), 1) # first column
[[ 0]
 [ 5]
 [10]
 [15]]
>>> print take(a, (0,1), 1) # first and second column
[[ 0  1]
 [ 5  6]
 [10 11]
 [15 16]]
>>> print take(a, (0,-1), 1) # first and last column
[[ 0  4]
 [ 5  9]
 [10 14]
 [15 19]]
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This is considered to be a ``structural'' operation, because its result does not depend on the content of th
or the result of a computation on those contents but uniquely on the structure of the array. Like all such
tural operations, the default axis is 0 (the first rank). I mention it here because later in this tutorial, we w
functions which have a default axis of -1.

Take is often used to create multidimensional arrays with the indices from a rank-1 array. As in the earl
amples, the shape of the array returned bytake() is a combination of the shape of its first argument and t
shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the returne
has the same shape as the index sequence. [XXX vague]

>>> x = arange(10) * 100
>>> print x
[  0 100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])
[[200 400]
 [100 200]]

A typical example of usingtake() is to replace the grey values in an image according to a “translation tab
For example, let’s consider a brightening of a greyscale image. Theview() function defined in the NumTut
package automatically scales the input arrays to use the entire range of grey values, except if the inpu
are of typecode’b’ unsigned bytes -- thus to test this brightening function, we’ll first start by converting
greyscale floating point array to a greyscale byte array:

>>> BW = (greeceBW*256).astype('b')
>>> view(BW) # shows black and white picture

We then create a table mapping the integers 0-255 to integers 0-255 using a “compressive nonlinearity

>>> table = (255- arange(256)**2 / 256).astype('b')
>>> view(table) # shows the conversion curve

To do the “taking” into an array of the right kind, we first create a blank image array with the same shap
typecode as the original array:

>>> BW2 = zeros(BW.shape, BW.typecode())

and then perform the take() operation

>>> BW2.flat[:] = take(table, BW.flat)
>>> view(BW2)

transpose(a, axes=None)

transpose takes an array and returns a new array which corresponds to a with the order of axes speci
the second argument. The default corresponds to flipping the order of all the axes (it is equivale
a.shape[::-1]  if a is the input array).

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print transpose(a)
[[ 0  5 10 15]
 [ 1  6 11 16]
 [ 2  7 12 17]
 [ 3  8 13 18]
 [ 4  9 14 19]]
>>> greece.shape # it’s a 355x242 RGB picture
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(355, 242, 3)
>>> view(greece)
# picture of greek street is shown
>>> view(transpose(greece, (1,0,2))) # swap x and y, not color axis!
# picture of greek street is shown sideways

repeat(a, repeats, axis=0)

repeat takes an array and returns an array with each element in the input array repeated as often as in
by the corresponding elements in the second array. It operates along the specified axis. So, to stretch
evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the si
specified axis:

>>> view(repeat(greece, 2*ones(greece.shape[0])))  # double in X
>>> view(repeat(greece, 2*ones(greece.shape[1]), 1))  # double in Y

choose(a, (b0, ..., bn))

a is an array of integers between 0 and n. The resulting array will have the same shape as a, with elemen
ed from b0,...,bn as indicating by the value of the corresponding element in a.

Assume a is an arraya that you want to ``clip'' so that no values are greater than 100.0.

>>> choose(greater(a, 100.0), (a, 100.0))

Everywhere that greater(a, 100.0) is false (ie. 0) this will ``choose'' the corresponding value in a. Every
else it will ``choose'' 100.0.

This works as well with arrays. Try to figure out what the following does:

>>> ret = choose(greater_than(a,b), (c,d))

ravel(a)

returns the argument arraya as a 1d array. It is equivalent toreshape(a, (-1,)) or a.flat . Unlike
a.flat , however,ravel  works with non-contiguous arrays.

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> x.iscontiguous()
0
>>> x.flat
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: flattened indexing only available for contiguous array
>>> ravel(x)
array([ 0,  1,  2,  3,  5,  6,  7,  8, 10, 11, 12, 13])

nonzero(a)

nonzero() returns an array containing the indices of the elements in a that are nonzero. These indices on
sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not w
complex arrays.
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where(condition, x, y)

where(condition,x,y) returns an array shaped like condition and has elements of x and y where conditio
spectively true or false

compress(condition, a, axis=0)

returns those elements of a corresponding to those elements of condition that are nonzero. condition mu
same size as the given axis of a.

>>> print x
[0 1 2 3]
>>> print greater(x, 2)
[0 0 0 1]
>>> print compress(greater(x, 2), x)
[3]

diagonal(a, k=0)

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). This is designed
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print diagonal(x)
[ 0  6 12 18 24]
>>> print diagonal(x, 1)
[ 1  7 13 19]
>>> print diagonal(x, -1)
[ 5 11 17 23]

trace(a, k=0)

returns the sum of the elements in a along the k th diagonal.

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print trace(x) # 0 + 6 + 12 + 18 + 24
60
>>> print trace(x, -1) # 5 + 11 + 17 + 23
56
>>> print trace(x, 1) # 1 + 7 + 13 + 19
40

searchsorted(a, values)

Called with a rank-1 array sorted in ascending order,searchsorted() will return the indices of the posi-
tions in a where the corresponding values would fit.
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>>> print bin_boundaries
[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1. ]
>>> print data
[ 0.3029573 0.79585496 0.82714031 0.77993884 0.55069605 0.76043182
       0.28511823  0.29987358  0.40286206  0.68617903]
>>> print searchsorted(bin_boundaries, data)
[4 8 9 8 6 8 3 3 5 7]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
... n = searchsorted(sort(a), bins)
... n = concatenate([n, [len(a)]])
... return n[1:]-n[:-1]
...
>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7 0 0 3 0 0 0 0 0 0]
>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[0 0 4 2 2 2 0 2 1 2 1 3 1 3 1 3 2 3 2 3 4 9 0 0]

sort(a, axis=-1)

This function returns an array containing a copy of the data ina, with the same shape asa, but with the order
of the elements along the specified axis sorted. The shape of the returned array is the same asa’s. Thus,
sort(a, 3) will be an array of the same shape as a, where the elements of a have been sorted along th
axis.

>>> print data
[[5 0 1 9 8]
 [2 5 8 3 2]
 [8 0 3 7 0]
 [9 6 9 5 0]
 [9 0 9 7 7]]
>>> print sort(data) # Axis -1 by default
[[0 1 5 8 9]
 [2 2 3 5 8]
 [0 0 3 7 8]
 [0 5 6 9 9]
 [0 7 7 9 9]]
>>> print sort(data, 0)
[[2 0 1 3 0]
 [5 0 3 5 0]
 [8 0 8 7 2]
 [9 5 9 7 7]
 [9 6 9 9 8]]

argsort(a, axis=-1)

argsort will return the indices of the elements of a needed to producesort(a) . In other words, for a rank-
1 array,take(a, argsort(a)) == sort(a) .

>>> print data
[5 0 1 9 8]
>>> print sort(data)
[0 1 5 8 9]
>>> print argsort(data)
[1 2 0 4 3]
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>>> print take(data, argsort(data))
[0 1 5 8 9]

argmax(a, axis=-1), argmin(a, axis=-1)

Theargmax() function returns an array with the arguments of the maximum values of its input array a a
the given axis. The returned array will have one less dimension than a.argmin() is just likeargmax() , ex-
cept that it returns the indices of the minima along the given axis.

>>> print data
[[9 6 1 3 0]
 [0 0 8 9 1]
 [7 4 5 4 0]
 [5 2 7 7 1]
 [9 9 7 9 7]]
>>> print argmax(data)
[0 3 0 2 0]
>>> print argmax(data, 0)
[0 4 1 1 4]
>>> print argmin(data)
[4 0 4 4 2]
>>> print argmin(data, 0)
[1 1 0 0 0]

fromstring(string, typecode)

Will return the array formed by the binary data given in string of the specified typecode. This is mainly use
reading binary data to and from files, it can also be used to exchange binary data with other modules t
python strings as storage (e.g.PIL). Note that this representation is dependent on the byte order. To find ou
byte ordering used, use thebyteswapped()  method described on page 55.

dot(m1, m2)

Thedot() function returns the dot product ofm1andm2. This is equivalent to matrix multiply for rank-2 ar-
rays (without the transpose). Somebody who does more linear algebra really needs to do this functio
some day!

matrixmultiply(m1, m2)

Thematrixmultiply()  function is..

XXX

clip(m, m_min, m_max)

The clip function creates an array with the same shape and typecode as m, but where every entry in m
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max.
within the range [m_min, m_max] are left unchanged.

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000
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The indices function returns an array corresponding to the shape given. The array returned is an array o
shape which is based on the specified shape, but has an added dimension of length the number of dim
in the specified shape. For example, if the shape specified by theshape argument is (3,4), then the shape o
the array returned will be (2,3,4) since the length of (3,4) is 2. The contents of the returned arrays are su
the ith subarray (along index 0, the first dimension) contains the indices for that axis of the elements in the
An example makes things clearer:

>>> i = indices((4,3))
>>> i.shape
(2, 4, 3)
>>> print i[0]
[[0 0 0]
 [1 1 1]
 [2 2 2]
 [3 3 3]]
>>> print i[1]
[[0 1 2]
 [0 1 2]
 [0 1 2]
 [0 1 2]]

So,i[0] has an array of the specified shape, and each element in that array specifies the index of that p
in the subarray for axis 0. Similarly, each element in the subarray ini[1] contains the index of that position
in the subarray for axis 1.

swapaxes(a, axis1, axis2)

Returns a new array which shares the data ofa, but which has the two axes specified byaxis1 andaxis2
swapped. Ifa is of rank 0 or 1, swapaxes simply returns a new reference toa.

>>> x = arange(10)
>>> x.shape = (5,2,1)
>>> print x
[[[0]
  [1]]
 [[2]
  [3]]
 [[4]
  [5]]
 [[6]
  [7]]
 [[8]
  [9]]]
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
(1, 2, 5)
>>> print y
[ [[0 2 4 6 8]
  [1 3 5 7 9]]]
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concatenate((a0, a1, ... , an), axis=0)

Returns a new array containing copies of the data contained in all arraysa0 ... an . The arrays ai will be
concatenated along the specified axis (0 by default). All arrays ai must have the same shape along ev
except for the one given. To concatenate arrays along a newly created axis, you can usearray((a0, ...,
an))  as long as all arrays have the same shape.

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x))
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]
 [ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x), 1)
[[ 0  1  2  3  0  1  2  3]
 [ 5  6  7  8  5  6  7  8]
 [10 11 12 13 10 11 12 13]]
>>> print array((x,x) )
[[[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]
 [[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]]

innerproduct(a, b)

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.

resize(a, new_shape)

Theresize function takes an array and a shape, and returns a new array with the specified shape, an
with the data in the input array. Unlike thereshape function, the new shape does not have to yield the sa
size as the original array. If the new size of is less than that of the input array, the returned array conta
appropriate data from the “beginning” of the old array. If the new size is greater than that of the input arra
data in the input array is repeated as many times as needed to fill the new array.

>>> x = arange(10)
>>> y = resize(x, (4,2)) # note that 4*2 < 10
>>> print x
[0 1 2 3 4 5 6 7 8 9]
>>> print y
[[0 1]
 [2 3]
 [4 5]
 [6 7]]
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>>> print resize(array((0,1)), (5,5)) # note that 5*5 > 2
[[0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]]

diagonal(a, offset=0, axis1=-2, axis2=-1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements of
that the difference between their indices along the specified axes is equal to the specified offset. With the
values, this corresponds to all of the elements of the diagonal of a along the last two axes.Currently this is bro-
ken for offsets other than -1, 0 and 1, and for non-square arrays.

repeat (a, counts, axis=0)

The repeat function uses repeated copies of a to create a result. The axis argument refers to the axis of
will be replicated. The counts argument tells how many copies of each element to make. The length of
must be the len(shape(a)[axis]).

In one dimension this is straightforward:

>>> y
array([0, 1, 2, 3, 4, 5])
>>> repeat(y, (1,2,0,2,2,3))
array([0, 1, 1, 3, 3, 4, 4, 5, 5, 5])

In more than one dimension it sometimes gets harder to understand. Consider for example this array x
shape is (2,3).

>>> x
array([[0, 1, 2],
       [3, 4, 5]])

>>> repeat(x, (2,6))
array([[0, 1, 2],
       [0, 1, 2],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5],
       [3, 4, 5]])

>>> repeat(x, (6,3), 1)
array([[0, 0, 0, 0, 0, 0, 1, 1, 1],
       [2, 2, 2, 2, 2, 2, 3, 3, 3]])

convolve (a, v, mode=0)

The convolve function returns the linear convolution of two rank 1 arrays. The output is a rank 1 array w
length depends on the value of mode which is zero by default. Linear convolution can be used to find t
sponse of a linear system to an arbitrary input. If the input arrays correspond to the coefficients of a polyn
and mode=2, the output of linear convolution corresponds to the coefficients of the product of the polynom
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The mode parameter requires a bit of explanation. True linear convolution is only defined over infinite seq
es. As both input arrays must represent finite sequences, the convolve operation assumes that the inf
quences represented by the finite inputs are zero outside of their domain of definition. In other word
sequences are zero-padded. If mode is 2, then the non-zero part of the full linear convolution is returned
output has length len (a)+len (v)-1. Call this output f. If mode is 0, then any part of f which was affected b
zero-padding is chopped from the result. In other words, let b be the input with smallest length and let c
other input. The output when mode is 0 is the middle len (c)-len (b)+1 elements of f. When mode is 1, the
is the same size as c and is equal to the middle len (c) elements of f.

cross_correlate (a, v, mode=0)

The cross_correlate function computes the cross_correlation between two rank 1 arrays. The output is a
array representing the inner product of a with shifted versions of v. This is very similar to convolution. Th
ference is that convolution reverses the axis of one of the input sequences but cross_correlation does no
it is easy to verify that convolve (a, v, mode) = cross_correlate (a, v [::-1], mode)

where (condition, x, y)

The where function creates an array whose values are those of x at those indices whereconditionis true, and
those of y otherwise. The shape of the result is the shape of condition. The type of the result is determi
the types of x and y. Either or both of x and y and be a scalar, which is then used for any element of con
which is true.

identity(n)

The identity function returns an n by n array where the diagonal elements are 1, and the off-diagonal ele
are 0.

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the ele
in the sequence given along the specified axis (first axis by default).

>>> print x
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]]
>>> print sum(x)
[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17,
2+6+10+14+18, ...
>>> print sum(x, 1)
[ 6 22 38 54 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, index=0)

Thecumsum function is a synonym for theaccumulate  method of theadd  ufunc.
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product(a, index=0)

Theproduct  function is a synonym for thereduce  method of themultiply  ufunc.

cumproduct(a, index=0)

Thecumproduct  function is a synonym for theaccumulate  method of themultiply  ufunc.

alltrue(a, index=0)

Thealltrue  function is a synonym for thereduce  method of thelogical_and  ufunc.

sometrue(a, index=0)

Thesometrue  function is a synonym for thereduce  method of thelogical_or  ufunc.
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9. Array Methods

As we discussed at the beginning of the last chapter, there are very few array methods for good reaso
these all depend on the the implementation details. They're worth knowing, though:

itemsize()

The itemsize() method applied to an array returns the number of bytes used by any one of its elements

>>> a = arange(10)
>>> a.itemsize()
4
>>> a = array([1.0])
>>> a.itemsize()
8
>>> a = array([1], Complex)
>>> a.itemsize()
16

iscontiguous()

Calling an array's iscontiguous() method returns true if the memory used by A is contiguous. A non-conti
array can be converted to a contiguous one by the copy() method. This is useful for interfacing to C ro
only, as far as I know.

>>> XXX example

typecode()

The `typecode()' method returns the typecode of the array it is applied to. While we've been talking abou
as Float, Int, etc., they are represented internally as characters, so this is what you'll get:

>>> a = array([1,2,3])
>>> a.typecode()
'l'
>>> a = array([1], Complex)
>>> a.typecode()
'D'

byteswapped()

Thebyteswapped  method performs a byte swapping operation on all the elements in the array.

>>> print a
[1 2 3]
>>> print a.byteswapped()
[16777216 33554432 50331648]

tostring()

Thetostring  method returns a string representation of the data portion of the array it is applied to.

>>> a = arange(65,100)
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>>> print a.tostring()
A B C D E F G H I J K L M N O P Q R S T
U   V   W   X   Y   Z   [   \   ]   ^   _   `   a   b   c

tolist()

Calling an array's tolist() method returns a hierarchical python list version of the same array:

>>> print a
[[65 66 67 68 69 70 71]
 [72 73 74 75 76 77 78]
 [79 80 81 82 83 84 85]
 [86 87 88 89 90 91 92]
 [93 94 95 96 97 98 99]]
>>> print a.tolist()
[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80,
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97,
98, 99]]
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10. Array Attributes

We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, r
imaginary.

flat

Accessing theflat attribute of an array returns the flattened, orravel() 'ed version of that array, without
having to do a function call. The returner array has the same number of elements as the input array, b
rank-1. One cannot set the flat attribute of an array, but one can use the indexing and slicing notations to
the contents of the array:

>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a.flat
[0 1 2 3 4 5 6 7 8]
>>> a.flat = arange(9,18)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
AttributeError: Attribute does not exist or cannot be set
>>> a.flat[4] = 100
>>> print a
[[  0   1   2]
 [  3 100   5]
 [  6   7   8]]
>>> a.flat[:] = arange(9, 18)
>>> print a
[[ 9 10 11]
 [12 13 14]
 [15 16 17]]

real  and imaginary

These attributes exist only for complex arrays. They return respectively arrays filled with the real and i
nary parts of their elements..imag is a synonym for.imaginary . The arrays returned are not contiguou
(except for arrays of length 1, which are always contiguous.)..real , .imag and.imaginary are modifi-
able:

>>> print x
[ 0. +1.j 0.84147098+0.54030231j 0.90929743-0.41614684j]
>>> print x.real
[ 0.          0.84147098  0.90929743]
>>> print x.imag
[ 1.          0.54030231 -0.41614684]
>>> x.imag = arange(3)
>>> print x
[ 0.        +0.j  0.84147098+1.j  0.90929743+2.j]
>>> x = reshape(arange(10), (2,5)) + 0j # make complex array
>>> print x
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[[ 0.+0.j  1.+0.j  2.+0.j  3.+0.j  4.+0.j]
 [ 5.+0.j  6.+0.j  7.+0.j  8.+0.j  9.+0.j]]
>>> print x.real
[[ 0.  1.  2.  3.  4.]
 [ 5.  6.  7.  8.  9.]]
>>> print x.typecode(), x.real.typecode()
D d
>>> print x.itemsize(), x.imag.itemsize()
16 8
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11. Special Topics

This chapter holds miscellaneous information which did not neatly fit in any of the other
chapters.

Subclassing

Starting with Release 12, arrayobjects are ExtensionClass types by default. This means that arrays can
classed in Python, and that new, specialized kinds of arrays can be built, which inherit most but not all o
behavior from the standard type. There are thus two kinds of arrays: the “multiarrayobject” type which
cessible in the _numpy module, and the Array subclass of that type. The array() method described thro
this documentation corresponds to creating Array objects. Array objects are just like multiarray objects,
that they allow somewhat more generalized “setting” behavior. The logical ufuncs (greater, equal, etc.) n
turn a subclass of Array objects called MaskArrays, and these mask arrays can be used as the index in a “
operation:

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> mask = greater(x, 10)
>>> print mask
[[0 0 0 0 0]
 [0 0 0 0 0]
 [0 1 1 1 1]
 [1 1 1 1 1]
 [1 1 1 1 1]]
>>> x[mask] = -x
>>> print x
[[  0   1   2   3   4]
 [  5   6   7   8   9]
 [ 10 -11 -12 -13 -14]
 [-15 -16 -17 -18 -19]
 [-20 -21 -22 -23 -24]]

The features of the Array objects are still evolving. Candidate features under consideration are: supp
missing values, different casting rules, more efficient pickling, generalized “set” facility, etc.

Code Organization

Numeric.py and friends

Numeric.py is the most commonly used interface to the Numeric extensions. It is a Python module w
imports all of the exported functions and attributes from themultiarray module, and then defines some util
ity functions. As some of the functions defined inNumeric.py could someday be moved into a supportin
C module, the utility functions and themultiarray object are documented together, in this section. T
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multiarray objects are the core of Numeric Python – they are extension types written in C which ar
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous data
with special emphasis to numeric data types.

UserArray.py

In the tradition ofUserList.py andUserDict.py , theUserArray.py module defines a class whose
instances act in many ways like array objects.

Matrix.py

TheMatrix.py python module defines a classMatrix which is a subclass ofUserArray . The only dif-
ferences betweenMatrix instances andUserArray instances is that the* operator onMatrix performs a
matrix multiplication, as opposed to element-wise multiplication, and that the power operator** is disallowed
for Matrix  instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecode
and values, by building small arrays and looking at the number of bytes they use per element.

ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on T
Representations of arrays on page 66,

Mlab.py

The Mlab.py module provides some functions which are compatible with the functions of the same name
MATLAB programming language. These are:

bartlett(M)

returns the M-point Bartlett window.

blackman(M)

returns the M-point Blackman window.

corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m)

returns the cumulative product of the elments along the first dimension of m.

cumsum(m)

returns the cumulative sum of the elements along the first dimension of m.

diag(v, k=0)

returns the k-th diagonal if v is a matrix or returns a matrix with v as the k-th diagonal if v is a vector.
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diff(x, n=1)

calculates the first-order, discrete difference approximation to the derivative.

eig(m)

returns the the eigenvalues of m in x and the corresponding eigenvectors in the rows of v.

eye(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where the k-th diagonal is all ones, and everything else is zeros.

fliplr(m)

returns a 2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only works
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only works
2-D arrays.

hamming(M)

returns the M-point Hamming window.

hanning(M)

returns the M-point Hanning window.

kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for th
ified bessel function i0.

max(m)

returns the maximum along the first dimension of m.

mean(m)

returns the mean along the first dimension of m. Note: if m is an integer array, integer division will occu

median(m)

returns a mean of m along the first dimension of m.

min(m)

returns the minimum along the first dimension of m.

msort(m)

returns a sort along the first dimension of m as in MATLAB.

prod(m)

returns the product of the elements along the first dimension of m.

ptp(m)

returns the maximum - minimum along the first dimension of m.
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rand(d1, ..., dn)

returns a matrix of the given dimensions which is initialized to random numbers from a uniform distributio
the range [0,1).

rot90(m,k=1)

returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.

sinc(x)

returns sin(pi*x)/(pi*x) at all points of array x.

squeeze(a)

removes any ones from the shape of a

std(m)

returns the standard deviation along the first dimension of m. The result is unbiased meaning divisi
len(m)-1.

sum(m)

returns the sum of the elements along the first dimension of m.

svd(m)

return the singular value decomposition of m [u,x,v]

trapz(y,x=None)

integrates y = f(x) using the trapezoidal rule.

tri(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all one

tril(m,k=0)

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above andk < 0 is
below the main diagonal.

triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and k
below the main diagonal.

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given this name to d
guish it from the one-dimensional array object defined in the standard array module. From here on, ho
the terms array and multiarray will be used interchangeably to refer to the new object type. multiarray o
are homogeneous multidimensional sequences. Starting from the back, they are sequences. This me
they are container (compound) objects, which contain references to other objects. They are multidimen
meaning that unlike standard Python sequences which define only a single dimension along which one

erate through the contents, multiarray objects can have up to 40 dimensions.1 Finally, they are homogeneous

1. This limit is modifiable in the source code if higher dimensionality is needed.
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This means that every object in a multiarray must be of the same type. This is done for efficiency reas
storing the type of the contained objects once in the array means that the process of finding the type-s
operation to operate on each element in the array needs to be done only once per array, as opposed to
element. Furthemore, as the main purpose of these arrays is to process numbers, the numbers can be
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings. It is however
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but
heterogeneous contents (as we shall see, these arrays are still homogeneous from the Numeric perspec
are just arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a
character Python string, but more descriptive names corresponding to the typecodes are made availab
Python programmer in the Precision.py module. The typecodes are defined as follows:

Note on number fomat: the binary format used by Python is that of the underlying C library. [notes about
formats, etc?]

Table 3: Typecode Listing

Variable defined in
Typecode  module

Typecode
character

Description

Char ’c’ Single-character strings

PyObject ’O’ Reference to Python object

UnsignedInt8 ’b’ Unsigned integer using a single byte.

Int ’l’ Python standard integers (i.e. C long integers)

Float ’d’ Python standard floating point numbers
(i.e. C double-precision floats)

n/a ’f’ Single-precision floating point numbers

Complex ’D’ Complex numbers consisting of two double-preci-
sion floats

n/a ’F’ Complex numbers consisting of two single-precision
floats

Int0, Int8, Int16,
Int32, Int64, Int128

n/a These correspond to machine-dependent typecode
Int0  returns the typecode corresponding to the
smallest available integer,Int8  that corresponding
to the smallest available integer with at least 8 bits,
Int16 that with at least 16 bits, etc. If a typecode is
not available (e.g.Int64  on a 32-bit machine), the
variable is not defined.

Float0, Float8, Float16,
Float32, Float64,
Float128

n/a Same asInt0 , Int8  etc. except for floating point
numbers.

Complex0, Complex8,
Complex16, Complex32,
Complex64, Complex128

n/a Same asFloat0 , etc., except that the number of
bits refers to the precision of each of the two (real
and imaginary) parts of the complex number.
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Indexing in and out, slicing

Indexing arrays works like indexing of other Python sequences, but supports some extensions which a

yet not implemented for other sequence types1. The standard [start:stop] notation is supported, with start d
faulting to 0 (the first index position) and stop defaulting to the length of the sequence, as for lists and t
In addition, there is an optional stride argument, which specifies the stride size between successive ind
the slice. It is expressed by a integer following a second : immediately after the usual start:stop slice
[0:11:2] will slice the array at indices 0, 2, 4, .. 10. The start and stop indices are optional, but the first :
be specified for the stride interpretation to occur. Therefore,[::2] means slice from beginning to end, with a
stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the ind
starts from the end of the sequence and works towards the beginning of the sequence. If the stop index is
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print x
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[10]
10
>>> print x[:10]
[0 1 2 3 4 5 6 7 8 9]
>>> print x[5:15:3]
[ 5  8 11 14]
>>> print x[:10:2]
[0 2 4 6 8]
>>> print x[10::-2]
[10  8  6  4  2  0]
>>> print x[::-1]
[19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0]

It is important to note that the out-of-bounds conditions follow the same rules as standard Python index
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bo
dices yields an IndexError:

>>> print x[:100]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[-200:4]
[0 1 2 3]
>>> x[100]
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: index out of bounds

The second difference between array indexing and other sequences is that arrays provide multidimensi
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. Ind
should be integers (with negative integers indicating offsets from the end of the dimension, as for other P
sequences), and slices can have, as explained above, one or two :’s separating integer arguments. Thes
and slies must be separated by commas, and correspond to sequential dimensions starting from the
(first) index on. Thusa[3] means index 3 along dimension 0.a[3,:,-4] means the slice of a along three
dimensions: index 3 along the first dimension, the entire range of indices along the second dimension, a
4th from the end index along the third dimension. If the array being indexed has more dimensions than ar
ified in the multidimensional slice, those dimensions are assumed to be sliced from beginning to end. T
a is a rank 3 array,

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidime
sional indexing, and it is relatively simple to write Python classes which support these operations. Se
the Python Reference manual for details.
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a[0] == a[0,:] == a[0,:,:]

Ellipses

A special slice element called Ellipses (and written... ) is used to refer to a variable number of slices fro
beginning to end along the current dimension. It is a shorthand for a set of such slices, specifically the n
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmo
lipses in an multidimensional slice is expanded, while the others are single dimensional slices from beg
to end.

Thus, ifa is a rank-6 array,

a[3,:,:,:,-1,:] == a[3,...,-1,:] == a[3,...,-1,...] .

NewAxis

There is another special symbol which can be used inside indexing operations to create new dimension
returned array. The reference NewAxis, used as one of the comma-separated slice elements, does no
the selection of the subset of the array being indexed, but changes the shape of the array returned by the
operation, so that an additional dimension (of length 1) is created, at the dimension position correspon
the location of NewAxis within the indexing sequence. Thus,a[:,3,NewAxis,-3] will perform the index-
ing of a corresponding to the slice[a:,3,-3] , but will also modify the shape of a so that the new shape oa
is (a.shape[0], a.shape[1], 1, a.shape[2]) . This operation is especially useful in conjunctio
with the broadcasting feature described next, as it replaces a lengthy but common operation with a sim
tation (in the example above, the same effect can be had with

reshape(a[:,3,-1], (a.shape[0], a.shape[1], 1, a.shape[2])).

Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the ru
exactly the same, and describe the slice of the array on the left hand side of the assignment operator w
the target of the assignment. The only point left to mention is the process of assigning from the source
right hand side of the assignment) to the target (on the left hand side).

If both source and target have the same shape, then the assignment is done element by element. The
of the target specifies the casting which can be applied in the case of a typecode mismatch between sou
target. If the typecode of the source is “lower” than that of the target, then an ’up-cast’ is performed and n
in precision results. If the typecode of the source is “higher” than that of the target, then a downcast i
formed, which may lose precision (as discussed in the description of the array call, these casts are tru
casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the content
source over the range of the target. This broadcasting occurs for all dimensions where the source has dim
1 or 0 (i.e., is absent). If there exists a dimension for which the two arrays have differing lengths, and the
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raise
fying the user that the arrays are not aligned.

Axis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering sch
the same as that used by indexing in Python: the first (leftmost) axis is axis 0, the second axis is axis 1, et
-1 refers to the last axis, -2 refers to the next-to-last axis, etc.
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Textual representations of arrays

The algorithm used to display arrays as text strings is defined in the file ArrayPrinter.py, which defines a
tion array2string (imported into Numeric’s namespace) which offers considerable control over how arra
output. The range of options to the array2string function will be described first, followed by a descriptio
which options are used by default bystr  andrepr .

array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator=' ', array_output=0):

Thearray2string function takes an array and returns a textual representation of it. Each dimension
dicated by a pair of matching square brackets ([] ), within which each subset of the array is output. The orie
tation of the dimensions is as follows: the last (rightmost) dimension is always horizontal, so that the fre
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed vertically if p
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
>>> a.shape = (2,10)
>>> print array2string(a)
[[ 0  1  2  3  4  5  6  7  8  9 10 11]
 [12 13 14 15 16 17 18 19 20 21 22 23]]
>>> a.shape = (2,3,4)
>>> print array2string(a)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]

Themax_line_width argument specifies the maximum number of characters which the array2string
tine uses in a single line. If it is set toNone, then the value of thesys.output_line_width attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.

>>> print array2string(x)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
      26 27 28 29]
>>> sys.output_line_width = 30
>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9
      10 11 12 13 14 15 16 17
      18 19 20 21 22 23 24 25
      26 27 28 29]

Theprecision argument specifies the number of digits after the decimal point which are used. If a valu
None is used, the value of thesys.float_output_precision is looked up. If it exists, it is used. If not,
the default of 8 digits is used.

>>> x = array((10.11111111111123123111, pi))
>>> print array2string(x)
[ 10.11111111   3.14159265]
>>> print array2string(x, precision=3)
[ 10.111   3.142]
>>> sys.float_output_precision = 2
>>> print array2string(x)
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Thesuppress_small argument specifies whether small values should be suppressed (and output as
value ofNone is used, the value of thesys.float_output_suppress_small is looked up. If it exists,
it is used (all that matters is whether it evaluates to true or false). If not, the default of 0 (false) is used. Thi
able also interacts with the precision parameters, as it can be used to suppress the use of exponential

>>> print x
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x)
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x, suppress_small=1)
[ 0.00001     3.14159265]
>>> print array2string(x, precision=3)
[ 1.000e-005  3.142e+000]
>>> print array2string(x, precision=3, suppress_small=1)
[ 0.     3.142]

Theseparator argument is used to specify what character string should be placed between two num
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)
[   0  100  200  300  400  500  600  700  800  900 100]
>>> print array2string(x, separator = ', ')
[   0,  100,  200,  300,  400,  500,  600,  700,  800,  900, 100]

Finally, the last attribute, array_output, specifies whether to prepend the string "array(” and append eith
string ")" or ", ’X’)" whereX is a typecode for non-default typecodes (in other words, the typecode will only
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes asso
with floating point numbers, complex numbers and integers respectively). The array() is so that an eval
returned string will return an array object (provided a comma separator is also used).

>>> array2string(arange(3))
[0 1 2]
>>> eval(array2string(arange(3), array_output=1))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "<string>", line 1
    array([0 1 2])
             ^
SyntaxError: invalid syntax
>>> type(eval(array2string(arange(3), array_output=1, separator=',')))
<type 'array'>
>>> array2string(arange(3), array_output=1)
'array([0, 1, 2])'
>>> array2string(zeros((3,), 'i') + arange(3), array_output=1)
"array([0, 1, 2],'i')"

Thestr andrepr operations on arrays callarray2string with themax_line_width , precision
andsuppress_small all set to None, meaning that the defaults are used, but that modifying the attrib
in thesys module will affect array printing. str uses the default separator and does not use the array(
while repr uses a comma as a separator and does use the array(...) text.

>>> x = arange(3)
>>> print x
[0 1 2]
>>> str(x)
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'[0 1 2]'
>>> repr(x)
'array([0, 1, 2])' # note the array(...) and ,’s
>>> x = arange(0,.01,.001)
>>> print x
[ 0. 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009]
>>> import sys
>>> sys.float_output_precision = 2
>>> print x
[ 0.    0.    0.    0.    0.    0.01  0.01  0.01  0.01  0.01]

Comparisons

Currently, comparisons of multiarray objects results in exceptions, since reasonable results (arrays of bo
are not doable without non-trivial changes to the Python core. These changes are planned for Python
which point array object comparisons will be updated.

>>> print x, y
[0 1 2] [3 4 5]
>>> print x < y
Traceback (innermost last):
  File "<stdin>", line 1, in ?
TypeError: Comparison of multiarray objects is not implemented.

Pickling and Unpickling -- storing arrays on disk

HowTo

byte-order independence

Dealing with floating point exceptions

Dealing with floating point exceptions

fpectl, NaNs, etc.
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12. Writing a C extension to NumPy

Introduction

There are two applications that require using the NumPy array type in C extension modules:

• Access to numerical libraries: Extension modules can be used to make numerical libraries written in
languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type has
vantage of using the same data layout as arrays in C and Fortran.

• Mixed-language numerical code: In most numerical applications, only a small part of the total code is
time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy a
are important for the interface between these two parts, because they provide equally simple access
contents from Python and from C.

This document is a tutorial for using NumPy arrays in C extensions.

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the header filearrayobject.h ,
after the header file Python.h that is obligatory for all extension modules. The filearrayobject.h comes
with the NumPy distribution; depending on where it was installed on your system you might have to tell
compiler how to find it. In addition to includingarrayobject.h , the extension must call
import_array() in its initialization function, after the call toPy_InitModule() . This call makes sure
that the module which implements the array type has been imported, and initializes a pointer array th
which the NumPy functions are called. If you forget this call, your extension module will crash on the firs
to a NumPy function! If you will be manipulating ufunc objects, you should also include the fileufuncob-
ject.h , also available as part of the NumPy distribution in theInclude  directory.

All of the rules related to writing extension modules for Python apply. The reader unfamiliar with these
is encouraged to read the standard text on the topic, “Extending and Embedding the Python Interpreter,
able as part of the standard Python documentation distribution.

Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structurePyArrayObject , which is an extension of the structurePyOb-
ject . Pointers toPyArrayObject can thus safely be cast toPyObject pointers, whereas the inverse i
safe only if the object is known to be an array. The type structure corresponding to array obje
PyArray_Type . The structurePyArrayObject has four elements that are needed in order to access the
ray's data from C code:

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array ofnd integers, describing the number of elements along each dimension.
sizes are in the conventional order, so that for any arraya,
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd]) .
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int *strides

A pointer to an array ofnd integers, describing the address offset between two successive data
ments along each dimension. Note that strides can also be negative! Each number gives the n
of bytes to add to a pointer to get to the next element in that dimension. For example, ifmyptr cur-
rently points to element of a rank-5 array at indices1,0,5,3,2 and you want it to point to element
1,0,5,4,2 then you should addstrides[3] to the pointer:myptr += strides[3] . This
works even if (and is especially useful when) the array is not contiguous in memory.

char *data

A pointer to the first data element of the array.

The address of a data element can be calculated from its indices and the data and strides pointers. For e
element[i, j] of a two-dimensional array has the addressdata + i*array->strides[0] + j*ar-
ray->strides[1] . Note that the stride offsets are in bytes, not in storage units of the array elements. T
fore address calculations must be made in bytes as well, starting from the data pointer, which is always
pointer. To access the element, the result of the address calculation must be cast to a pointer of the r
type. The advantage of this arrangement is that purely structural array operations (indexing, extraction
arrays, etc.) do not have to know the type of the array elements.

Element data types

The type of the array elements is indicated by a type number, whose possible values are defined as con
arrayobject.h , as given in Table 3.

The type number is stored inarray->descr->type_num . Note that the names of the element type co
stants refer to the C data types, not the Python data types. A Pythonint is equivalent to a Clong , and a Py-
thon float corresponds to a Cdouble . Many of the element types listed above do not have correspond
Python scalar types (e.g.PyArray_INT ).

Table 4: C constants corresponding to storage types

Constant element data type

PyArray_CHAR char

PyArray_UBYTE unsigned char

PyArray_SBYTE signed char

PyArray_SHORT short

PyArray_INT int

PyArray_LONG long

PyArray_FLOAT float

PyArray_DOUBLE double

PyArray_CFLOAT float[2]

PyArray_CDOUBLE double[2]

PyArray_OBJECT PyObject *
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Contiguous arrays

An important special case of a NumPy array is the contiguous array. This is an array whose elements oc
single contiguous block of memory and have the same order as a standard C array. In a contiguous ar
value ofarray->strides[i] is equal to the size of a single array element times the product ofarray-
>dimensions[j] for j up to i-1 . Arrays that are created from scratch are always contiguous; non-con
uous arrays are the result of indexing and other structural array operations. The main advantage of con
arrays is easier handling in C; the pointerarray->data is cast to the required type and then used like a C
ray, without any reference to the stride values. This is particularly important when interfacing to existing l
ies in C or Fortran, which typically require this standard data layout. A function that requires input arrays
contiguous must call the conversion functionPyArray_ContiguousFromObject() , described in the
section “Accepting input data from any sequence type".

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalars and
dimensional arrays in the same way. However, library routines for general use should not return zero-d
sional arrays, because most Python code is not prepared to handle them. Moreover, zero-dimensional ar
create confusion because they behave like ordinary Python scalars in many circumstances but are of a d
type. A comparison between a Python scalar and a zero-dimensional array will always fail, for example
if the values are the same. NumPy provides a conversion function from zero-dimensional arrays to Pyth
lars, which is described in the section “Returning arrays from C functions".

A simple example

The following function calculates the sum of the diagonal elements of a two-dimensional array, verifying
the array is in fact two-dimensional and of typePyArray_DOUBLE .

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O!",
                        &PyArray_Type, &array))
    return NULL;
  if (array->nd != 2 || array->descr->type_num != PyArray_DOUBLE) {
    PyErr_SetString(PyExc_ValueError,
                    "array must be two-dimensional and of type float");
    return NULL;
  }

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

  return PyFloat_FromDouble(sum);
}
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Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstances
sufficient, but often, especially in the case of library routines for general use, it would be preferable to a
input data from any sequence (lists, tuples, etc.) and to convert the element type to double automatically
possible. NumPy provides a function that accepts arbitrary sequence objects as input and returns an eq
array of specified type (this is in fact exactly what the array constructorNumeric.array() does in Python
code):

PyObject *
PyArray_ContiguousFromObject(PyObject *object,
                             int type_num,
                             int min_dimensions,
                             int max_dimensions);

The first argument, object, is the sequence object from which the data is taken. The second argu
type_num, specifies the array element type (see the table in the section “Element data types". If you w
function to the select the ``smallest'' type that is sufficient to store the data, you can pass the specia
PyArray_NOTYPE . The remaining two arguments let you specify the number of dimensions of the resu
array, which is guaranteed to be no smaller thanmin_dimensions and no larger thanmax_dimensions ,
except for the casemax_dimensions == 0 , which means that no upper limit is imposed.

If the input data is not compatible with the type or dimension restrictions, an exception is raised. Since the
returned byPyArray_ContiguousFromObject() is guaranteed to be contiguous, this function also pr
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already
tiguous array of the specified type, it is passed on directly; there is thus no performance or memory pena
calling the conversion function when it is not required. Using this function, the example from the last se
becomes

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyObject *input;
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O", &input))
    return NULL;
  array = (PyArrayObject *)
          PyArray_ContiguousFromObject(input, PyArray_DOUBLE, 2, 2);
  if (array == NULL)
    return NULL;

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

  Py_DECREF(array);
  return PyFloat_FromDouble(sum);
}
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Note that no explicit error checking is necessary in this version, and that the array reference that is retur
PyArray_ContiguousFromObject()  must be destroyed by callingPy_DECREF() .

Creating NumPy arrays

NumPy arrays can be created by calling the function

PyObject *
PyArray_FromDims(int n_dimensions,
                 int dimensions[n_dimensions],
                 int type_num);

The first argument specifies the number of dimensions, the second one the length of each dimension,
third one the element data type (see the table in the section “Element data types". The array that is retu
contiguous, but the contents of its data space are undefined. There is a second function which permits
ation of an array object that uses a given memory block for its data space:

PyObject *
PyArray_FromDimsAndData(int n_dimensions,
                        int dimensions[n_dimensions]
                        int item_type
                        char *data);

The first three arguments are the same as forPyArray_FromDims() . The fourth argument is a pointer to the
memory block that is to be used as the array's data space. It is the caller's responsibility to ensure that th
ory block is not freed before the array object is destroyed. With few exceptions (such as the creation of
porary array object to which no reference is passed to other functions), this means that the memory blo
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function
useful in special cases, for example for providing Python access to arrays in Fortran common blocks.

Returning arrays from C functions

Array objects can of course be passed out of a C function just like any other object. However, as has bee
tioned before, care should be taken not to return zero-dimensional arrays unless the receiver is known to
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate th
NumPy provides a special function

PyObject *
PyArray_Return(PyArrayObject *array);

which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar o
case of a zero-dimensional array.

A less simple example

The function shown below performs a matrix-vector multiplication by calling theBLAS functionDGEMV. It
takes three arguments: a scalar prefactor, the matrix (a two-dimensional array), and the vector (a one-
sional array). The return value is a one-dimensional array. The input values are checked for consistency
dition to providing an illustration of the functions explained above, this example also demonstrates h
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machin
cific peculiarities. In this example, two assumptions have been made:

• The Fortran functionDGEMVmust be called from C asdgemv_. Many Fortran compilers apply this rule,
but the C name could also bedgemv or DGEMV (or in principle anything else; there is no fixed standard

• Fortraninteger s are equivalent to Clong s, and Fortran double precision numbers are equivalent
C doubles. This works for all systems that I have personally used, but again there is no standard.
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Also note that the libraries that this function must be linked to are system-dependent; on my Linux syste
ing gcc /g77 ), the libraries areblas  andf2c . So here is the code:

static PyObject *
matrix_vector(PyObject *self, PyObject *args)
{
  PyObject *input1, *input2;
  PyArrayObject *matrix, *vector, *result;
  int dimensions[1];
  double factor[1];
  double real_zero[1] = {0.};
  long int_one[1] = {1};
  long dim0[1], dim1[1];

  extern dgemv_(char *trans, long *m, long *n,
                double *alpha, double *a, long  *lda,
                double *x, long *incx,
                double *beta, double *Y, long *incy);

  if (!PyArg_ParseTuple(args, "dOO", factor, &input1, &input2))
    return NULL;
  matrix = (PyArrayObject *)
            PyArray_ContiguousFromObject(input1, PyArray_DOUBLE, 2, 2);
  if (matrix == NULL)
    return NULL;
  vector = (PyArrayObject *)
            PyArray_ContiguousFromObject(input2, PyArray_DOUBLE, 1, 1);
  if (vector == NULL)
    return NULL;
  if (matrix->dimensions[1] != vector->dimensions[0]) {
    PyErr_SetString(PyExc_ValueError,
                    "array dimensions are not compatible");
    return NULL;
  }

  dimensions[0] = matrix->dimensions[0];
  result = (PyArrayObject *)PyArray_FromDims(1, dimensions,
PyArray_DOUBLE);
  if (result == NULL)
    return NULL;

  dim0[0] = (long)matrix->dimensions[0];
  dim1[0] = (long)matrix->dimensions[1];
  dgemv_("T", dim1, dim0, factor, (double *)matrix->data, dim1,
         (double *)vector->data, int_one,
         real_zero, (double *)result->data, int_one);

  return PyArray_Return(result);
}

Note thatPyArray_Return() is not really necessary in this case, since we know that the array being
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance
practically zero.
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13. C API Reference

This chapter describes the API for ArrayObjects and Ufuncs.

ArrayObject C Structure and API

Structures

The PyArrayObject is, like all Python types, a kind of PyObject. Its definition is:

typedef struct {
PyObject_HEAD
char *data;
int nd;
int *dimensions, *strides;
PyObject *base;
PyArray_Descr *descr;
int flags;

} PyArrayObject;

WherePyObject_HEAD  is the standardPyObject  header, and the other fields are:

char *data

A pointer to the first data element of the array.

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array ofnd integers, describing the number of elements along each dimension.
sizes are in the conventional order, so that for any arraya,
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd]) .

int *strides

A pointer to an array ofnd integers, describing the address offset between two successive data
ments along each dimension. Note that strides can also be negative! Each number gives the n
of bytes to add to a pointer to get to the next element in that dimension. For example, ifmyptr cur-
rently points to an element in a rank-5 array at indices1,0,5,3,2 and you want it to point to ele-
ment1,0,5,4,2 then you should addstrides[3] to the pointer:myptr += strides[3] .
This works even if (and is especially useful when) the array is not contiguous in memory.

PyObject *base

Used internally in arrays that are created as slices of other arrays. Since the new array shares
area with the old one, the original array’s reference count is incremented. When the subarray
bage collected, the base array’s reference count is decremented.

PyArray_Desc *descr

See below.
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int flags

A bitfield indicating whether the array:

• is contiguous (rightmost bit)

• owns the dimensions (next bit to the left) (???)

• owns the strides (next bit to the left) (???)

• owns the data area

The ownership bits are used by NumPy internally to manage memory allocation and dealloc
They can be false if the array is the result of e.g. a slicing operation on an existing array.

PyArrayDescr *descr

a pointer to a data structure that describes the array and has some handy functions. The slots
structure are:

PyArray_VectorUnaryFunc *cast[]

an array of function pointers which will cast this arraytype to each of the other data types.

PyArray_GetItemFunc *getitem

a pointer to a function which returns a PyObject of the appropriate type given a (char) poin
the data to get.

PyArray_SetItemFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to conv
Python Ojbect given as the first argument.

int type_num

A number indicating the datatype of the array (i.e. aPyArray_XXXX )

char *one

A pointer to a representation of one for this datatype.

char *zero

A pointer to a representation of zero for this datatype (especially useful for PyArray_OBJ
types)

char type

A character representing the array’s typecode (one of'cb1silfdFDO' ).

The ArrayObject API

In the followingop is a pointer to aPyObject andarp is a pointer to aPyArrayObject . Routines which
returnPyObject * returnNULL to indicate failure (and follow the standard exception-setting mechanis
Functions followed by a dagger (†) are functions which return PyObjects whose reference count has bee
creased by one (new references). See the Python Extending/Embedding manual for details on referenc
management.

int PyArray_Check(op)

returns1 if op  is aPyArrayObject  or 0 if it is not.

int PyArray_SetNumericOps(d)

internally used byumath  to setup some of its functions.

int PyArray_INCREF(op)

Used for arrays of python objects (PyArray_OBJECT ) to increment the reference count of ever
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python object in the arrayop . User code does not typically need to call this.

int PyArray_XDECREF(op)

Used for arrays of python objects (PyArray_OBJECT ) to decrement the reference count of eve
python object in the arrayop .

PyArrayError

Exports the array error object. I don't know its use.

void PyArray_SetStringFunction(op,repr)

Sets the function for representation of all arrays toop which should be a callablePyObject . If
repr is non-zero then the function corresponding to therepr string representationis set, otherwise
that for thestr  string representation is set.

PyArray_Descr PyArray_DescrFromType(type)

returns aPyArray_Descr structure for the datatype given bytype . The input type can be either
the enumerated types (PyArray_Float , etc.) or a character ('cb1silfdFDO' ).

PyObject *PyArray_Cast(arp, type) †

returns a pointer to aPyArrayObject that isarp cast to the array type specified bytype . It is
just a wrapper around the function defined inarp->descr->cast that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray_CanCastSafely(fromtype,totype)

returns1 if the array with typefromtype can be cast to an array of typetotype without loss of
accuracy, otherwise it returns0. It allows conversion oflong s to int s which is not safe on 64-bit
machines. The inputsfromtype and totype are the enumerated array types (e.
PyArray_SBYTE ).

int PyArray_ObjectType(op, min_type)

returns the typecode to use for a call to an array creation function given an input python seq
objectop and a minimum type value,min_type . It looks at the datatypes used inop , compares
this with min_type and returns a consistent type value that can be used to store all of the da
op  and satisfying at the minimum the precision ofmin_type .

int _PyArray_multiply_list(list,n)

is a utility routine to multiply an array ofn integers pointed to bylist .

int PyArray_Size(op)

is a useful function for returning the total number of elements inop if op is aPyArrayObject ,
0 otherwise.

PyObject *PyArray_FromDims(nd,dims,type) †

returns a pointer to a newly constructedPyArrayObject (returned as aPyObject ) given the
number of dimensions innd , an arraydims of nd integers specifying the size of the array, and th
enumerated type of the array intype .

PyObject *PyArray_FromDimsAndData(nd,dims,type,data) †

This function should only be used to access global data that will never be freed (like FORT
common blocks). It builds aPyArrayObject in the same way asPyArray_FromDims but in-
stead of allocating new memory for the array elements it uses the bytes pointed to bydata (a
char * ).
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PyObject *PyArray_ContiguousFromObject(op,type,min_dim,max_dim) †

returns a contiguous array of typetype from the (possibly nested) sequence objectop . If op is a
contiguousPyArrayObject then a reference is made; ifop is a non-contiguous then a copy is
performed to get a contiguous array; ifop is not aPyArrayObject then a newPyArrayObject
is created from the sequence object and returned. The two parametersmin_dim andmax_dim let
you specify the expected rank of the input sequence. An error will result if the resultingPyArray-
Object does not have rank bounded by these limits. To specify an exact rank requiremen
min_dim = max_dim . To allow for an arbitrary number of dimensions specifymin_dim =
max_dim = 0 .

PyObject *PyArray_CopyFromObject(op,type,min_dim,max_dim) †

returns a contiguous array similar toPyArray_ContiguousFromObject except that a copy of
op  is performed even if a shared array could have been used.

PyObject *PyArray_FromObject(op,type,min_dim,max_dim) †

returns a reference toop if op is aPyArrayObject and a newly constructedPyArrayObject
if op is any other (nested) sequence object. You must use strides to access the elements of th
sibly discontiguous array correctly.

PyObject *PyArray_Return(apr)

returns a pointer toapr with some extra code to check for errors and be sure that zero-dimensi
arrays are returned as scalars. If a scalar is returned instead ofapr thenapr ’s reference count is
decremented, so it is safe to use this function in the form :
return PyArray_Return (apr);

PyObject *PyArray_Reshape(apr,op) †

returns a reference toapr with a new shape specified byop which must be a one dimensional se
quence object. One dimension may be specified as unknown by giving a value less than zero,
ue will be calculated from the size ofapr .

PyObject *PyArray_Copy(apr) †

returns an element-for-element copy ofapr

PyObject *PyArray_Take(a,indices,axis) †

the equivalent oftake(a, indices, axis) which is a method defined in the Numeric modul
that just calls this function.

int PyArray_As1D(*op, char **ptr, int *n, int type)

This function replacesop with a pointer to a contiguous 1-DPyArrayObject (using
PyArray_ContiguousFromObject ) and sets as output parameters a pointer to the first byte
the array inptr and the number of elements in the array inn. It returns-1 on failure (op is not a
1-D array or sequence object that can be cast to typetype ) and0 on success.

int PyArray_As2D(*op, char **ptr, int *m, int *n, int type)

This function replacesop with a pointer to a contiguous 2-DPyArrayObject (using
PyArray_ContiguousFromObject ). It returns -1 on failure (op is not a 2-D array or neste
sequence object that can be cast to type type) and 0 on success. It also sets as output param
array of pointers inptr which can be used to access the data as a 2-D array so that ptr[i][j] is a po
er to the first byte of element [i,j] in the array;mandn are set to respectively the number of rows an
columns of the array.

int PyArray_Free(op,ptr)

is supposed to free the allocated data structures and decrease object references when
PyArray_As1D  andPyArray_As2D  but there are suspicions that this code is buggy.
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Number formats, overflow issues, NaN/Inf representations, fpectl module, how to deal with ’missing’ va

UfuncObject C Structure and API

C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, et
implemented using this object. The hooks are all in place to make it very easy to add any function that tak
or two (double) arguments and returns a single (double) argument. It is not difficult to add support routi
order to handle arbitrary functions whose total number of input/output arguments is less than some ma
number (currently 10).

typedef struct {
PyObject_HEAD
int *ranks, *canonical_ranks;
int nin, nout, nargs;
int identity;
PyUFuncGenericFunction *functions;
void **data;
int ntypes, nranks, attributes;
char *name, *types;
int check_return;

} PyUFuncObject;

where:

int *ranks

unused.

int *canonical_ranks

unused

int nin

the number of input arguments to function

int nout

the number of output arguments for the function

int nargs

the total number of arguments= nin + nout

int identity

a flag telling whether the identity for this function is0 or 1 for use in thereduce method for a zero
size array input.

PyUFuncGenericFunction *functions

an array of functions that perform the innermost looping over the input and output arrays (I think
is over a single axis). These functions call the underlying math function with the data from the
arguments along this axis and return the outputs of the function into the correct place in the o
arrayobject (with appropriate typecasting). These functions are called by the general looping
There is one function for each of the supported datatypes. Function pointers to do this loopin
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types'f' , 'd' , 'F' , and'D' , are provided in the C-API for functions that take one or two arg
ments and return one argument. EachPyUFuncGenericFunction returnsvoid and has the fol-
lowing argument list (in order):

args

an array of pointers to the data for each of the input and output arguments with input argum
first and output arguments immediately following. Each element ofargs is a char * to the
first byte in the corresponding input or output array.

dimensions

a pointer to a singleint  giving the size of the axis being looped over.

steps

an array ofint s giving the number of bytes to skip to go to the next element of the array for
loop. There is an entry in the array for each of the input and output arguments, with input a
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in this inner loop. This
void * and must be recast to the required type before actually calling the function e.g.
pointer to a function that takes twodouble s and returns adouble ). If you need to write your
ownPyUFuncGenericFunction , it is most readable to also have atypedef statement that
defines your specific underlying function type so the function pointer cast is somewhat read

void **data

a pointer to an array of functions (each cast tovoid * ) that compute the actual mathematical func
tion for each set of inputs and outputs. There should be a function in the array for each supporte
type. This function will be called from thePyUFuncGenericFunction for the corresponding
type.

int ntypes

the number of datatypes supported by this function. For datatypes that are not directly suppo
coercion will be performed if possible safely, otherwise an error will be reported.

int nranks

unused.

int attributes

unused.

char *name

the name of this function (not the same as the dictionary label for this function object, but it is us
set to the same string). It is printed when__repr__ is called for this object, defaults to"?" if set
to NULL.

char *types

an array of supported types for this function object. I'm not sure why but each supported dat
(PyArray_FLOAT , etc.) is entered as many times as there are arguments for this function. (nargs )

int check_return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that ra
arrays will be returned as python scalars. Also, if non-zero, then any math error that sets theerrno
global variable will cause an appropriate Python exception to be raised.
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UfuncObject C API

There are currently 15 pointers in the C-API array for the ufuncobject which is loaded byimport_ufunc() .
The macros implemented by this API, available by including the fileufuncobject.h ,' are given below. The
only function normally called by user code is the ufuncobject creation funct
PyUFunc_FromFuncAndData . Some of the other functions can be used as elements of an array to be p
to this creation function.

int PyUFunc_Check(op)

returns1 if op is a ufunc object otherwise returns0.

PyObject *PyUFunc_FromFuncAndData(functions, data, types, ntypes, nin,
nout, identity, name, check_return)

returns the ufunc object given its parameters. This is the most important function call. It require
fining three arrays to be passed as parameters:functions , data , andtypes . The arguments to
be passed are:

functions

an array of functions of typePyUFuncGenericFunction , there should be one function for
each supported datatype. The functions should be in order so that datatypes listed toward
ginning of the array could be cast as datatypes listed toward the end.

data

an array of pointers to void* the same size as the functions array and in the same datatype
Each element of this array is the actual underlying math function (recast to avoid * ) that will
be called from one of thePyUFuncGenericFunctions . It will operate on each element of
the input NumPyarrayobject (s) and return its element-by-element result in the outp
NumPy arrayobject(s). There is one function call for each datatype supported, (though func
can be repeated if you handle the typecasting appropriately with thePyUFuncGenericFunc-
tion ).

types

an array of PyArray_Type s. The size of this array should be (nin+nout ) times the size of
one of the previous two arrays. There should benin+nout copies ofPyArray_XXXXX for
each datatype explicitly supported. (Remember datatypes not explicitly supported will still b
cepted as input arguments to the ufunc if they can be cast safely to a supported type.)

ntypes

the number of supported types for this ufunc.

nin

the number of input arguments

nout

the number of output arguments

identity

PyUFunc_One, PyUFunc_Zero , orPyUFunc_None , depending on the desired value for th
identity. This is only relevant for functions that take two input arguments and return one ou
argument. If not relevant usePyUFunc_None .

name

the name of thisufuncobject  for use in the__repr__  method.

check_return

the desired value for check_return for this ufuncobject.
81



his is

uence

The
int PyUFunc_GenericFunction(self,args,mps)

allows calling the ufunc from user C routine. It returns 0 on success and -1 on any failures. T
the core of what happens when a ufunc is called from Python. Its arguments are:

self

the ufunc object to be called. INPUT

args

a Python tuple object containing the input arguments to the ufunc (should be Python seq
objects). INPUT

mps

an array of pointers to PyArrayObjects for the input and output arguments to this function.
input NumPy arrays are elementsmps[0]...mps[self->nin-1] . The output NumPy ar-
rays are elementsmps[self->nin]...mps[self->nargs-1] . OUTPUT

The following are all functions of typePyUFuncGenericFunction and are suitable for use in thefunc-
tions  argument passed toPyUFunc_FromFuncAndData :

PyUFunc_f_f_As_d_d

for a unary function that takes adouble input and returns adouble output as a ufunc that takes
PyArray_FLOAT  input and returnsPyArray_FLOAT  output.

PyUFunc_d_d

for a using a unary function that takes adouble input and returns adouble output as a ufunc that
takesPyArray_DOUBLE  input and returnsPyArray_DOUBLE  output.

PyUFunc_F_F_As_D_D

for a unary function that takes aPy_complex input and returns aPy_complex output as a ufunc
that takesPyArray_CFLOAT  input and returnsPyArray_CFLOAT  output.

PyUFunc_D_D

for a unary function that takes aPy_complex input and returns aPy_complex output as a ufunc
that takesPyArray_CFLOAT  input and returnsPyArray_CFLOAT  output.

PyUFunc_O_O

for a unary function that takes aPy_Object * input and returns aPy_Object * output as a
ufunc that takesPyArray_OBJECT  input and returnsPyArray_OBJECT  output

PyUFunc_ff_f_As_dd_d

for a binary function that takes twodouble inputs and returns onedouble output as a ufunc that
takesPyArray_FLOAT  input and returnsPyArray_FLOAT  output.

PyUFunc_dd_d

for a binary function that takes twodouble inputs and returns onedouble output as a ufunc that
takesPyArray_DOUBLE  input and returnsPyArray_DOUBLE  output.

PyUFunc_FF_F_As_DD_D

for a binary function that takes twoPy_complex inputs and returns aPy_complex output as a
ufunc that takesPyArray_CFLOAT  input and returnsPyArray_CFLOAT  output.

PyUFunc_DD_D

for a binary function that takes twoPy_complex inputs and returns aPy_complex output as a
ufunc that takesPyArray_CFLOAT  input and returnsPyArray_CFLOAT  output
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PyUFunc_OO_O

for a unary function that takes twoPy_Object * input and returns aPy_Object * output as
a ufunc that takesPyArray_OBJECT  input and returnsPyArray_OBJECT  output

PyUFunc_O_O_method

for a unary function that takes aPy_Object * input and returns aPy_Object * output and is
pointed to by a Python method as a ufunc that takes PyArray_OBJECT input and re
PyArray_OBJECT output

PyArrayMap

an exported API that was apparently considered but never implemented probably because th
tionality is already available with Python'smap function.
83



to the
arrays

t
n
ory

mes

n

of
call

lex
14. FFT Reference

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which is a powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface. On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 86).

Python Interface

The Python user imports the FFT module, which provides a set of utility functions which provide access
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input
are to be used for the FFT’s.  These routines are:

fft(data, n=None, axis=-1)

Performs a n-point discrete Fourier transform of the array data.n defaults to the size of data. It is most efficien
for n a power of two. If n is larger thandata , thendata will be zero-padded to make up the difference. If
is smaller than data, thendata will be aliased to reduce its size. This also stores a cache of working mem
for different sizes of fft's, so you could theoretically run into memory problems if you call this too many ti
with too many different n's.

The FFT is performed along the axis indicated by theaxis argument, which defaults to be the last dimensio
of data .

The format of the returned array is a complex array of the same shape asdata , where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ...XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[ 84.   0.   0.   0.   4.   0.   0.   0.]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[ 84.   0.   0.   0.  -4.   0.   0.   0.]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[ 82.   0.   0.   0.  -2.   0.   0.   0.]

inverse_fft(data, n=None, axis=-1)

Will return then point inverse discrete Fourier transform ofdata . n defaults to the length ofdata . This is
most efficient forn a power of two. Ifn is larger thandata , thendata will be zero-padded to make up the
difference. Ifn is smaller thandata , thendata will be aliased to reduce its size. This also stores a cache
working memory for different sizes of FFT’s, so you could theoretically run into memory problems if you
this too many times with too many differentn's.

real_fft(data, n=None, axis=-1)

Will return then point discrete Fourier transform of the real valued arraydata . n defaults to the length ofda-
ta . This is most efficient forn a power of two. The returned array will be one half of the symmetric comp
transform of the real array.
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>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print real_fft(x)
[ -1.        +0.j          13.69406641+2.91076367j
       -0.91354546-0.40673664j  -0.80901699-0.58778525j
       -0.66913061-0.74314483j  -0.5       -0.8660254j
       -0.30901699-0.95105652j  -0.10452846-0.9945219j
        0.10452846-0.9945219j    0.30901699-0.95105652j
        0.5       -0.8660254j    0.66913061-0.74314483j
        0.80901699-0.58778525j   0.91354546-0.40673664j
        0.9781476 -0.20791169j   1.        +0.j        ]

inverse_real_fft(data, n=None, axis=-1)

Will return the inverse FFT of the real valued arraydata .

fft2d(data, s=None, axes=(-2,-1))

Will return the 2-dimensional FFT of the arraydata .

real_fft2d(data, s=None, axes=(-2,-1))

Will return the 2d FFT of the real valued arraydata .

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsibl
making sure that the arrays sent to the FFTPACK routines are in the right format (contiguous memory loc
right numerical storage format, etc). It provides interfaces to the following FFTPACK routines, which are
the names of the Python functions:

• cffti(i)

• cfftf(data, savearea)

• cfftb(data, savearea)

• rffti(i)

• rfftf(data, savearea)

• rfftb(data, savearea)

The routines which start withc expect arrays of complex numbers, the routines which start withr expect real
numbers only. The routines which end withi are the initalization functions, those which end withf perform
the forward FFTs and those which end withb perform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, a
turns a work array. The forward and backwards FFTs require two array arguments -- the first is the data
the second is the work array returned by the initialization function. They return arrays corresponding to t
efficients of the FFT, with the first element in the returned array corresponding to the DC component, th
ond one to the first fundamental, etc.The length of the returned array is 1 + half the length of the input array in
the case of real FFTs, and the same size as the input array in the case of complex data.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = rffti(30)
>>> f = rfftf(x, w)
>>> f[0]
(-1+0j)
>>> f[1]
(13.6940664103+2.91076367145j)
>>> f[2]
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(-0.913545457643-0.406736643076j)

Compilation Notes

On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the ope
system, and the compilation procedure needs to be modified to force the fftpackmodule file to be linked a
those rather than the fftpacklite.c file which is shipped with NumPy.
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15. LinearAlgebra Reference

The LinearAlgebra.py module provides a simple interface to the low-level linear algebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
C library.

Python Interface

solve_linear_equations(a, b)

This function solves a system of linear equations with a square non-singular matrix a and a right-hand-sid
tor b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional arr
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular mat
calling solve_linear_equations(a, b) with a suitable b.

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To
floating point precision, it should always be true that:

matrixmultiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
[[  1.   1.   2.   3.   4.]
 [  5.   7.   7.   8.   9.]
 [ 10.  11.  13.  13.  14.]
 [ 15.  16.  17.  19.  19.]
 [ 20.  21.  22.  23.  25.]]
>>> inv_a = inverse(a)
>>> print inv_a
[[ 0.20634921 -0.52380952 -0.25396825  0.01587302  0.28571429]
 [-0.5026455   0.63492063 -0.22751323 -0.08994709  0.04761905]
 [-0.21164021 -0.20634921  0.7989418  -0.1957672  -0.19047619]
 [ 0.07936508 -0.04761905 -0.17460317  0.6984127  -0.42857143]
 [ 0.37037037  0.11111111 -0.14814815 -0.40740741  0.33333333]]
>>> # Verify the inverse by printing the largest absolute element
... # of a * a^{-1} - identity(5)
... print "Inversion error:", \
... maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a)

This function returns the eigenvalues of the square matrix a.

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
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 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> print eigenvalues(a)
[ 1.  2.  3.  4.  1.]

eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (i.
quence of vectors).

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> evalues, evectors = eigenvectors(a)
>>> print evalues
[ 1.  2.  3.  4.  1.]
>>> print evectors
[[ 1.          0.          0.          0.          0.        ]
 [ 0.          1.          0.          0.          0.        ]
 [ 0.          0.          1.          0.          0.        ]
 [ 0.          0.          0.          1.          0.        ]
 [ 0.         -0.70710678  0.          0.          0.70710678]]

singular_value_decomposition(a, full_matrices=0)

This function returns three arrays V, S, and WT whose matrix product is the original matrix a. V and WT are
unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the sin
value matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned

generalized_inverse(a, rcond=1e-10)

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-inverse
matrix a. It has numerous applications related to linear equations and least-squares problems.

determinant(a)

This function returns the determinant of the square matrix a.

linear_least_squares(a, b, rcond=e-10)

This function returns the least-squares solution of an overdetermined system of linear equations. An o
third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by
lution), the rank of the matrix a, and the singular values of a in descending order.

C API

Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK library are preinstalled on the oper
system, and the compilation procedure needs to be modified to force the lapackmodule.c file to be
against those rather than the dlapack_lite.c and zlapack_lite.c files which are shipped with NumPy.
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16. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of a random-number generator.

Python Interface

seed(x=0, y=0)

Theseed() function takes two integers and sets the two seeds of the random number generator to those
If the default values of 0 are used for both x and y, then a seed is generated from the current time, prov
pseudo-random seed.

get_seed()

Theget_seed() function returns the two seeds used by the current random-number generator. It is mo
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

The random() function takes a shape, and returns an array of double-precision floatings point numbe
tween 0.0 and 1.0. Neither 0.0 nor 1.0 is ever returned by this function. If no argument is specified, the fu
returns a single floating point number (not an array). The array is filled from the generator following the ca
ical array organization (see discussion of the.flat  attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uniform() function returns an array of the specified shape and containing double-precision flo
point random numbers strictly between minimum and maximum. If no shape is specified, a single num
returned.

randint(minimum, maximum, shape=ReturnFloat)

The randint() function returns an array of the specified shape and containing random (standard) int
greater than or equal tominimum and strictly less thanmaximum. If no shape is specified, a single number
returned.

permutation(n)

Thepermutation() function returns an array of the integers between0 andn-1 , in an array of shape(n,) ,
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray import *
>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)
>>> print random()
0.0528018975065
>>> print random((5,2))
[[ 0.14833829  0.99031458]
89



 [ 0.7526806   0.09601787]
 [ 0.1895229   0.97674777]
 [ 0.46134511  0.25420982]
 [ 0.66132009  0.24864472]]
>>> print uniform(-1,1,(10,))
[ 0.72168852 -0.75374185 -0.73590945 0.50488248 -0.74462822 0.09293685
      -0.65898308  0.9718067  -0.03252475  0.99611011]
>>> print randint(0,100, (12,))
[28  5 96 19  1 32 69 40 56 69 53 44]
>>> print permutation(10)
[4 2 8 9 1 7 3 6 5 0]
>>> seed(897800491, 192000) # resetting the same seeds
>>> print random() # yields the same numbers
0.0528018975065

C API
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17. Glossary

This section will define a few of the technical words used throughout this document. [Please let us know
additions to this list which you feel would be helpful -- the authors]

typecode: a single character describing the format of the data stored in an array. For example, ’b’ re
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the eleme
its arguments, which can be lists, tuples, or arrays.  Many ufuncs are defined in theumath  module.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to sto
manipulate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users w
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specialized for li
algebra matrices. Most notably, it overrides the multiplication operator on Matrix instances to perform
trix multiplication instead of element-wise multiplication.

rank: the rank of an array is the number of dimensions it has, or the number of integers in its shape

shape: array objects have an attribute called shape which is necessarily a tuple. An array with an em
ple shape is treated like a scalar (it holds one element).
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