Computational Science and Engineering Seminar
McGill, Montréal
21 September, 2001

Object-Oriented Modelling and Simulation
of Physical Systems

Hans Vangheluwe

School of Computer Science
McGill University
Montréal, Canada
Presentation Overview

1. WEST and Modelica
2. A simple Modelica model
3. Object-Orientation (Software vs. Dynamical systems)
 - Encapsulation, objects, classes, ...
 - Types (Software vs. Dynamical systems)
 - Subtypes
 - Contravariance
 - Semantics of composition
 - Inheritance
 - Different levels of abstraction: state automata
4. Model Base development procedure

5. Non-causal modelling
 - Why?
 - Causality assignment
 - Sorting algebraic equations
 - Target: numerical simulator

6. Demo with Dynasim’s Dymola

7. The future: multi-formalism, multi-abstraction, meta-modelling
Based on …

- WEST (bioactivated sludge waste water treatment)
 www.hemmiswest.com

- Modelica (ESPRIT Basic Research, now Association)
 www.modelica.org

Aims:
- standard language for model exchange and re-use
- Support non-causal, hybrid, hierarchical modelling
- Semantics based on Hybrid DAEs
- Separate model from its numerical solution
- Library of basic models
Electrical example: Modelica vs. Matlab/Simulink
Electrical Types

type Time = Real (final quantity="Time", final unit="s");
type ElectricPotential = Real (final quantity="ElectricPotential", final unit="V");
type Voltage = ElectricPotential;
type ElectricCurrent = Real (final quantity="ElectricCurrent", final unit="A");
type Current = ElectricCurrent;
Electrical Pin Interface

connector PositivePin "Positive pin of an electric component"
 Voltage v "Potential at the pin";
 flow Current i "Current flowing into the pin";
end PositivePin;
Electrical Port

partial model OnePort

"Component with two electrical pins p and n and current i from p to n"

Voltage v "Voltage drop between the two pins (= p.v - n.v)"

Current i "Current flowing from pin p to pin n"

PositivePin p;
NegativePin n;
equation

v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
end OnePort;
Electrical Resistor

model Resistor "Ideal linear electrical resistor"
 extends OnePort;
 parameter Resistance R=1 "Resistance";
 equation
 R*i = v;
end Resistor;
model circuit
 Resistor R1 (R=10);
 Capacitor C (C=0.01);
 Resistor R2 (R=100);
 Inductor L (L=0.1);
 VsourceAC AC;
 Ground G;

equation
 connect (AC.p, R1.p);
 connect (R1.n, C.p);
 connect (C.n, AC.n);
 connect (R1.p, R2.p);
 connect (R2.n, L.p);
 connect (L.n, C.n);
 connect (AC.n, G.p);
end circuit;
Object-Oriented Software

- Started in simulation (Simula).
 Beware: Discrete Event Simulation!
- Encapsulation
- Interfaces
• Classes/Objects
 – attributes (data)
 – methods (behaviour)

Class Value:
 double value = 10
 double get_value()
 void set_value(double)

value1 = Value()
value2 = Value()
value1.set_value(value2.get_value())

• Inheritance: extending and specializing

• Composition
Dynamic behaviour is a function of time!

Variables are functions: \(\text{real} \ v \ \text{means} \)

\[
v : T \rightarrow \mathbb{R}
\]

Assume “lumped models” (for composition)

Assume formalism used: Hybrid DAEs
Signals vs. Values
Types in Software

typeof(a) = A

typeof(b) = B

- Type = set of values a variable may take
- Check type compatibility:
 \[a = b \text{ is allowed if } B <: A \]
- Determine type of operators:
 \[a + b \Rightarrow + : A \times B \rightarrow C \]
- Classification
Types in Physical Systems

- Quantities (Length, Temperature, ...) ⇒ dimensional analysis
- Units (m, V, ...) ⇒ re-write equations:
 \[l1[m] + l2[km] \rightarrow l1[m] + 1000 \times l2[m][m] \]
- Variables are not values but functions/signals!
Subtypes

- \(a + b \Rightarrow a' + b \) is allowed

 Condition: \(A' <: A \)

- \(b = f(a) \) and \(\text{typeof}(f') <: \text{typeof}(f) \Rightarrow b = f'(a) \) is allowed. Conditions:

 - \(f: A \rightarrow B \)

 - \(f': A' \rightarrow B' \)

 - \(B' <: B \)

 - \(A <: A' : \text{contravariance} \)
Semantics of Coupling/Composition: Block Diagram

non-causal

\[A \xrightarrow{y} B \]

causal

\[A \xrightarrow{y} B \]

Non-Causal:

\[A.y = B.x \]

Causal:

\[B.x := A.y \]
Semantics Coupling/Composition: Discrete Event

- schedule ARRsivals
- resolve collisions
Subtypes in Models of Dynamical Systems

- Don’t forget time-base and contravariant relationship!
- More general: sub-type = behaviour sub-space!
- How to reason about behaviour sub-spaces?
System under study: T, l controlled liquid
Detailed (continuous) view, ALG + ODE formalism

Inputs (discontinuous → hybrid model):

- Emptying, filling flow rate ϕ
- Rate of adding/removing heat W

Parameters:

- Cross-section surface of vessel A
- Specific heat of liquid c
- Density of liquid ρ

State variables:

- Temperature T
- Level of liquid l

Outputs (sensors):

- is_low
- is_high
- is_cold
- is_hot

\[
\begin{align*}
\frac{dT}{dt} &= \frac{1}{l} \left(\frac{W}{c \rho A} - \phi T \right) \\
\frac{dl}{dt} &= \phi \\
\text{is_low} &= (l < l_{\text{low}}) \\
\text{is_high} &= (l > l_{\text{high}}) \\
\text{is_cold} &= (T < T_{\text{cold}}) \\
\text{is_hot} &= (T > T_{\text{hot}})
\end{align*}
\]
High-level (discrete) view, FSA formalism

- (cold, full)
- (T_ib, full)
- (hot, full)
- (cold, l_ib)
- (T_ib, l_ib)
- (hot, l_ib)
- (cold, empty)
- (T_ib, empty)
- (hot, empty)

Transition rules:
- cool
- heat
Object-oriented re-use and causality

Object "resistor"

\[V1 - V2 = R \cdot I \]

\[I = \frac{V1 - V2}{R} \]

\[V2 = V1 - R \cdot I \]

\[V1 = V2 + R \cdot I \]

CSE Seminar, 21 September, McGill
hv@cs.mcgill.ca

OO Modelling and Simulation of Physical Systems
Non-causal model
(e.g., from physical conservation laws)

\[
\begin{align*}
 x + y + z &= 0 \quad \text{Equation 1} \\
 x + 3z + u^2 &= 0 \quad \text{Equation 2} \\
 z - u - 16 &= 0 \quad \text{Equation 3} \\
 u - 5 &= 0 \quad \text{Equation 4}
\end{align*}
\]
Causality assignment:
bipartite graph, maximum cardinality matching
Causality assignment: network flow

source

Equation 1 Equation 2 Equation 3 Equation 4

variable "x" variable "y" variable "z" variable "u"

sink

+ weights for "bad inverses"
Causality assigned

\[\begin{align*}
x + y + z &= 0 & \text{Equation 1} \\
x + 3z + u^2 &= 0 & \text{Equation 2} \\
z - u - 16 &= 0 & \text{Equation 3} \\
u - 5 &= 0 & \text{Equation 4}
\end{align*}\]

re-write in causal form

\[\begin{align*}
y &= -x - z \\
x &= -3z - u^2 \\
z &= u + 16 \\
u &= 5
\end{align*}\]
Set of Algebraic Eqns (no cyclic dependencies)

\[
\begin{align*}
 a &= b^2 + 3 \\
 b &= \sin(c \times e) \\
 c &= \sqrt{d - 4.5} \\
 d &= \pi/2 \\
 e &= u()
\end{align*}
\]

WRONG:

\[
\begin{align*}
 a &= b^2 + 3 = 3 \\
 b &= \sin(c \times e) = 0 \\
 c &= \sqrt{d - 4.5} = \text{error} \\
 d &= \pi/2 \\
 e &= u()
\end{align*}
\]
Sorting (no cyclic dependencies)
DFS, postorder numbering of dependency graph

A -> B
B -> C, D
C -> E, D
D
E
Sorting Result

\[
\begin{align*}
d &= \pi/2 \\
e &= u() \\
c &= \sqrt{d - 4.5} \\
b &= \sin(c \times e) \\
a &= b^2 + 3
\end{align*}
\]
Dependency Cycle (aka Algebraic Loop)

\[
\begin{align*}
 x &= y + 16 \\
 y &= -x - z \\
 z &= 5
\end{align*}
\]

Can never be sorted
due to a dependency cycle aka strong component
(every vertex in the component is reachable from every other)

\[x \rightarrow y \rightarrow x\]
May be solved implicitly

\[
\begin{align*}
 z &= 5 \\
 x - y &= -6 \\
 x + y &= -z
\end{align*}
\]

Implicit set of n equations in n unknowns.

- non-linear \rightarrow non-linear solver.
- linear \rightarrow numerical or symbolic solution.
Linear: may be solved symbolically (Cramer)

\[
x = \frac{-6 - z}{2} \quad ; \quad y = \frac{1 - 6}{2}
\]

\[
\begin{pmatrix}
0 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{pmatrix}
\]

\[
\begin{pmatrix}
z &=& 5 \\
x &=& \frac{-6 - z}{2} \\
y &=& \frac{6 - z}{2}
\end{pmatrix}
\]
Tarjan’s algorithm for Cycle Detection

\[\begin{align*}
 a &= b^2 + 3 \\
 b &= \sin(c \times e) \\
 c &= \sqrt{d - 4.5} \\
 d &= \pi/2 \\
 e &= a^2 + u()
\end{align*}\]
Algebraic Loop (Cycle) Detection

Diagram:

- Nodes: A, B, C, D, E
- Edges:
 - A <-> B (α1)
 - B <-> C (α3)
 - C <-> E (α2)
 - E <-> A (α3)
 - B <-> D (β1)
 - D <-> C (γ1)
 - A <-> E (5)
 - B <-> D (4)
 - C <-> A (2)
 - D <-> E (3)

Symbols:
- α, β, γ, etc., denote parameters or variables associated with the edges.
Algebraic Loop (Cycle) Detection Result

\[
\begin{aligned}
 d &= \pi/2 \\
 c &= \sqrt{d - 4.5} \\
 b &= \sin(c \times e) \\n a &= b^2 + 3 \\
 e &= a^2 + u()
\end{aligned}
\]

\[
\begin{aligned}
 d &= \pi/2 \\
 c &= \sqrt{d - 4.5} \\
 b &= -\sin(c \times e) \\n a &= -b^2 \\
 a^2 &= -e + u()
\end{aligned}
\]
Target: Model-solver architecture (Modelica - DSblock)
DSblock structure: readable vectors

#define _t_ IndepVarValues[0]
#define _x_out_ OutputVarValues[0]
#define _y_out_ OutputVarValues[1]
#define _x_ DerStateVarValues[0]
#define _y_ DerStateVarValues[1]
#define _D_x_ Derivatives[0]
#define _D_y_ Derivatives[1]
DSblock structure: symbolic information

CircleClass :: CircleClass(StringTypename name_arg)
{
 set_name(name_arg);
 set_description("Circle test.");
 set_class_name("CircleClass");

 set_no_indep_vars(1);
 set_indep_var(0, new MSLEIndepVarClass("t", "s"));

 set_no_output_vars(2);
 set_output_var(0, new MSLEOutputVarClass("x_out", ",", 0));
 set_output_var(1, new MSLEOutputVarClass("y_out", ",", 0));

 set_no_der_state_vars(2);
 set_der_state_var(0, new MSLEDerStateVarClass("x", ",", 0.1));
 set_der_state_var(1, new MSLEDerStateVarClass("y", ",", 0.1));
}
DSblock structure: the computation part

void CircleClass :: ComputeInitial(void)
{
}

void CircleClass :: ComputeState(void)
{
 _D_x_ = _y_; // Compute initial state
 _D_y_ = -_x_; // Compute initial state
}

void CircleClass :: ComputeTerminal(void)
{
}

void CircleClass :: ComputeOutput(void)
{
 _x_out_ = _x_; // Compute initial output
 _y_out_ = _y_; // Compute initial output
}
DSblock advantages

- Readable, without performance compromise
- Contains non-numerical information
- In compiled form: pluggable, difficult to reverse-engineer
Internal model representation

- Abstract Syntax Tree + Symbol Table

 \[b + 2 - (a + 3) = x \]

 \[= [+[b, +[2, -[a, 3]], x] \]

- From the AST + ST, a dependency graph can be built.
 1. for causality assignment,
 2. for equation re-write,
 3. for loop detection and sorting,
 4. for constant folding,
 5. for parameter expression lifting \((-K/g)\),
 6. for output equation selection
Constant Folding Graph Grammar

\[c_1 + c_2 \]

Rule 1.

\[
\begin{align*}
\text{OP: } + & \quad ::= \\
\text{CONST: } c_1 & \quad \text{CONST: } c_2 \\
\end{align*}
\]
Constant Folding Transformation

\[v = 2 + (3 + 4) \]
Canonical Representation

To encode *associativity* and *commutativity* of operators.

A representation of a mathematical object is *canonical* if two different representations always correspond to two different objects.

1. *n*-ary operators

2. *inv* for each operator

3. lexicographic ordering

\[
+ [2, \text{inv}[3], a, \text{inv}[b]] \\
+ [\text{inv}[1], a, \text{inv}[b]]
\]

\[
2 - 3 + a - b \Rightarrow -1 + a - b
\]

\[\longrightarrow\] **symbolic operations** (simplify, analyze, \ldots)

\[\longrightarrow\] **re-use AND performance** !
Polynomials in multiple variables

canonical, natural representation

Different types of ordering:

- *lexicographic*: alphabetically ordered. Within one variable name, ordered by powers. If the powers of that variable are the same, look at the next (lexicographic) variable. \(x^2 + 2xy + x + y^2 + y + 1 \)

- *total degree, then lexicographic*: lexicographic distinction between same total degree, ordered by total degree. \(x^2 + 2xy + y^2 + x + y + 1 \)

- *total degree, then inverse lexicographic*: \(y^2 + 2xy + x^2 + y + x + 1 \)
Future

- multi-formalism
- multi-abstraction
- meta-modelling