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E-mail address: hatami@cs.mcgill.ca





Contents

Chapter 1. Basic Functional Analysis 5
1.1. Some basic inequalities 5
1.2. Measure spaces 6
1.3. Normed spaces 8
1.4. Basic Probabilistic Inequalities 11
Exercises 12

Chapter 2. Fourier analysis of Finite Abelian Groups 15
2.1. Basic Fourier Theory 15
2.2. Fourier analysis of Zn2 and polynomials 21
Exercises 22

Chapter 3. Applications to Computer Science: Property Testing 23
3.1. Linearity test 23
Exercises 27

Chapter 4. Applications to Computer Science: Bounded Depth Circuits 29
4.1. Bounded depth circuits 30
4.2. H̊astad’s switching lemma 31
4.3. Influences in bounded depth circuits 34
4.4. The Fourier tail of functions with small bounded depth circuits 35
4.5. The Razborov-Smolensky Theorem 37
4.6. Conclusion and open problems 38
Exercises 39

Chapter 5. Applications to Computer Science: Machine Learning 41
5.1. Uniform-distribution PAC learning 42
5.2. PAC learning under the query model 43
5.3. Concluding remarks and open problems 48
Exercises 49

Chapter 6. Hypercontractivity, Friedgut’s Theorem, KKL inequality 51
6.1. The noise operator 51
6.2. Influence and Friedgut’s Theorem 56
6.3. Kahn-Kalai-Linial Theorem 59

Chapter 7. The Semigroup method 63
7.1. The Poisson random walk on the cube 63
7.2. Semigroups 67
7.3. Some Examples 71

3



4 CONTENTS

Chapter 8. Isoperimetric Type Inequalities 75
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CHAPTER 1

Basic Functional Analysis

The aim of this lecture is to introduce the necessary definitions, notations, and basic results
from measure theory, and functional analysis for this course.

1.1. Some basic inequalities

One of the most basic inequalities in analysis concerns the arithmetic mean and the geometric
mean. It is sometimes called the AM-GM inequality.

Theorem 1.1.1. The geometric mean of n non-negative reals is less than or equal to their
arithmetic mean: If a1, . . . , an are non-negative reals, then

(a1 . . . an)1/n ≤ a1 + . . .+ an
n

.

In 1906 Jensen founded the theory of convex functions. This enabled him to prove a considerable
extension of the AM-GM inequality. Recall that a subset D of a real vector space is called convex
if every convex linear combination of a pair of points of D is in D. Equivalently, if x, y ∈ D, then
tx+ (1− t)y ∈ D for every t ∈ [0, 1]. Given a convex set D, a function f : D → R is called convex
if for every t ≤ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

If the inequality is strict for every t ∈ (0, 1), then the function is called strictly convex.
Trivially f is convex if and only if {(x, y) ∈ D × R : y ≥ f(x)} is convex. Also note that

f : D → R is convex if and only if fxy : [x, y]→ R defined as fxy : tx+(1− t)y 7→ tf(x)+(1− t)f(y)
is convex. By Rolle’s theorem if fxy is twice differentiable, then this is equivalent to f ′′xy ≥ 0.

A function f : D → R is concave if −f is convex. The following important inequality is often
called Jensen’s inequality.

Theorem 1.1.2. If f : D → R is a concave function, then for every x1, . . . , xn ∈ D and
t1, . . . , tn ≥ 0 with

∑n
i=1 ti = 1 we have

t1f(x1) + . . .+ tnf(xn) ≤ f(t1x1 + . . .+ tnxn).

Furthermore if f is strictly concave, then the equality holds if and only if all xi are equal.

The most frequently used inequalities in functional analysis are the Cauchy-Schwarz inequality,
Hölder’s inequality, and Minkowski’s inequality.

Theorem 1.1.3 (Cauchy-Schwarz). If x1, . . . , xn and y1, . . . , yn are complex numbers, then∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

.

Hölder’s inequality is an important generalization of the Cauchy-Schwarz inequality.
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6 1. BASIC FUNCTIONAL ANALYSIS

Theorem 1.1.4 (Hölder’s inequality). Let x1, . . . , xn and y1, . . . , yn be complex numbers, and
p, q > 1 be such that 1

p + 1
q = 1. Then∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

The numbers p and q appearing in Theorem 1.1.4 are called conjugate exponents. In fact 1 and
∞ are also called conjugate exponents, and Hölder’s inequality in this case becomes:∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|
)(

n
max
i=1
|yi|
)
.

The next theorem is called Minkowski’s inequality.

Theorem 1.1.5 (Minkowski’s inequality). If p > 1 is a real number, and x1, . . . , xn are complex
numbers, then (

n∑
i=1

|xi + yi|p
)1/p

≤
(

n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

The case of p =∞ of Minkowski’s inequality is the following:

n
max
i=1
|xi + yi| ≤

(
n

max
i=1
|xi|
)

+

(
n

max
i=1
|yi|
)
.

1.2. Measure spaces

A σ-algebra (sometimes sigma-algebra) over a set Ω is a collection F of subsets of Ω with
satisfies the following three properties:

• It includes ∅. That is, we have ∅ ∈ F .
• It is closed under complementation. That is, if A ∈ F , then the complement of A also

belongs to F .
• It is closed under countable unions of its members. That is, if A1, A2, . . . belong to F ,

then ∪∞i=1Ai ∈ F .

Example 1.2.1. Let Ω be an arbitrary set. Then the family consisting only of the empty set
and the set Ω is called the minimal or trivial σ-algebra over Ω. The power set of Ω, denoted by
P(Ω), is the maximal σ-algebra over Ω.

There is a natural partial order between σ-algebras over Ω. For two σ-algebras F1 and F2 over
Ω, if F1 ⊆ F2 then we say that F1 is finer than F2, or that F2 is coarser than F1. Note that
the trivial σ-algebra is the coarsest σ-algebra over Ω, whilst the maximal σ-algebra is the finest
σ-algebra over Ω.

Definition 1.2.2. A measure space is a triple (Ω,F , µ) where F is a σ-algebra over Ω and the
measure µ : F → [0,∞) ∪ {+∞} satisfies the following axioms:

• Null empty set: µ(∅) = 0.
• Countable additivity: if {Ei}i∈I is a countable set of pairwise disjoint sets in F , then

µ(∪i∈IEi) =
∑
i∈I

µ(Ei).

The function µ is called a measure, and the elements of F are called measurable sets. If furthermore
µ : F → [0, 1] and µ(Ω) = 1, then (Ω,F , µ) is called a probability measure.
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Example 1.2.3. The counting measure on Ω is defined in the following way. The measure of
a subset is taken to be the number of elements in the subset, if the subset is finite, and ∞ if the
subset is infinite.

A measure spaceM = (Ω,F , µ) is called σ-finite, if Ω is the countable union of measurable sets
of finite measure.

Every measure space in this this course is assumed to be σ-finite.

For many natural measure spaces M = (Ω,F , µ), it is difficult to specify the elements of the
σ-algebra F . Instead one specifies an “algebra” of elements of Ω which generates F .

Definition 1.2.4. For a set Ω, a collection A of subsets of Ω is called an algebra if

• ∅ ∈ A.
• A,B ∈ A, then A ∪B ∈ A.
• A,B ∈ A, then A \B ∈ A.

The minimal σ-algebra containing A is called the σ-algebra generated by A.

Example 1.2.5. Let A be the set of all finite unions of (open, closed, or half-open) intervals in
R. Then A is an algebra over R.

Before proceeding, let us mention that µ : A → [0,∞)∪{+∞} is called a measure over A if for
every finite set of E1, . . . , Fm ∈ A, we have

µ(∪mi=1Ei) =
m∑
i=1

µ(Ei).

The following theorem, due to Carathéodory, is one of the basic theorems in measure theory. It
says that if the measure µ is defined on the algebra, then we can automatically extend it to the
σ-algebra generated by A.

Theorem 1.2.6 (Carathéodory’s extension theorem). Let A be an algebra of subsets of a given
set Ω. One can always extend every σ-finite measure defined on A to the σ-algebra generated by
A; moreover, the extension is unique.

Example 1.2.7. Let A be the algebra on R, defined in Example 1.2.5. Let µ be the measure
on A, defined by setting the measure of an interval to its length. By Carathéodory’s extension
theorem, µ extends uniquely to the σ-algebra generated by A. The resulting measure is called the
Borel measure on R.

Consider two measure spaces M := (Ω,F , µ) and N := (Σ,G, ν). The product measure µ × ν
on Ω×Σ is defined in the following way: For F ∈ F and G ∈ G, define µ×ν(F ×G) = µ(F )×ν(G).
So far we defined the measure µ× ν on A := {F ×G : F ∈ F , G ∈ G}. Note that A is an algebra
in that ∅ ∈ A, and A is closed under complementation and finite unions of its members. However,
A is not necessarily a σ-algebra, as it is possible that A is not closed under countable unions of
its members. Let F × G be the σ-algebra generated by A, i.e. it is obtained by closing A under
complementation and countable unions. It should be noted that F ×G is not the cartesian product
of the two sets F and G, and instead it is the σ-algebra generated by the cartesian product of F
and G. Theorem 1.2.6 shows that µ × ν extends uniquely from A to a measure over all of F × G.
We denote the corresponding measure space by M×N which is called the product measure of M
and N .

Consider two measure spacesM = (Ω,F , µ) and N = (Σ,G, ν). A function f : Ω→ Σ is called
measurable if the preimage of every set in G belongs to F .

We finish this section by stating the Borel-Cantelli theorem.
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Theorem 1.2.8 (Borel-Cantelli). Let (En) be a sequence of events in some probability space.
If the sum of the probabilities of the En is finite, then the probability that infinitely many of them
occur is 0, that is,

∞∑
n=1

Pr[En] <∞⇒ Pr[lim sup
n→∞

En] = 0,

where

lim sup
n→∞

En :=

∞⋂
n=1

n⋃
k=1

Ek.

1.3. Normed spaces

A metric space is an ordered pair (M,d) where M is a set and d is a metric on M , that is, a
function d : M ×M → [0,∞) such that

• Non-degeneracy: d(x, y) = 0 if and only if x = y.
• Symmetry: d(x, y) = d(y, x), for every x, y ∈M .
• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈M .

A sequence {xi}∞i=1 of elements of a metric space (M,d) is called a Cauchy sequence if for every
ε > 0, there exist an integer Nε, such that for every m,n ≥ Nε, we have d(xm, xn) ≤ ε. A metric
space (M,d) is called complete if every Cauchy sequence has a limit in M . A metric space is
compact if and only if every sequence in the space has a convergent subsequence.

Now that we have defined the measure spaces in Section 1.2, let us state the Hoölder’s and
Minkowski’s inequalities in a more general form.

Theorem 1.3.1 (Hölder’s inequality). Consider a measure space M = (Ω,F , µ), and two reals
1 < p, q <∞ with 1

p + 1
q = 1. IF the two measurable functions f, g : Ω→ C are such that both |f |p

and |g|q are integrable, then∣∣∣∣∫ f(x)g(x)dµ(x)

∣∣∣∣ ≤ (∫ |f(x)|pdµ(x)

)1/p(∫
|g(x)|qdµ(x)

)1/q

.

Theorem 1.3.2 (Minkowski’s inequality). Consider a measure space M = (Ω,F , µ), a real
p ≥ 1, and two measurable functions f, g : Ω→ C such that |f |p and |g|p are both integrable. Then(∫

|f(x) + g(x)|pdµ(x)

)1/p

≤
(∫
|f(x)|pdµ(x)

)1/p

+

(∫
|g(x)|pdµ(x)

)1/p

.

Next we define concept of a normed space which is central to function analysis.

Definition 1.3.3. A normed space is a pair (V, ‖ · ‖), where V is a vector space over R or C,
and ‖ · ‖ is a function from V to nonnegative reals satisfying

• (non-degeneracy): ‖x‖ = 0 if and only if x = 0.
• (homogeneity): For every scalar λ, and every x ∈ V , ‖λx‖ = |λ|‖x‖.
• (triangle inequality): For x, y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We call ‖x‖, the norm of x. A semi-norm is a function similar to a norm except that it might not
satisfy the non-degeneracy condition.

The spaces (C, | · |) and (R, | · |) are respectively examples of 1-dimensional complex and real
normed spaces.

Every normed space (V, ‖ · ‖) has a metric space structure where the distance of two vectors x
and y is ‖x− y‖.
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Consider two normed spaces X and Y . A bounded operator from X to Y , is a linear function
T : X → Y , such that

(1) ‖T‖ := sup
x 6=0

‖Tx‖Y
‖x‖X

<∞.

The set of all bounded operators from X to Y is denoted by B(X,Y ). Note that the operator norm
defined in (1) makes B(X,Y ) a normed space.

A functional on a normed space X over C (or R) is a bounded linear map f from X to C
(respectively R), where bounded means that

‖f‖ := sup
x 6=0

|f(x)|
‖x‖ <∞.

The set of all bounded functionals on X endowed with the operator norm, is called the dual of
X and is denoted by X∗. So for a normed space X over complex numbers, X∗ = B(X,C), and
similarly for a normed space X over real numbers, X∗ = B(X,R).

For a normed space X, the set BX := {x : ‖x‖ ≤ 1} is called the unit ball of X. Note that
by the triangle inequality, BX is a convex set, and also by homogeneity it is symmetric around the
origin, in the sense that ‖λx‖ = ‖x‖ for every scalar λ with |λ| = 1. The non-degeneracy condition
implies that BX has non-empty interior.

Every compact symmetric convex subset of Rn with non-empty interior is called a convex body.
Convex bodies are in one-to-one correspondence with norms on Rn. A convex body K corresponds
to the norm ‖ · ‖K on Rn, where

‖x‖K := sup{λ ∈ [0,∞) : λx ∈ K}.
Note that K is the unit ball of ‖ · ‖K . For a set K ⊆ Rn, define its polar conjugate as

(2) K◦ = {x ∈ Rn :
∑

xiyi ≤ 1, ∀y ∈ K}.
The polar conjugate of a convex body K is a convex body, and furthermore (K◦)◦ = K.

Consider a normed space X on Rn. For x ∈ Rn define Tx : Rn → R as Tx(y) :=
∑n

i=1 xiyi. It
is easy to see that Tx is a functional on X, and furthermore every functional on X is of the form
Tx for some x ∈ Rn. For x ∈ Rn define ‖x‖∗ := ‖Tx‖. This shows that we can identify X∗ with
(Rn, ‖ · ‖∗). Let K be the unit ball of ‖ · ‖. It is easy to see that K◦, the polar conjugate of K, is
the unit ball of ‖ · ‖∗.

1.3.1. Hilbert Spaces. Consider a vector space V over K, where K = R or K = C. Recall
that an inner product 〈·, ·〉 on V , is a function from V ×V to K that satisfies the following axioms.

• Conjugate symmetry: 〈x, y〉 = 〈y, x〉.
• Linearity in the first argument: 〈ax+ z, y〉 = a〈x, y〉+ 〈z, y〉 for a ∈ K and x, y ∈ V .
• Positive-definiteness: 〈x, x〉 > 0 if and only if x 6= 0, and 〈0, 0〉 = 0.

A vector space together with an inner product is called an inner product space.

Example 1.3.4. Consider a measure spaceM = (Ω,F , µ), and letH be the space of measurable
functions f : Ω→ C such that

∫
|f(x)|2dµ(x) <∞. For two functions f, g ∈ H define

〈f, g〉 :=

∫
f(x)g(x)dµ(x).

It is not difficult to verify that the above mentioned function is indeed an inner product.

An inner product can be used to define a norm on V . For a vector x ∈ V , define ‖x‖ =
√
〈x, x〉.
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Lemma 1.3.5. For an inner product space V , the function ‖ · ‖ : x 7→
√
〈x, x〉 is a norm.

Proof. The non-degeneracy and homogeneity conditions are trivially satisfied. It remains to
verify the triangle inequality. Consider two vectors x, y ∈ V and note that by the axioms of an
inner product:

0 ≤ 〈x+ λy, x+ λy〉 = 〈x, x〉+ |λ|2〈y, y〉+ λ〈x, y〉+ λ〈x, y〉.
Now taking λ :=

√
〈x,x〉
〈y,y〉 ×

〈x,y〉
|〈x,y〉| will show that

0 ≤ 2〈x, x〉〈y, y〉 − 2
√
〈x, x〉〈y, y〉|〈x, y〉|,

which leads to the triangle inequality. �

A complete inner-product space is called a Hilbert space.

1.3.2. The Lp spaces. Consider a measure space M = (Ω,F , µ). For 1 ≤ p < ∞, the space
Lp(M) is the space of all functions f : Ω→ C such that

‖f‖p :=

(∫
|f(x)|pdµ(x)

)1/p

<∞.

Strictly speaking the elements of Lp(M) are equivalent classes. Two functions f1 and f2 are
equivalent and are considered identical, if they agree almost everywhere or equivalently ‖f1−f2‖p =
0.

Proposition 1.3.6. For every measure space M = (Ω,F , µ), Lp(M) is a normed space.

Proof. Non-degeneracy and homogeneity are trivial. It remains to verify the triangle inequal-
ity (or equivalently prove Minkowski’s inequality). By applying Hölder’s inequality:

‖f + g‖pp =

∫
|f(x) + g(x)|pdµ(x) =

∫
|f(x) + g(x)|p−1|f(x) + g(x)|dµ(x)

≤
∫
|f(x) + g(x)|p−1|f(x)|dµ(x) +

∫
|f(x) + g(x)|p−1|g(x)|dµ(x)

≤
(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

‖f‖p +

(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

‖g‖p

= ‖f + g‖p−1
p (‖f‖p + ‖g‖p),

which simplifies to the triangle inequality �

Another useful fact about the Lp norms is that when they are defined on a probability space,
they are increasing.

Theorem 1.3.7. Let M = (Ω,F , µ) be a probability space, 1 ≤ p ≤ q ≤ ∞ be real numbers,
and f ∈ Lq(M). Then

‖f‖p ≤ ‖f‖q.
Proof. The case q = ∞ is trivial. For the case q < ∞, by Hölder’s inequality (applied with

conjugate exponents q
p and q

q−p), we have

‖f‖pp =

∫
|f(x)|p × 1dµ(x) ≤

(∫
|f(x)|qdµ(x)

)p/q (∫
1

q
q−pdµ(x)

) q−p
q

= ‖f‖pq .

�
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Note that Theorem 1.3.7 does not hold whenM is not a probability space. For example consider
the set of natural numbers N with the counting measure. We shall use the notation `p := Lp(N).
In this case the `p norms are actually decreasing.

1.4. Basic Probabilistic Inequalities

Markov’s inequality gives an upper bound for the probability that a non-negative function of a
random variable is greater than or equal to some positive constant. The application’s of Markov’s
inequality sometimes referred to as the first moment method.

Theorem 1.4.1 (Markov’s inequality). If X is a complex valued random variable and a > 0,
then

Pr[|X| > a] ≤ E[|X|]
a

.

Proof. It is trivial. It follows from the definition of the expected value that

E[|X|] ≥ aPr[|X| > a].

�

In the second moment method, Chebyshev’s inequality is applied to bound the probability that
a random variable deviates far from the mean by its variance. Recall that the variance of a random
variable is defined as

Var[X] = E
[
|X − E[X]|2

]
= E[|X|2]− |E[X]|2 .

Theorem 1.4.2 (Chebyshev’s inequality). If X is a complex valued random variable and a > 0,
then

Pr[|X − E[X]| > a] ≤ Var[X]

a2
.

Proof. The theorem follows from Markov’s inequality applied to the random variable |X − E[X]|2.
�

It is possible to use Chebyshev’s inequality to show that sums of independent random variables
are concentrated around their expected value.

Lemma 1.4.3. Let X1, . . . , Xn be independent complex valued random variables satisfying |Xi| ≤
1 for all i = 1, . . . , N . Then

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > t

]
≤ n

t2
.

Proof. Denote A = X1 + . . .+Xn. Then by independence of Xi’s we have

Var[A] =

n∑
i,j=1

E[XiXj ]− E[Xi]E[Xj ] =

n∑
i=1

E[|Xi|2]− |E[Xi]|2 =

n∑
i=1

Var[Xi] ≤ n.

Then Chebyshev’s inequality implies the result. �

However in these situations, there are different inequalities that provide much stronger bounds
compared to Chebyshev’s inequality. We state two of them:
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Lemma 1.4.4 (Chernoff Bound). Suppose that X1, . . . , Xn are independent Bernoulli variables
each occurring with probability p. Then for any 0 < t ≤ np,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − np
∣∣∣∣∣ > t

]
< 2e

−t2
3np .

Lemma 1.4.5 (Hoeffding’s Inequality). Suppose that X1, . . . , Xn are independent random vari-
ables with |Xi| ≤ 1 for each 1 ≤ i ≤ n. Then for any t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > t

]
< 2e

−t2
2n .

Exercises
Exercise 1.4.6. Let x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 be complex vectors. By studying the

derivative of 〈x+ ty, y〉 with respect to t, prove Theorem 1.1.3.

Exercise 1.4.7. Deduce Theorem 1.1.5 from Hölder’s inequality.

Exercise 1.4.8. Let 1 ≤ p ≤ q ≤ ∞. Show that for every f ∈ `p, we have ‖f‖q ≤ ‖f‖p.
Exercise 1.4.9. Recall that by Hölder’s inequality, if p, q ≥ 1 are conjugate exponents and

a1, . . . , an, b1, . . . , bn are complex numbers, then∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

.

Deduce from this, that if p1, . . . , pn are non-negative numbers with
∑n

i=1 pi = 1, then∣∣∣∣∣
n∑
i=1

aibipi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai|ppi
)1/p( n∑

i=1

|bi|qpi
)1/q

.

Exercise 1.4.10. Let X be a probability space, and p, q ≥ 1 be conjugate exponents. Show that
for everyf ∈ Lp(X), we have

‖f‖p = sup
g:‖g‖q=1

|〈f, g〉| .

Exercise 1.4.11. Suppose that (X,µ) is a measure space and 1
p + 1

q + 1
r = 1, for p, q, r ≥ 1.

Show that if f ∈ Lp(X), g ∈ Lq(X), and h ∈ Lr(X), then∣∣∣∣∫ f(x)g(x)h(x)dµ(x)

∣∣∣∣ ≤ ‖f‖p‖g‖q‖h‖r.
Exercise 1.4.12. Suppose that X is a measure space and 1

p + 1
q = 1

r , for p, q, r ≥ 1. Show that

if f ∈ Lp(X) and g ∈ Lq(X), then
‖fg‖r ≤ ‖f‖p‖g‖q.

Exercise 1.4.13. Let X be a probability space. Let ‖T‖p→q denote the operator norm of T :
Lp(X)→ Lq(X). In other words

‖T‖p→q := sup
f :‖f‖p=1

‖Tf‖q.
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Recall that the adjoint of T is an operator T ∗such that

〈Tf, g〉 = 〈f, T ∗g〉,
for all f, g ∈ L2(X). Prove that for conjugate exponents p, q ≥ 1, and every linear operator
T : L2(X)→ L2(X), we have

‖T‖p→2 = ‖T ∗‖2→q.





CHAPTER 2

Fourier analysis of Finite Abelian Groups

In this chapter we develop the basic Fourier analysis of finite Abelian groups. Recall that the
cyclic group ZN is the Abelian group with elements {0, 1, . . . , N − 1}, where the group product is
defined as a+ b := a+ b (mod N). Finite Abelian groups can be characterized as the products of
cyclic groups:

Theorem 2.0.14. Every finite Abelian group G is isomorphic to the group ZN1 × . . .×ZNk for
some positive integers N1, . . . , Nk.

In this course, we will be mostly interested in the group Zn2 as it can be identified with the set
{0, 1}n. Hence boolean functions f : {0, 1}n → {0, 1} can be identified with functions f : Zn2 →
{0, 1}, and this shall allow us to use the Fourier analysis of Zn2 to study boolean functions.

2.1. Basic Fourier Theory

Let G be a finite Abelian group. A function χ : G → C \ {0} mapping the group to the
non-zero complex numbers is called a character of G if it is a group homomorphism. That is,
χ(a + b) = χ(a)χ(b) for all a, b ∈ G, and χ(0) = 1, where 0 is the identity of G. Note that the
constant function 1 is always a character and it is called the principal character of G.

Let χ be a character of G, and consider an element a ∈ G. Since G is a finite group, a is
of some finite order n (that is na = 0 where na refers to adding a to itself n times). Hence
1 = χ(0) = χ(na) = χ(a)n which shows that χ(a) is an n-th root of unity. In particular, every
character χ of G satisfies

(3) χ : G→ T,

where T is the unit complex circle.

Theorem 2.1.1. If G is a finite Abelian group, then the characters of G together with the usual

point-wise product of complex valued functions form a group Ĝ.

Proof. The principal character 1 is the identity of Ĝ. Note that if χ and ξ are characters of
G, then χξ is also a character. Indeed χ(ab)ξ(ab) = χ(a)ξ(a)χ(b)ξ(b), and χ(0)ξ(0) = 1 × 1 = 1.
To check the existence of the inverse elements, note that if χ is a character, then χ−1 := 1

χ = χ is

also a character. �

The group Ĝ is called the Pontryagin dual of G. Fourier analysis is based on expressing
functions f : G → C as linear combinations of characters. It will be convenient to treat the set of
these functions as a Hilbert space: Let L2(G) denote the set of functions f : G→ C, where here G
is endowed with the uniform probability measure. Recall (see Section 1.3.1 and 1.3.2) that L2(G)
is a Hilbert space with the inner product

〈f, g〉 = Ex∈Gf(x)g(x) =
1

|G|
∑
x∈G

f(x)g(x).

15
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In the sequel, we will often consider G as a probability space, and Ex∈G shall always mean that x is
a random variable that takes values in G uniformly at random. To simplify the notation we usually
abbreviate Ex∈G to simply E. For a function f : G → C, the notation E[f ] means Ex∈G[f(x)]
(which is equal to 1

|G|
∑

x∈G f(x)).

Example 2.1.2. Consider the group Zn2 . For every a = (a1, . . . , an) ∈ Zn2 , one can construct a

corresponding character χa that maps x to
∏
i:ai=1(−1)xi = (−1)

∑
i:ai=1 xi . The principal character

is χ0 ≡ 1 where the 0 in the index refers to (0, . . . , 0), the identity element of the group. It is
easy to verify that these are indeed all the characters of Zn2 . Note that in this case the characters
are actually real-valued (they only take values 1 and −1), but as we shall see below for all other
Abelian groups there are characters that take non-real values.

Since the coordinates of a ∈ Zn2 are 0 or 1, we will sometimes identify a with the set S =
{i : ai = 1} ⊆ {1, . . . , n}, and denote the characters as χS for S ⊆ {1, . . . , n}. This notation is
sometimes more intuitive as

χS(x) = (−1)
∑
i∈S xi ,

and as later when we take a probabilistic approach to decomposing functions, this notation extends
to general product spaces (where there is no group structure).

Our next goal will be to prove that the characters form an orthonormal basis for L2(G). First
let us prove a simple lemma.

Lemma 2.1.3. Let G be a finite Abelian group, and χ be a non-principal character of G. Then∑
x∈G χ(x) = 0.

Proof. Suppose to the contrary that
∑

x∈G χ(x) 6= 0. Consider an arbitrary y ∈ G, and note

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(y + x) =
∑
x∈G

χ(x)

which shows that χ(y) = 1. Since y was arbitrary, we conclude that χ must be the principal
character which is a contradiction. �

Now we can prove the orthogonality of the characters.

Lemma 2.1.4. The characters of a finite Abelian group G are orthonormal functions in L2(G).

Proof. It follows from (3) that every χ ∈ Ĝ satisfies

‖χ‖22 = E
[
|χ(x)|2

]
= E[1] = 1.

So characters are unit vectors in L2(G). It remains to verify the orthogonality. Let χ 6= ξ
be two different characters. Then χξ = χξ−1 is a non-principal character of G (why?). Hence by
Lemma 2.1.3, we have

〈χ, ξ〉 = E
[
χ(x)ξ(x)

]
= E

[
χξ(x)

]
= 0.

�

So far we have discussed the Pontryagin dual of G in an abstract manner. Since finite Abelian
groups have simple structures (Theorem 2.0.14), it is quite easy to describe the characters of G.
We start with the basic case of G = ZN . For every a ∈ ZN , define χa ∈ L2(G) as

χa : x 7→ e
2πi
N
ax.
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Let us verify that χa is actually a character. Indeed χa(0) = e
2πi
N

0 = e0 = 1, and since e2πi = 1, we
have

χa(x)χa(y) = e
2πi
N
axe

2πi
N
ay = e

2πi
N
a(x+y (mod N)) = χa(x+ y).

Note that L2(G) is |G|-dimensional, and hence by Lemma 2.1.4, G has at most |G| characters.
It follows that {χa : a ∈ G} are all the characters of G. The principal character is χ0 ≡ 1. Also

χaχb = χa+b which shows that the dual group Ĝ is isomorphic to G. As we shall see below this is
in general true for all finite Abelian groups.

Now let us consider the general case of G = ZN1×. . .×ZNk for some positive integers N1, . . . , Nk.
For every a = (a1, . . . , ak) ∈ G, define χa ∈ L2(G) as the product of the characters χa1 , . . . , χak of
the groups ZN1 , . . . ,ZNk applied to the coordinates of x ∈ G respectively. More precisely

χa : x 7→
k∏
j=1

e
2πi
Nj

ajxj
.

As in the case of ZN , it is straightforward to verify that χa is a character by showing that
χa(0) = 1, and χa(x + y) = χa(x)χa(y). Again Lemma 2.1.4 shows that {χa : a ∈ G} are all the
characters of G. We also have the identify χaχb = χa+b which implies the following theorem.

Theorem 2.1.5. If G is a finite Abelian group, then the characters of G form an orthonormal

basis for L2(G). Furthermore we have Ĝ ∼= G.

Theorem 2.1.5 shows that G is isomorphic to its dual Ĝ, and so it shall be convenient to identify
the two groups in the sequel, and denote the characters by χa where a ∈ G. Since the characters
form an orthonormal basis for L2(G), every function f : G→ C can be expressed in a unique way as

a linear combination of the characters f =
∑

a∈G f̂(a)χa. The corresponding coefficients f̂(a) ∈ G
are referred to as the Fourier coefficients. This leads to the definition of the Fourier transform.

Definition 2.1.6. The Fourier transform of a function f : G → C is the unique function

f̂ : Ĝ→ C defined as

f̂(χ) = 〈f, χ〉 = Ef(x)χ(x).

We will often use the notation f̂(a) to denote f̂(χa).

Let us state a simple example of the Fourier transform of a function on Zn2 .

Example 2.1.7. Let f : Zn2 → C be the parity function f : x 7→∑n
i=1 xi(mod 2). Then

f̂(0) = Ef(x)χ0 = Ef(x) =
1

2
.

We also have

f̂(1, . . . , 1) = Ef(x)(−1)
∑n
j=1 xj = −1

2
,

as f(x) = 1 if and only if
∑n

j=1 xj = 1(mod 2). Next consider a ∈ Zn2 with a 6= (1, . . . , 1) and

a 6= 0. Let j0, j1 be such that aj0 = 0 and aj1 = 1. We have (why?)

f̂(a) = Ef(x)χa(x) =
1

2
E [f(x)χa(x) + f(x+ ej0 + ej1)χa(x+ ej0 + ej1)] ,

where ej denotes the vector in Zn2 which has 1 at its jth coordinate and 0 everywhere else. Note

that f(x) = f(x+ej0 +ej1) and furthermore χa(x) = −χa(x+ej0 +ej1). We conclude that f̂(a) = 0
for every a ∈ Zn2 satisfying a 6= (1, . . . , 1) and a 6= 0.
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The Fourier transform is a linear operator: λ̂f + g = λf̂ + ĝ, and we have the following easy
observation.

Lemma 2.1.8. The Fourier transform considered as an operator from L1(G) to L∞(Ĝ) is norm
decreasing:

‖f̂‖∞ ≤ ‖f‖1.
Proof. By (3) for every a ∈ G, we have

|f̂(a)| =
∣∣∣Ef(x)χa(x)

∣∣∣ ≤ E|f(x)||χa(x)| = E|f(x)| = ‖f‖1.

�

The Fourier coefficient f̂(0) is of particular importance as

f̂(0) = E[f(x)].

So if 1A is the indicator function of a subset A ⊆ G, then 1̂A(0) = |A|
|G| corresponds to the density

of A.
It follows from the fact that the characters from an orthonormal basis for L2(G) that

f =
∑
a∈G

f̂(a)χa,

and that this expansion of f as a linear combination of characters is unique. This formula is called
the Fourier inversion formula as it shows how the functions f can be reconstructed from its Fourier
transform.

If A ⊆ G, then the orthogonal complement of A is defined as

A⊥ = {a ∈ G : χa(x) = 1 ∀x ∈ A}.
It follows from the identities χ0 = 1 and χaχb = χa+b that S⊥ is a subgroup of G. The Fourier
transform of the indicator function of a subgroup of G has a simple form:

Lemma 2.1.9. If H is a subgroup of G, then for every a ∈ G, we have

1̂H(a) =

{
|H|/|G| a ∈ H⊥
0 a 6∈ H⊥

Proof. If a ∈ H⊥, then

1̂H(a) = 〈1H , χa〉 = E1H(x)χa(x) = E1H(x) = |H|/|G|.
On the other hand if a 6∈ H⊥, then there exists y ∈ H such that χa(y) 6= 1. Then∑

z∈H
χa(z) = χa(y)

∑
z∈H

χa(z − y) = χa(y)
∑
z∈H

χa(z),

which shows that
∑

z∈H χa(z) = 0. Hence

1̂H(a) = E1H(x)χa(x) =
1

|G|
∑
z∈H

E1H(z) = 0.

�
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Remark 2.1.10. It follows from Lemma 2.1.9 that if A = y+H is a coset of H in G (i.e. H is
a subgroup of G and y ∈ G), then for every a ∈ G,

1̂A(a) = E1A(x)χa(x) = E1H(x− y)χa(x) = E1H(x)χa(x+ y) = χ(y)1̂H(a)

=

{
χ(y)|H|/|G| a ∈ H⊥
0 a 6∈ H⊥

Example 2.1.11. Let us revisit Example 2.1.7 in light of Remark 2.1.10. Note that H = {x ∈
Zn2 :

∑n
i=1 xi = 0 (mod 2)} is a subgroup of Zn2 . Now the function f defined in Example 2.1.7 is

the indicator function of A = e1 +H. Note that

H⊥ = {a : (−1)
∑n
i=1 xiai = 1 ∀x ∈ H} = {(0, . . . , 0), (1, . . . , 1)}.

Hence

f̂(a) = 1̂A(a) =

{
χa(e1)|H|/|G| a ∈ H⊥
0 a 6∈ H⊥

We conclude that f̂(0) = 1/2 and f̂(1, . . . , 1) = −1/2, and f̂(a) = 0 for every a ∈ Zn2 satisfying
a 6= (1, . . . , 1) and a 6= 0.

Next we prove the Parseval’s identity, a very simple but extremely useful fact in Fourier analysis.

Theorem 2.1.12 (Parseval). For every f ∈ L2(G),

‖f‖22 =
∑
a∈G
|f̂(a)|2.

Proof. We have

‖f‖22 = 〈f, f〉 =

〈∑
a∈G

f̂(a)χa,
∑
b∈G

f̂(b)χb

〉
=
∑
a,b∈G

f̂(a)f̂(b)〈χa, χb〉.

The identify now follows from orthonormality of characters:

〈χa, χb〉 =

{
0 a 6= b;
1 a = b.

�

The proof of the Parseval identity, when applied to two different functions f, g ∈ L2(G), implies
the Plancherel theorem:

〈f, g〉 =
∑
a∈G

f̂(a)ĝ(a).

As the first example of an application of the Parseval identity, let us show that for every
subgroup H of G, we have

(4) |H||H⊥| = |G|.
Indeed by Lemma 2.1.9, we have

|H|
|G| = E1H = E12

H = 〈1H ,1H〉 = ‖1H‖22 =
∑
a∈G
|1̂H(a)|2 =

∑
a∈H⊥

(|H|/|G|)2 =
|H|2|H⊥|
|G|2

which simplifies to (4).
Next we introduce the important notion of convolution.
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Definition 2.1.13. Let G be a finite Abelian group. For two functions f, g : G→ C, we define
their convolution f ∗ g : G→ C as

f ∗ g(x) = Ey∈G[f(x− y)g(y)].

Note that f ∗ g(x) is the average of f(a)f(b) over all pairs a, b with a + b = x. This gives
a combinatorial nature to convolution which makes it very useful in dealing with certain discrete
problems. Consider a set A ⊆ G. Then f ∗ 1A(x) is the average of f over the set x−A := {x− y :
y ∈ A}. For example if A is the Hamming ball1 of radius r around 0 in Zn2 , then f ∗ 1A(x) is
the average of f over the Hamming ball of radius r around x. These types of averaging operators
usually “smooth” f , and makes it more similar to a constant functions. This smoothing property
of the convolution is one of the main tools in harmonic analysis and this course.

Next let us list some basic facts about the convolution. We define the support of f : G → C,
denoted by Supp(f), to be the set of the points x ∈ G with f(x) 6= 0.

Lemma 2.1.14. Consider three functions f, g, h : G→ C.

(a) We have

f ∗ g = g ∗ f.
(b) We have

(f ∗ g) ∗ h = f ∗ (g ∗ h).

(c) We have

f ∗ (λh+ g) = λf ∗ h+ f ∗ g.
(d) We have

Supp(f ∗ g) ⊆ Supp(f) + Supp(g).

(e) We have

‖f ∗ g‖∞ ≤ ‖f‖1‖g‖∞.
(f) More generally, if p and q are conjugate exponents, then

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.
(g) We have

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
Proof. (a) For every x ∈ G, we have

f ∗ g(x) = Ey[f(x− y)g(y)] = Ey[f(x− y)g(x− (x− y))] = Ez[f(z)g(x− z)] = g ∗ f(x).

(b) By Part (a),

(f ∗ g) ∗ h(x) = (g ∗ f) ∗ h(x) = EzEy[g(x− z − y)f(y)]h(z) =

= Ey,zg(x− z − y)f(y)h(z) = (h ∗ g) ∗ f(x) = f ∗ (g ∗ h)(x).

(c) is trivial.
(d) follows from the fact that f(x) is the average of f(a)g(b) over all pairs of points a, b ∈ G

with a+ b = x.
(e) is a special case of (f).
(f) Note that for every x ∈ G, by Hölder’s inequality we have

|f ∗ g(x)| ≤ Ey∈G|f(x− y)||g(y)| ≤ (E|f(x− y)|p)1/p (E|g(y)|q)1/q = (E|f(y)|p)1/p ‖g‖q = ‖f‖p‖g‖q.

1The Hamming ball of radius r around 0 is defined as {x ∈ Zn2 :
∑n
i=1 xi ≤ r} ⊆ Zn2 .
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(g) We have

‖f ∗ g‖1 = Ex |f ∗ g(x)| ≤ Ex,y|f(x− y)||g(y)| = Ez,y|f(z)||g(y)| = Ez|f(z)|Ey|g(y)| = ‖f‖1‖g‖1.

�

The relevance of the Fourier transform to convolution lies in the following lemma.

Lemma 2.1.15. If f, g : G→ C, then

f̂ ∗ g = f̂ · ĝ.

Proof. We have

f̂ ∗ g(a) = Exf ∗ g(x)χa(x) = Ex (Eyf(x− y)g(y))χa(x) = Ex,yf(x− y)g(y)χa(x− y)χa(y)

= Ez,yf(z)g(y)χa(z)χa(y) = Ezf(z)χa(z)Eyg(y)χa(y) = f̂(a) · ĝ(a).

�

Note that Lemma 2.1.15 in particular shows that

Ef(x)Eg(x) = f̂(0)ĝ(0) = f̂ ∗ g(0) = Ef ∗ g(x).

We also have the dual version of Lemma 2.1.15,

(5) f̂ · g(x) =
∑
y∈G

f̂(x− y)ĝ(y),

which converts point-wise product back to convolution.

For a function h : G → C, define h̃ : G → C as h : x 7→ h(−x). Note that h̃ =
∑

a∈G ĥ(a)χa.
Hence it follows from the Parseval identity and Lemma 2.1.15 that for f, g, h : G→ C, we have

〈f ∗ h, g〉 = 〈f, g ∗ h̃〉 =
∑
a∈G

f̂(a)ĥ(a)ĝ(a).

2.2. Fourier analysis of Zn2 and polynomials

As we saw above the characters of the group Zn2 are of the form χS(x) = (−1)
∑
i∈S xi for all

S ⊆ [n]. As a result sometimes it is more intuitive to work with the domain {−1, 1}n rather than
Zn2 ≡ {0, 1}n by changing the role of 0 to −1. Note that this change of the domain will convert the
character χS with the function wS(x) :=

∏
i∈S xi. Hence every function f : {−1, 1}n → C can be

expressed as

f(x) :=
∑
S⊆[n]

f̂(S)wS(x).

Note that the functions wS(x) are monomials of degree |S| in which every variable appears with
degree at most 1. Hence this representation is basically a representation of the function f as a
polynomial of degree at most n. Note that the Fourier degree of f , often denoted by degF (f), is

the largest |S| such that f̂(S) 6= 0.
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Exercises
Exercise 2.2.1. Prove the Identity (5).

Exercise 2.2.2. Suppose that for f : Zn2 → {0, 1} we have f̂(S) = 0 for all |S| ≥ 2 (that is
degF (f) ≤ 1). Show that either f ≡ 0, f ≡ 1, f(x) = xi, or f(x) = 1− xi for some i ∈ [n].

Exercise 2.2.3. Let G be a finite Abelian group, and H be a subgroup of G. Prove that(
H⊥
)⊥

= H.

Exercise 2.2.4. Given two subsets A,B ⊆ 2[n]. For S ⊆ [n], let

parityS(A) := {A ∈ A | |A ∩ S| ≡ 0 mod 2},
and

parityS(B) := {B ∈ B | |B ∩ S| ≡ 0 mod 2}.
• Prove that if parityS(A) = parityS(A) for every S, then A = B.
• Suppose |parityS(A)− parityS(A)| ≤ δ for every S. Bound | (A \ B) ∪ (B \ A) | in terms of
δ.

Exercise 2.2.5. Let G be a finite Abelian group, and H be a subgroup of G. Prove that for
every f : G→ C, we have

Ex∈Hf(x) =
∑
a∈H⊥

f̂(χa).

Exercise 2.2.6. Let G be a finite Abelian group and f, g : G→ C. Show that for every positive
integer m,

‖f ∗ g‖m ≤ ‖f‖1‖g‖m.
Exercise 2.2.7. Consider a function f : Zn2 → {0, 1} and it’s Fourier expansion f =

∑
S⊆[n] f̂(S)χS.

Define the discrete derivative of f in direction i ∈ {1, . . . , n} as ∆if : x 7→ f(x+ ei)− f(x). Write
the Fourier expansion of ∆if in terms of the Fourier coefficients of f .

Exercise 2.2.8. Suppose that for f : Zn2 → {0, 1} we have f̂(S) = 0 for all |S| > k (that
is degF (f) ≤ k). Show that all the Fourier coefficients of f are of the form r

2k
where r ∈

{0,±1, . . . ,±2k}. Conclude that every such function depends on at most k22k coordinates.



CHAPTER 3

Applications to Computer Science: Property Testing

Blum, Luby, and Rubinfeld [BLR90] made a beautiful observation that given a function
f : Zn2 → Z2, it is possible to inquire the value of f on a few random points, and accordingly
probabilistically distinguish between the case that f is a linear function and the case that f has
to be modified on at least ε > 0 fraction of points to become a linear function. Inspired by this
observation, Rubinfeld and Sudan [RS93] defined the concept of property testing which is now a
major area of research in theoretical computer science. Roughly speaking to test a function for
a property means to examine the value of the function on a few random points, and accordingly
(probabilistically) distinguish between the case that the function has the property and the case
that it is not too close to any function with that property. Interestingly and to some extent surpris-
ingly these tests exist for various basic properties. The first substantial investigation of property
testing occurred in Goldreich, Goldwasser, and Ron [GGR98] who showed that several natural
combinatorial properties are testable. Since then there has been a significant amount of research
on classifying the testable properties in combinatorial and algebraic settings.

3.1. Linearity test

In this section, we will state and analyze the BLR linearity test. We start by formally defining
a linear function.

Definition 3.1.1. A function f : Zn2 → Z2 is called linear if f(x + y) = f(x) + f(y) for all
x, y ∈ Zn2 .

Trivially (why?) every linear function is of the form `a : x 7→ a1x1 + . . .+ anxn(mod 2) where
a = (a1, . . . , an) ∈ Zn2 .

The BLR test says that it is possible to query the value of a function f : Zn2 → Z2 on few
points, and with some significant probability distinguish correctly between the following two cases

(1) f is linear.
(2) f is ε-far from every linear function. I.e. for every linear ` : Zn2 → Z2,

Pr[f(x) 6= `(x)] ≥ ε.
More precisely for every ε > 0, there exists a δ > 0 such that the following holds. Given a

function f : Zn2 → Z2, we can query the value of f on only 3 points

(1) always accept f if it is linear.
(2) reject f with probability at least δ > 0 if it is ε-far from every linear function.

This is a one-sided-error test as it always accepts f if it satisfies the property. Also note that
one can easily boost the probability of the success of the test by applying the test several times.
More precisely, one can run the test N times, and accept f if all the N executions accept f , and
reject it otherwise. In this case if f is ε-far from every linear function, then the test will reject it
with probability at least 1 − (1 − δ)N which can be made very close to 1 by setting for example

23
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N = 1000δ−1. However, note that in this case we are making 3N queries to f . Now let us finally
state the test:

Blum, Luby, and Rubinfeld’s [BLR90] linearity test:

• Given a function f : Zn2 → Z2.
• Pick two random points x, y ∈ Zn2 .
• If f(x) + f(y) 6= f(x+ y), then Reject, otherwise Accept.

Note that as we claimed above if f is linear, then the BLR test always succeeds, that is, it
never rejects a linear function. The bulk of the analysis lies in proving that if f is ε-far from every
linear function, then f is rejected with probability at least δ > 0.

In order to apply Fourier analysis, we need the range of f to be C rather than Z2. The most
trivial way to achieve this is to identify Z2 with {0, 1} and consider f as a function from Zn2 to
Z2. However for this problem, it is more natural to achieve this by replacing f with (−1)f :

Zn2 → {−1, 1}. Note that f is linear if and only if (−1)f is multiplicative (i.e. (−1)f(x+y) =

(−1)f(x)(−1)f(y)) which is equivalent to being a character of Zn2 . So the linearity test is can be
reformulated as a “character test”:

Blum, Luby, and Rubinfeld’s [BLR90] linearity test:

• Given a function f : Zn2 → {−1, 1}.
• Pick two random points x, y ∈ Zn2 .
• If f(x)f(y) 6= f(x+ y), then Reject, otherwise Accept.

And our goal is to show that for every ε > 0, there exists a δ > 0 such that the BLR test

(1) accept f if if is a character of Zn2 .
(2) reject f with probability at least δ > 0 if it is ε-far from every character.

3.1.1. Analysis of the BLR test. First note that if f is a character then the BLR test
always succeeds, that is, it never rejects a character. We need to prove that if f is ε-far from every
character, then f is rejected with probability at least δ > 0 for some δ depending only on ε.

Consider a character χa, and note that

Pr[f(x) 6= χa(x)] = E
[

1− f(x)χa(x)

2

]
=

1

2
− 1

2
E[f(x)χa(x)] =

1

2
− 1

2
f̂(a).

So if f is ε-far from every character, then

ε ≤ 1

2
− 1

2
max
a

f̂(a),

or equivalently

(6) max
a

f̂(a) ≤ 1− 2ε.

Now let us analyze the probability that f is not rejected by the BLR algorithm. Note that

Prx,y[f(x)f(y) = f(x+ y)] = Prx,y[f(x)f(y)f(x+ y) = 1] =
1

2
+

1

2
E[f(x)f(y)f(x+ y)].
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Replacing f with its Fourier expansion, we get

E[f(x)f(y)f(x+ y)] = E

∑
a,b,c

f̂(a)f̂(b)f̂(c)χa(x)χb(y)χc(x+ y)


=

∑
a,b,c

f̂(a)f̂(b)f̂(c)Ex[χa+c(x)]Ey[χa+b(y)].

Note that a+ c = 0 if and only if a = c, and thus (see Lemma 2.1.3),

E[χa+c(x)] =

{
1 a = c
0 a 6= c

Similarly

E[χb+c(y)] =

{
1 b = c
0 a 6= c

Hence
E[f(x)f(y)f(x+ y)] =

∑
a

f̂(a)3,

which shows that

(7) Prx,y[f(x)f(y) = f(x+ y)] =
1

2
+

1

2

∑
a

f̂(a)3 ≤ 1

2
+

1

2

(
max
a

f̂(a)
)∑

a

f̂(a)2.

By the Parseval identity ∑
a∈G

f̂(a)2 = ‖f‖22 = 1.

So

(8) Prx,y[f(x)f(y) = f(x+ y)] ≤ 1

2
+

1

2
max
a

f̂(a).

Now to finish the proof note that by (6) and (8) if f is ε-far from every character, then

Prx,y[f(x)f(y) = f(x+ y)] ≤ 1− ε,
and the probability of rejection is at least δ := ε > 0.

3.1.2. Testing in general. In general testability with one-sided error of a property of func-
tions is defined as the following:

Definition 3.1.2 (Testability with one-sided error). A property P is said to be testable with
one-sided error if there are functions q : (0, 1)→ Z>0, δ : (0, 1)→ (0, 1), and an algorithm T that,
given as input a parameter ε > 0 and oracle access to a function f , makes at most q(ε) queries to
the oracle for f ,

• always accepts if f ∈ P.
• rejects with probability at least δ(ε) if f is ε-far from P.

If, furthermore, q is a constant function, then P is said to be proximity-obliviously testable (PO
testable).

The BLR test of Section 3.1 shows that the property of being linear for functions f : Zn2 → Z2

is proximity-obliviously testable with one-sided error using only 3 queries.
The properties of functions f : Zn2 → Z2 that are proximity-obliviously testable with one-sided

error are characterized in [BFH+13] by Bhattacharyya, Fischer, H. Hatami, P. Hatami, and Lovett.
Note that if we do not impose any conditions on the property, then the algebraic structure of Zn2
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is ignored, and we are treating Zn2 as a generic set of size 2n. Hence in order to take the algebraic
structure of Zn2 into account, one assumes that P to be affine-invariant:

Definition 3.1.3 (Affine invariance). A property P of functions f : Zn2 → Z2 is affine-invariant
if the following holds. For every positive integer n, if f : Zn2 → {0, 1} satisfies the property,
then for every positive integer m, and every affine transformation A : Zm2 → Zn2 , the function
f ◦ A : Zm2 → {0, 1} also satisfies the property. (An affine transformation A is of the form L + c
where L is a linear transformation and c is a constant).

It is not difficult to see that if an affine-invariant property is proximity-obliviously testable with
one-sided error, then it must be locally characterized in the following sense.

Definition 3.1.4. For a positive integer k, a property P of functions f : Zn2 → Z2 is called
k-locally characterized if there the following holds: f satisfies P if and only if f ◦ A : Zk2 → Z2

satisfies P for all affine transformations A : Zk2 → Zn2 . We say P is locally characterized if it is
k-locally characterized for some constant k.

On the other hand, if a property P is k-locally characterized, then there is a natural candidate
for a test that makes 2k queries to the function:

• Given a function f : Zn2 → Z2.
• Pick a random affine transformation A : Zk2 → Zn2 .
• If f ◦A ∈ P, then Accept, otherwise Reject.

However proving that this test indeed rejects every f that is ε-far from P with probability
δ(ε,P) > 0 is not straightforward, and [BFH+13] uses several tools from an area of mathematics
called higher-order Fourier analysis to establish this fact:

Theorem 3.1.5 ([BFH+13]). An affine-invariant property P is proximity-obliviously testable
with one-sided error if and only if it is locally characterized.

An important example of a k-locally characterized property is the property of having degree
at most k − 1 as a polynomial from Zn2 to Z2. Note that this notion of degree is different from
the Fourier degree discussed in Section 2.2. For example the function f : Zn2 → Z2 defined as
f : x 7→ x1 + . . . + xn is of of degree 1 in this sense, while by looking at its Fourier transform
f = 1

2 − 1
2χ~1(x) we see that it has Fourier degree n.

In [BFH+13] it is shown that a wide class of properties, referred to as degree-structural prop-
erties are locally characterized. We formally defined them below in Definition 3.1.6, but first let us
list some examples of degree-structural properties. Let d be a fixed positive integer. Each of the
following properties defines a degree-structural property. Consider a prime number p.

• Degree ≤ d: The degree of the function f : Znp → Zp as a polynomial is at most d;
• Splitting: A function f : Znp → Zp splits if it can be written as a product of at most d

linear functions;
• Factorization: A function f : Znp → Zp factors if f = gh for polynomials g, h : Znp → Zp

such that deg(g) ≤ d− 1 and deg(h) ≤ d− 1;
• Sum of two products: A function f : Znp → Zp is a sum of two products if there are

polynomials g1, g2, g3, g4 : Znp → Zp such that f = g1g2 + g3g4 and deg(gi) ≤ d − 1 for
i ∈ {1, 2, 3, 4};
• Having a square root: A function f : Znp → Zp has a square root if f = g2 for a

polynomial g : Znp → Zp with deg(g) ≤ d/2;
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In fact, roughly speaking, any property that can be described as the property of decomposing
into a known structure of low-degree polynomials is degree-structural.

Definition 3.1.6 (Degree-structural property). Given an integer c > 0, a vector of non-
negative integers d = (d1, . . . , dc) ∈ Zc≥0, and a function Γ : Zcp → Zp, define the (c,d,Γ)-
structured property to be the collection of functions f : Znp → Zp for which there exist polynomials
P1, . . . , Pc : Znp → Zp satisfying f(x) = Γ(P1(x), . . . , Pc(x)) for all x ∈ Znp and deg(Pi) ≤ di for all
i ∈ [c].

We say a property P is degree-structural if there exist integers σ,∆ > 0 and a set of tuples
S ⊂ {(c,d,Γ) | c ∈ [σ],d ∈ [0,∆]c,Γ : Zcp → Zp}, such that a function f : Znp → Zp satisfies
P if and only if f is (c,d,Γ)-structured for some (c,d,Γ) ∈ S. We call σ the scope and ∆ the
max-degree of the degree-structural property P.

Theorem 3.1.7 ([BFH+13]). Every degree-structural property is k-locally characterized for
some k.

The proof presented in [BFH+13] uses higher-order Fourier analysis and does not provide any
explicit bounds on k. It seems that there should be a different proof for this theorem which would
provide reasonable bounds on k.

Problem 3.1.8 (Open Problem). Find a reasonable upper-bound on k in terms of the max-
degree and the size of the scope of degree-structural properties such that every degree-structural
property with those parameters is k-locally characterized.

This problem is interesting even for the simple and explicit properties that we listed above.

Problem 3.1.9 (Open Problem). For each one of the properties listed above (i.e. Factorization,
Sum of two products, Having a square root) find the smallest k such that the property is k-locally
characterized.

Exercises
Exercise 3.1.10. Prove that the property of having polynomial degree at most d for functions

f : Zn2 → Z2 is (d+ 1)-locally characterized.

Exercise 3.1.11. Note that every function f : Zn2 → Z2 of polynomial degree at most 1 satisfies
f(x) + f(x+ y + z) = f(x+ y) + f(x+ z). Use this property to design a test with one-sided error
for the property of having degree at most 1. Prove that the test works correctly.

Exercise 3.1.12. By looking at f ∗ . . . ∗ f , the k-fold convolution of f by itself, construct a
linearity test with one-sided error that makes 2k queries to f . W Probability is the probability that
this test makes an error and accepts a function that is ε-far from being linear? Compare this to
applying the BLR test N times.





CHAPTER 4

Applications to Computer Science: Bounded Depth Circuits

In 1949 Shannon proposed the size of Boolean circuits as a measure of computation difficulty
of a function. Circuits are closely related in computational power to Turing machines, and thus
they provide a nice framework for understanding the time complexity. On the other hand their
especially simple definition makes them amenable to various combinatorial, algebraic, and analytic
methods.

A burst of activity in circuit complexity exploded about 30 years ago with first exponential
lower bounds for some circuit models, like bounded depth circuits, monotone circuits, restricted
branching programs, etc. There has been quick progress made for about two decades, but soon
various barriers are discovered.

A Boolean circuit is a directed acyclic graph. The vertices of indegree 0 are called inputs, and
are labeled with a variable xi or with a constant 0 or 1. The vertices of indegree k > 0 are called
gates and are labeled with a Boolean function on k inputs. The indegree of a vertex is called its
fanin and its outdegree is called its fanout. The most standard circuits are restricted to have gates
∧, ∨, ¬. One of the nodes is designated the output node, and then the circuit represents a Boolean
function in a natural way. The size of a circuit is its number of gates.

A simple counting argument establishes the following strong lower-bound. Roughly speaking,
there are too many Boolean functions f : {0, 1}n → {0, 1} (there are 22n of those functions)
compared to the number of small circuits.

Theorem 4.0.13 (Muller 1956). Almost every Boolean function f : {0, 1}n → {0, 1} requires
fanin 2 circuits of size Ω(2n/n). On the other hand every function f : {0, 1}n → {0, 1} can be
computed by a fanin 2 circuit of size O(2n/n)

x1 x2 x3 ¬ ¬ ¬

x1 x2 x3

∧ ∧ ∧ ∧

∨
Output

Figure 1. A circuit that computes the function f(x1, x2, x3) = x1 + x2 + x3 mod 2.

29
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Theorem 4.0.13 has a major shortcoming. It does not provide any explicit example of a function
which requires a large circuit. Also unfortunately it does not provide any example of a function
in NP that requires circuits of superpolynomial size. Despite the importance of lower bounds on
the circuit complexity, the best explicit known construction due to Blum 1984 provides a function
which requires finin 2 circuits of size 3n− o(n).

4.1. Bounded depth circuits

Considering our inability in proving lower bounds on the circuit complexity of explicit Boolean
functions, we need to impose strong restrictions on the circuits in order to be able to prove mean-
ingful lower bounds. We will restrict to bounded depth circuits. The first strong lower bounds for
bounded depth circuits were given by Ajtai [Ajt83] in 1983 and Furst, Saxe, Sipser [FSS84] in 1984.
They established a superpolynomial lower bound for constant depth circuits computing the parity
function. Later Yao [Yao85] gave a sharper exponential lower bound. In 1986, H̊astad [Has86]
further strengthened and simplified this argument, and obtained near optimal bounds.

Let us start by defining our constant depth circuits. As we mentioned earlier we are interested
in the model where we are restricted to gates ∧, ∨, ¬. Note that by De Morgan’s laws

¬(p1 ∨ . . . ∨ pk) = (¬p1) ∧ . . . ∧ (¬pk),

and

¬(p1 ∧ . . . ∧ pk) = (¬p1) ∨ . . . ∨ (¬pk),

we can assume that

• There are no ¬ gates in the circuit, and instead the inputs are either of the form xi or ¬xi
for variables xi, or constants 0 and 1.
• We shall consider circuits whose depths are much smaller than n, the number of inputs.

Hence we need to allow arbitrary fanin so that the circuit may access the entire input.
• We will assume that the circuits are of the special form where all ∧ and ∨ gates are

organized into alternating levels with edges only between adjacent levels. Any circuit can
be converted into this form without increasing the depth and by at most squaring the size.

These circuits are called alternating circuits. The depth of an alternating circuit is defined as
the distance from the output node to the input nodes. Let AC[d] denote the set of all alternating
circuits of depth at most d.

The alternating circuits of depth 2 are particularly important. Note that because of the “alter-
nation” condition, there are two different types of depth 2 alternating circuits. They correspond to
conjunctive normal form and disjunctive normal form formulas.

Definition 4.1.1 (Conjunctive Normal Form, ∧ of ∨). A formula is in conjunctive normal
form, abbreviated to CNF, if it is a conjunction (i.e. ∨) of clauses, where a clause is a disjunction
(i.e ∨) of literals (i.e. xi or ¬xi), where a literal and its negation cannot appear in the same clause

For example (x1 ∨x2)∧ (¬x1 ∨x2 ∨x3) is a formula in conjunctive normal form. It corresponds
to an alternating circuit of depth 2 with 3 gates.

Definition 4.1.2 (Disjunctive Normal Form, ∨ of ∧). A formula is in disjunctive normal form,
abbreviated to DNF, if it is a disjunction (i.e. ∨) of conjunctive clauses (i.e ∨ of literals).
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Consider a fixed point y = (y1, . . . , yn) ∈ {0, 1}n, and T = {i : yi = 1}. Note that the only
assignment that satisfies the clause (∧

i∈T
xi

)
∧

∧
i 6∈T
¬xi


is the assignment x := y. Hence given a Boolean function f : {0, 1}n → {0, 1}, for every point y
with f(y) = 1 we can create a clause which is satisfied only if x = y. By taking the ∨ of these
clauses we create a DNF formula that represents the function f .

Example 4.1.3. Consider the function f : {0, 1}2 → {0, 1} such that f(0, 0) = f(0, 1) =
f(1, 1) = 1 and f(1, 0) = 0. Then the DNF

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2)

represents f .

By changing the role of 0’s and 1’s and ∧ and ∨, we can represent f in CNF. We conclude
the following observation which says that the depth 2 alternating circuits are powerful enough to
compute any Boolean function.

Observation 4.1.4. Every function f : {0, 1}n → {0, 1} can be represented in both DNF and
CNF formulas using at most 2n clauses.

4.2. H̊astad’s switching lemma

The basic idea of Ajtai [Ajt83] and Furst, Saxe, Sipser [FSS84] for proving lower-bounds on
bounded depth AC circuits was to assign random values to a random subset of variables. This
will simplify a small size AC[d] circuit greatly. Consider a gate at level 1 (that is a gate directly
connected to inputs xi and ¬xi’s). Noting that the gate is either ∧ or ∨, if it has a large fanin,
then there is a high chance that a random assignment of values to a random subset of variables
will determine the value of the gate. Indeed an ∧ gate only needs one 0 input to be set to 0, and
an ∨ gate only needs one 1 on its inputs to be set to 1.

As we mentioned earlier, H̊astad further explored these ideas. The core of his proof is an
important lemma known as switching lemma. It is a key tool for proving lower bounds on the size
of the constant-depth Boolean circuits.

Definition 4.2.1. Let X = {x1, . . . , xn} be the input variables to a circuit C computing a
function f . A restriction ρ is an element in {0, 1, ∗}X .

A restriction ρ is interpreted as setting the variables assigned 0’s and 1’s and leaving the
variables that are assigned ∗’s. Under ρ we may simplify C by eliminating gates whose values
become determined. Call this the induced circuit Cρ computing the induced function fρ.

For a Boolean function f : {0, 1}n → {0, 1}, let D(f) denote the smallest s ≥ 0 such that f can
be expressed as a DNF formula that satisfies the following two properties:

• Each clause has size at most s;
• The clauses all accept disjoint sets of points. I.e. there is no x ∈ {0, 1}n that satisfies

more than one clause.

Note that the construction following Definition 4.1.2 shows that always D(f) ≤ n.
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Lemma 4.2.2 (H̊astad’s switching lemma). Let f be given by a CNF formula where each clause
has size at most t. Choose a random restriction ρ by setting every variable independently to ∗ with
probability p, and to 0 and 1 each with probability 1−p

2 . Then

Pr[D(fρ) > s] ≤ (5pt)s.

We are going to prove this lemma by induction. But for the induction to work one needs to
strengthen the statement:

Lemma 4.2.3 (H̊astad’s switching lemma, stronger version). Let f be given by a CNF formula
where each clause has size at most t. Choose a random restriction ρ by setting every variable
independently to ∗ with probability p, and to 0 and 1 each with probability 1−p

2 . For every function
F : {0, 1}n → {0, 1}, we have

(9) Pr[D(fρ) > s|Fρ ≡ 1] ≤ (5pt)s.

Proof. Set α := 5pt, and suppose that f = ∧mi=1Ci where Ci’s are clauses of size at most t.
We prove this statement by induction on m, the number of clauses in f . If m = 0, then f ≡ 1
and the lemma is obvious. For the induction step let us study what happens to C1, the first clause
in the circuit. First note that without loss of generality, we can assume that there are no negated
literals in C1, and hence

C1 =
∨
i∈T

xi,

for a subset T ⊆ {1, . . . , n}. To prove (9) it suffices to prove both

(10) Pr[D(fρ) > s|Fρ ≡ 1, ρT 6∈ {0, ∗}T ] ≤ αs,
and

(11) Pr[D(fρ) > s|Fρ ≡ 1, ρT ∈ {0, ∗}T ] ≤ αs.
To prove (10) note that

L.H.S of (10) = Pr[D(fρ) > s | (F ∧ C1)ρ ≡ 1] = Pr[D((∧mi=2Ci)ρ) > s | (F ∧ C1)ρ ≡ 1] ≤ αs,
where in the last inequality we used the induction hypothesis. It remains to prove (11). Note that

if ρT = ~0, then fρ ≡ 0 and thus D(fρ) = 0. Hence

L.H.S of (11) =
∑
Y⊆T
Y 6=∅

Pr[D(fρ) > s, ρY = ~∗, ρT−Y = ~0 | Fρ ≡ 1, ρT ∈ {0, ∗}T ]

≤
∑
Y⊆T
Y 6=∅

Pr[ρY = ~∗, ρT−Y = ~0 | Fρ ≡ 1, ρT ∈ {0, ∗}T ]×

Pr[D(fρ) > s | Fρ ≡ 1, ρY = ~∗, ρT−Y = ~0, ρT ∈ {0, ∗}T ]

≤
∑
Y⊆T
Y 6=∅

Pr
[
ρY = ~∗

∣∣Fρ ≡ 1, ρT ∈ {0, ∗}T
]
× Pr

[
D(fρ) > s

∣∣∣Fρ ≡ 1, ρY = ~∗, ρT−Y = ~0
]
.(12)

Observation 1 : Since setting variables in Y to ∗ cannot increase the probability that Fρ ≡ 1, we
have

Pr[Fρ ≡ 1 | ρY = ~∗, ρT ∈ {0, ∗}T ] ≤ Pr[Fρ ≡ 1 | ρT ∈ {0, ∗}T ],
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which by a straightforward argument (See Exercise 4.6.4) using the formula Pr[A|B]Pr[B] = Pr[A∧
B] leads to

Pr[ρY = ~∗ | Fρ ≡ 1, ρT ∈ {0, ∗}T ] ≤ Pr[ρY = ~∗ | ρT ∈ {0, ∗}T ] =

(
2p

1 + p

)|Y |
≤ (2p)|Y |.

Observation 2 : Define G : {0, 1}n → {0, 1} as

G : x 7→
{

0 xT\Y 6= ~0

F (x) xT\Y = ~0.

Consider ρ ∈ {0, ∗}n with ρY = ~∗. For σ ∈ {0, 1}Y , let ρσ denote the restriction ρσ = (σ, ρ[n]\Y ).
That is ρσ is the same as ρ except that to the variables in Y , the restriction ρσ assigns the values
of σ instead of ∗’s. Note that D(fρ) ≤ |Y |+ maxσ D(fρσ) (See Exercise 4.6.5). Thus by induction
hypothesis,

Pr[D(fρ) > s | Fρ ≡ 1, ρY = ~∗, ρT\Y = ~0]

≤ Pr
[
∃σ ∈ {0, 1}Y , D(fρσ) > s− |Y |

∣∣ Fρ ≡ 1, ρT\Y = ~0
]

≤
∑

σ∈{0,1}Y
Pr[D(fρσ) > s− |Y | | Gρ ≡ 1]

≤
∑

σ∈{0,1}Y
αs−|Y | ≤ (2|Y | − 1)αs−|Y |.

Combining the two observations with (12), we finish the proof:

L.H.S of (11) ≤
∑
Y⊆T
Y 6=∅

(2|Y | − 1)αs−|Y |(2p)|Y | = αs
∑
Y⊆T
Y 6=∅

((
4p

α

)|Y |
−
(

2p

α

)|Y |)
≤ αs.

�

Remark 4.2.4. Since the negation of a CNF is a DNF and vice versa, the switching lemma can
be used to convert a DNF formula with clauses of size at most t to a CNF with clauses of size at
most s in the same way as Lemma 4.2.3. However the statement that “the (conjunctive) clauses
in the obtained DNF accept different points” now becomes that “the (disjunctive) clauses in the
obtained CNF reject different points”.

Corollary 4.2.5. Let f be a Boolean function computed by an AC circuit of size M and depth
d whose output gate is ∧. Choose a random restriction ρ by setting every variable independently to
∗ with probability p = 1

10dsd−1 , and to 0 and 1 each with probability 1−p
2 . Then

Pr[D(fρ) > s] ≤M2−s.

Proof. We view the restriction ρ as obtained by first having a random restriction ρ0 with
Pr[∗] = 1/10, and then d− 1 consecutive restrictions ρ1, . . . , ρd−1 each with Pr[∗] = 1

10s . With high
probability, after the restriction ρ0, at the bottom level of the circuit all fanins are at most s. To
see this, consider two cases for each gate at the bottom level of the original circuit:

(1) The original fanin is at least 2s. In this case, the probability that the gate was not
eliminated by ρ0, that is, that no input to this gate got assigned a 1 (assuming without
loss of generality that the bottom level is an ∨ level) is at most (0.55)2s < 2−s.
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(2) The original fanin is at most 2s. In this case, the probability that at least s inputs got

assigned a ∗ by ρ0 is at most
(

2s
s

)
(1/10)s ≤ 2−s.

Thus, the probability of failure after the first restriction is at most m12−s, where m1 is the
number of gates at the bottom level.

We now apply the next d − 2 restrictions, each with Pr[∗] = 1
10s . After each of these, we use

H̊astad’s switching lemma (see Remark 4.2.4) to convert the lower two levels from CNF to DNF (or
vice versa), and collapse the second and third levels (from the bottom) to one level, reducing the
depth by one. For each gate of distance two from the inputs, the probability that it corresponds
to a function g with D(gρi) > s, is bounded by (5 1

10ss)
s ≤ 2−s. The probability that a particular

gate fails to satisfy the desired property is no more than 2−s. Since the top gate is ∧, after these
d − 2 stages we are left with a CNF formula of bottom fanin at most s. We now apply the last
restriction and by switching lemma we get a function fρ with D(fρ) ≥ s. The probability of failure
at this stage is at most 2−s. To compute the total probability of failure, we observe that each gate
of the original circuit contributed 2−s probability of failure exactly once. �

Note that if in the above proof we stop before applying the last restriction ρd−1, then we obtain
the following corollary which uses a larger value for p.

Corollary 4.2.6. Let f be a Boolean function computed by an AC circuit of size M and depth
d ≥ 2 whose output gate is ∧. Choose a random restriction ρ by setting every variable independently
to ∗ with probability p = 1

10d−1sd−2 , and to 0 and 1 each with probability 1−p
2 . Then

Pr[fρ does not have a CNF with fanin ≤ s] ≤M2−s.

Similarly if the output gate of the original circuit is ∨, then the probability that fρ does not have a
DNF with fanin ≤ s is bounded by M2−s.

4.3. Influences in bounded depth circuits

Let us now introduce an important notion in the study of Boolean functions f : {0, 1}n → {0, 1}.
Definition 4.3.1 (Influence). Let f : Zn2 → {0, 1}. The influence of the ith variable on f is

the probability that changing the ith coordinate changes the the value of f . That is,

Ii(f) = Pr[f(x) 6= f(x+ ei)],

where x ∈ {0, 1}n is sampled uniformly and ei is the i-th standard vector. The total influence of f
is defined as

If =

n∑
i=1

Ii(f).

Note that always 0 ≤ Ii(f) ≤ 1 and 0 ≤ If ≤ n. The parity function f : x 7→ x1+. . .+xn(mod 2)
has total influence n, and a constant function has total influence 0.

The sensitivity of a point x with respect to f , denoted by sf (x), is the number of coordinates
i for which f(x) 6= f(x+ ei). Since

(13) If = E[sf (x)],

sometimes If is called the average sensitivity of f .
Our next goal is to show that the total influence of small circuits of small depth cannot be

large. First we consider the CNF and the DNF circuits with small clauses.

Lemma 4.3.2. Let f be a CNF or a DNF formula where all the clauses are of size at most s.
Then If ≤ 2s.
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Proof. We prove the lemma for the DNF case, and the CNF case follows by replacing f with
1− f . For x ∈ Zn2 , let s1→0(x) denote the number of i ∈ [n] such that f(x) = 1 and f(x+ ei) = 0.
Trivially if f(x) = 0, then s1→0(x). Since f is represented by a DNF with clauses of size at most
s, for every x, we have s1→0(x) ≤ s. Hence

Ii(f) =
n∑
i=1

Pr[f(x) 6= f(x+ ei)] =
n∑
i=1

2Pr[(f(x) = 1) ∧ (f(x+ ei) = 0)] = 2E[s1→0(x)] ≤ 2s.

�

Theorem 4.3.3 (Boppana [Bop97]). Let f be a Boolean function computed by an AC circuit
of depth d and size M , then

If ≤ 3(20 logM)d−1.

Proof. Applying Corollary 4.2.6 with s = 2 logM and p = 1
10d−1sd−2 , and combining it with

Lemma 4.3.2 we conclude that

Pr[Ifρ ≥ 2s] ≤M2−s ≤ 1

M
≤ 1

n
.

Here we are assuming n ≤M by counting the input gates in the size of the circuit. Hence

Eρ[Ifρ ] ≤ Pr[Ifρ > 2s]n+ 2s ≤ 1

n
n+ 2s ≤ 2s+ 1 ≤ 3s.

On the other hand trivially

Eρ[Ifρ ] = Eρ,x[sfρ(x)] = pE[sf (x)] = pIf .

Hence

If ≤
3s

p
≤ 3(10s)d−1 = 3(20 logM)d−1.

�

4.4. The Fourier tail of functions with small bounded depth circuits

Recall that the characters of Zn2 are χS : x 7→ (−1)
∑
i∈S xi for S ⊆ [n]. So in this notation, the

Fourier expansion of f : Zn2 → C is f =
∑

S⊆[n] f̂(S)χS . We think of |S| as the “frequency” of the

character χS . This corresponds to the fact that when |S| is small, χS is more stable under local
changes (e.g. change of one random coordinate).

As we defined in Section 2.2, the Fourier degree of a function f : Zn2 → C, denoted by degF (f),

is the size of the largest S such that f̂(S) 6= 0. For a positive integer k, and a function f : Zn2 → C,
we define

f=k :=
∑

S:|S|≤k

f̂(S)χS ,

and f≤k, f≥k, f<k and f>k are defined similarly. Note that by the Parseval identity,

‖f‖22 =

n∑
k=0

‖f=k‖22.

We leave the proof of the following easy lemma as an exercise to the reader (See Exercise 4.6.6).

Lemma 4.4.1. Let f : {0, 1}n → {0, 1} be computed by a ∧-clause of size s without repeated
variables. Then degF (f) = s.
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Remark 4.4.2. Identifying {0, 1}n with the n-dimensional hypercube, note that f in Lemma 4.4.1
is the indicator function of a sub-cube of codimension s. So Lemma 4.4.1 is equivalent to the fact
that the degree of the indicator function of a subcube of the hypercube {0, 1}n is its codimension.

Corollary 4.4.3. Let f be a Boolean function computed by an AC circuit of size M and
depth d. Choose a random restriction ρ by setting every variable independently to ∗ with probability
p = 1

10dsd−1 , and to 0 and 1 each with probability 1−p
2 . Then

Pr[degF (fρ) > s] ≤M2−s.

Proof. Since degF (g) = degF (1 − g) for every function g, we can assume that the output
gate of the circuit computing f is ∨ (otherwise we replace f with 1 − f and negate the circuit).
Now by Corollary 4.2.5 with probability at least 1 −M2−s, we have fρ = ∨mi=1Ci for ∧ clauses
C1, . . . , Cm, each of size at most s, such that the clauses all accept disjoint sets of points (i.e. no
x ∈ {0, 1}n satisfies more than one clause). By the latter property we can write fρ =

∑m
i=1Ci,

where here we are identifying clauses with the functions represented by them. By Lemma 4.4.1, we
know degF (Ci) ≤ s for all 1 ≤ i ≤ m. Hence the degree of their sum is also at most s. We conclude

Pr[degF (fρ) > s] ≤M2−s.

�

Now we are at the point to prove the main theorem of this section.

Theorem 4.4.4 (Linial, Mansour, Nisan [LMN93]). Let f be a Boolean function computed by
an AC circuit of depth d and size M , and let t be any integer. Then∑

|S|>t

|f̂(S)|2 ≤ 2M2−t
1/d/20.

Proof. Consider a random restriction ρ ∈ {0, 1, ∗}n with Pr[∗] = p ≤ 1
10dkd−1 for values of k

and p to be determined later. We sample ρ in two steps. First we pick T ⊆ [n] corresponding to
the positions that are not assigned a ∗. Then we pick xT ∈ {0, 1}T uniformly at random, and ρ is
defined as ρ := (xT ,~∗). Set fxT := fρ = f(xT , ·). Since χS(x) =

∏
i∈S(−1)xi , we can decompose it

as

χS(x) = χS∩T (xT )χS\T (xT ).

Note that fxT : {0, 1}T → {0, 1} and since

f(x) =
∑
S⊆[n]

f̂(S)χS(x) =
∑
S⊆[n]

f̂(S)χS∩T (xT )χS\T (xT ) =
∑
A⊆T

∑
B⊆T

f̂(A ∪B)χB(xT )

χA(xT ),

we have

f̂xT (A) =
∑
B⊆T

f̂(A ∪B)χB(xT ),

for every A ⊆ T . Hence by the Parseval identity

ExT
∣∣∣f̂xT (A)

∣∣∣2 =
∑
B⊆T
|f̂(A ∪B)|2,
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which shows that

ExT
∥∥∥f>kxT ∥∥∥2

2
= ExT

∑
A⊆T
|A|>k

∣∣∣f̂xT (A)
∣∣∣2 =

∑
A⊆T
|A|>k

∑
B⊆T
|f̂(A ∪B)|2 =

∑
S:|S∩T |>k

|f̂(S)|2.

Now we use the randomness in T . Since f>kxT = 0 if degF (fρ) ≤ k, and that always ‖f>kxT ‖22 ≤
‖fxT ‖22 ≤ 1, we have

(14) ET

 ∑
S:|S∩T |>k

|f̂(S)|2
 = ETExT

∥∥∥f>kxT ∥∥∥2

2
= Eρ

∥∥∥f>kρ ∥∥∥2

2
≤ Pr[degF (fρ) > k] ≤M2−k,

where the last inequality follows from Corollary 4.4.3 as we chose Pr[∗] = p ≤ 1
10dkd−1 . Also we can

bound the left-hand size of (14) from below:

L.H.S. of (14) =
∑
S⊆[n]

Pr[|S ∩ T | > k]|f̂(S)|2 ≥
∑
|S|>t

Pr[|S ∩ T | > k]|f̂(S)|2.

Taking p = 1
10t(d−1)/d and k = t1/d/20, satisfies p ≤ 1

10dkd−1 , and by the Chernoff bound (Lemma 1.4.4)

for |S| > t, the probability of |S ∩ T | > k = pt/2 is at least 1− 2e
−pt
12 ≥ 1

2 . Hence by (14), we have∑
S:|S|>t

1

2
|f̂(S)|2 ≤M2−t

1/d/20.

�

4.5. The Razborov-Smolensky Theorem

Taking g = f≤t, Theorem 4.4.4 shows that ‖f − g‖22 ≤ 2M2−t
1/d/20. In other words circuits of

low depth and small size can be approximated by functions of low Fourier degree in the L2 norm.
The next theorem shows a different type of approximating such functions with low degree functions.

Theorem 4.5.1 ([Raz87], [Smo87]). Let f : {0, 1}n → {0, 1} be computed by a circuit of depth
d and size M . For any s, there is a function g with degree r ≤ (s logM)d such that

Pr[f(x) 6= g(x)] ≤
(

1− 1

2e

)s
M.

Proof. The function g is constructed in an inductive way. We will show how to make a step
with an ∧ gate. Since the whole construction is symmetric with respect to 0 and 1, the step also
holds for an ∨ gate. Let

f = ∧ki=1fi

where k < M . For convenience, let us assume that k = 2` is a power of 2. For every p =
2−1, 2−2, . . . , 2−` = 1/k we pick s random subsets of {1, . . . , k} by including every element in the
subset independently with probability p. We obtain a collection of sets S1, . . . , St with t = s` ≤
s logM . Let g1, . . . , gk be the approximating functions for f1, . . . , fk provided by the previous
inductive step. We set

g :=

t∏
i=1

(1− |Sj |+
∑
j∈Si

gj).
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By the induction assumption, the degrees of gj are ≤ (s logm)d−1, hence the degree of f is bounded

by t(s logm)d−1 ≤ (s logm)d. Next we bound the probability of f(x) 6= g(x) conditioned on the
event that all of the inputs f1, . . . , fk are calculated correctly. We have

Pr[f(x) 6= g(x)|gj = fj for all j] = Pr

 t∏
i=1

1− |Si|+
∑
j∈Si

fj

 6= k∏
j=1

fj

 .
To bound this we fix a vector of specific values f1(x), . . . , fk(x) and calculate the probability of an
error over the possible choices of the random sets Si. Note that if all the fj(x)’s are 1 then the
value of f(x) = 1 is calculated correctly with probability 1. Suppose that f(x) = 0 (and thus at
least one of the fj ’s is 0). Let 1 ≤ z ≤ k be the number of zeros among f1(x), . . . , fk(x), and α ∈ Z
be such that 2α ≤ z < 2α+1. Let S be a random set with parameter p = 2−α−1. Our approximation
will be correct if S hits exactly one 0 among the z zeros of f1(x), . . . , fk(x). The probability of this
event is exactly

zp(1− p)z−1 ≥ 1

2
(1− p)1/p−1 >

1

2e
.

Hence the probability of being wrong after s such sets are being chosen is bounded by (1− 1
2e)

s and

Pr

 t∏
i=1

(1− |Si|+
∑
j∈Si

fj) 6=
k∏
j=1

fj

 < (1− 1

2e

)s
.

By making the same probabilistic argument at every node, by the union bound we conclude that
the probability that an error happens is at most M

(
1− 1

2e

)s
. �

4.6. Conclusion and open problems

As we shall see later in (??), we have If = 4
∑

S⊆[n] |S||f̂(S)|2. Hence for every ε > 0,∑
S:|S|≥If/ε

|f̂(S)|2 ≤ ε.

Note that by Theorem 4.3.3, an AC circuit of polynomial size and constant depth d satisfies
If = O((log n)d−1). Thus most of the L2 Fourier mass of such functions is concentrated on the

first O((log n)d−1) levels. In the case of d = 2, where f is a CNF or a DNF of polynomial size, we
conclude that If = O(log n) and the L2 Fourier mass is concentrated on the first O(log n) levels.

There are nO(logn) Fourier coefficients in those levels. Mansour[Man95] conjectured that these
Fourier coefficients are concentrated only on polynomially many values of S.

Conjecture 4.6.1 (Mansour[Man95]). Consider a Boolean function f : {0, 1}n → {0, 1}
described by a CNF or a DNF of polynomial size, and a constant ε > 0. There is a set S of
polynomial size (depending on ε) such that∑

S 6∈S
f̂(S)2 ≤ ε.

For monotone functions an even stronger statement is conjectured in [BKS99]. No counter-
example is known even for the non-monotone case.

Conjecture 4.6.2 ([BKS99, Conjecture 7.2]). Let ε > 0 be a fixed real number and d ≥ 1 be
a fixed integer. Let f : {0, 1}n → {0, 1} be a monotone function expressed by a depth-d circuit of
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size M . There is a set S of polynomial size in M (where the polynomial depends on d and ε) so
that ∑

S 6∈S
f̂(S)2 ≤ ε.

It would be really interesting to prove an inverse for Boppana’s theorem, Theorem 4.3.3. In fact
in [BKS99] Benjamini, Schramm and Kalai conjectured a very strong inverse statement that every

monotone function f can be approximated by a circuit of size eO(I
1/d−1
f ) for some positive integer

d. However this was disproved by O’Donnell and Wimmer [OW07] using an example consisting of
∨ of a DNF and a CNF (hence a depth 3-circuit) with total influence O(log n).

Focusing only on the O(log n) case. I do believe both a negative or a positive answer to the
following problem would be very interesting.

Problem 4.6.3 (Open problem). Is it true that for every ε, C > 0 there exist constants d, k ∈ N
and δ > 0 such that for every f : {0, 1}n → {0, 1} with total influence If ≤ C log n, there exists an

AC circuit g of depth d and size nk satisfying

Pr[f(x) 6= g(x)] ≤ ε.

Exercises
Exercise 4.6.4. In the proof of Lemma 4.2.3, fill the gaps in the argument of Observation 1.

Exercise 4.6.5. For ρ ∈ {0, ∗}n with ρY = ~∗ show that D(fρ) ≤ |Y |+ maxσ D(fρσ) where the
maximum is over all σ ∈ {0, 1}Y .

Exercise 4.6.6. Prove Lemma 4.4.1.

Exercise 4.6.7. Let f : {0, 1}n → {0, 1} be computed by a decision tree (nodes are labeled with
variables and at every node we branch according to the value of that variables) of depth d. Prove
that D(f) ≤ d and D(1− f) ≤ d.





CHAPTER 5

Applications to Computer Science: Machine Learning

In this chapter we overview some of the applications of the Fourier analysis to an important
area of computer science called machine learning. Machine learning concerns the construction and
study of systems that can learn from data. Theoretical results in machine learning mainly deal
with a type of i learning called supervised learning. A supervised learning algorithm analyzes the
training data and produces an inferred function, which can be used for mapping new examples that
are not in the training data. In other words the algorithm observes the value of a function on some
points (training data), and then tries to predict the value of the function on the rest of the points.

One of the most popular computational learning models is Valiant’s Probably approximately
correct (PAC) model of learning from random examples []. In this framework, the learner receives
samples from an known function f belonging to a certain class of possible functions (called con-
cept class), and must produce a generalization function (called the hypothesis) that is a low-error
approximation of f .

In this course, our concept classes C consist only of Boolean function. That is

C ⊆ {f : {0, 1}n → {0, 1} : n ∈ N}.

For example our concept class might be the class of all dictator functions, where a dictator function
maps x = (x1, . . . , xn) to xi for some fixed i.

The goal of a learning algorithm A for a concept class C is to identify an unknown function
f ∈ C by using random examples from this function only. In particular, the probabilistic algorithm
A takes as input an accuracy parameter ε > 0 and a confidence parameter δ > 0. It has access to
an example oracle EX(f, µ) where µ is a distribution on {0, 1}n. When queried, the example oracle
provides the learning algorithm with an example [x, f(x)], where x is drawn from the distribution
µ. The output of A is a hypothesis h, which is a boolean function. The hypothesis h is said to be
ε-close to f if

Prx∼µ[f(x) 6= h(x)] ≤ ε.

We say that A is a learning algorithm for C if for all f ∈ C and distributions µ, when A is
run with example oracle EX(f, µ), with probability at least 1− δ it outputs a hypothesis which is
ε-close to f .

Since PAC learning in its full generality seems to be very difficult for many natural concept
classes, often some of its requirements are relaxed. One of the most frequently studied relaxations
is uniform-distribution PAC learning in which the algorithm need only work when the distribution
µ is the uniform distribution over {0, 1}n.

Another relaxation of the PAC model is to allow the learning algorithm to make membership
queries, that is the learner is allowed to ask for the value of the target function f on points of its
choosing. This model gives the learner considerably more power than usual and is thus a significant
weakening.

41
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5.1. Uniform-distribution PAC learning

Consider a target function f : {0, 1}n → {0, 1} and suppose that we have an example oracle that
provides us with samples [x, f(x)] where x is drawn from the uniform distribution. Suppose for the

moment that our task is to learn one of the Fourier coefficients of the function f , say f̂(S). Note

that f̂(S) = E[f(x)χS(x)], and we can try to estimate this average by aS := 1
N

∑N
i=1 f(xi)χS(xi)

where x1, . . . , xN ∈ {0, 1}n are provided by the example oracle and hence are independent, each is
drawn from the uniform distribution. Using the Chernoff bound (Lemma ??)

(15) Pr[|aS − f̂(S)| ≥ λ] ≤ 2e−λ
2N/2.

Hence by taking N to be sufficiently large, with high probability, we can obtain a very accurate

estimate of f̂(S). Now let us see how one can use this to devise a general approach to uniform-
distribution PAC learning.

Suppose that there exists a collection B of subsets of [n] such that for every function f in the
concept class C, we have

‖f −
∑
S∈B

f̂(S)χS‖2 =
∑
S 6∈B
|f̂(S)|2 ≤ ε.

Then we can try to estimate f̂(S) for all S ∈ B as above, and then approximate f with g :=∑
S∈B aSχS . Note that

‖f − g‖22 =
∑
S 6∈B
|f̂(S)|2 +

∑
S∈B
|f̂(S)− aS |2 ≤ ε+

∑
S∈B
|f̂(S)− aS |2,

and by taking λ =
√

ε
|B| and N = 2|B|ε−1 log(2|B|/δ) in (15), we obtain that with probability

1− 2e−λ
2N/2|B| = 1− δ, for all S ∈ B, we have |aS − f̂(S)| < λ and consequently

(16) ‖f − g‖22 ≤ ε+ λ2|B| ≤ 2ε.

Hence with probability at least 1− δ, the function g is a good approximation of f as ‖f − g‖22 ≤ 2ε.
However we can not output g as the hypothesis function as it is not necessarily a Boolean function.
This can be easily remedied by rounding g to a Boolean function. Namely, we define

h(x) :=

{
1 g(x) ≥ 1

2
0 g(x) < 1

2

Since f is a Boolean function itself, we have

Pr[f(x) 6= h(x)] = E[|f(x)− h(x)|2] ≤ 4E[|f(x)− g(x)|2] = 4‖f − g‖22,
which is at most 8ε if (16) holds. Thus we proved the following theorem.

Theorem 5.1.1 (Linial, Mansour, Nisan [LMN93]). Suppose that for a concept class C, there
exists a collection B of size m of subsets of [n] such that for every function f ∈ C we have∑

S 6∈B
|f̂(S)|2 ≤ ε.

Then there is an algorithm that given access to B and the oracle example for f with uniform
distribution, runs in time O(mε−1 log(m/δ)) and with probability at least 1− δ produces a function
h : {0, 1}n → {0, 1} such that Pr[f(x)− h(x)] = O(ε).
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As we discussed in Section 4.6 it follows from Boppana’s theorem (Theorem 4.3.3) that if f is
computable by a circuit of polynomial size and depth d, then for some K = Oε((log n)d−1), we have∑

|S|>K

|f̂(S)|2 ≤ ε.

Note that there are
∑K

i=0

(
n
i

)
= nK subsets of [n] of size at most K. Hence we conclude that

the concept class of functions computable by circuits of depth d and of size bounded by a given

polynomial are PAC learn-able under the uniform distribution in time nO((logn)d−1) = eC(logn)d for
some C = O(1).

5.2. PAC learning under the query model

In the previous section we showed how to learn concept classes for which the Fourier spectrum of
the functions in the class concentrated on a small set B, by approximating their Fourier coefficients
on sets that belong to B. However, it might be the case that a function can be approximated
by a small number of coefficients, but these coefficients do not come from a fixed set B for all the
functions in the concept class. In this section we describe a learning algorithm that learns the target
function without necessarily having access to the set B. However, there is a great disadvantage,
that is the algorithm uses the query model.

Theorem 5.2.1. Suppose that for every function f : {0, 1}n → {0, 1} in a concept class C, there
exists a collection B of size m of subsets of [n] such that∑

S 6∈B
|f̂(S)|2 ≤ ε.

There is an algorithm that queries the value of f on O(mε−1 log(m/δ)) points and produces a
function h : {0, 1}n → {0, 1} such that Pr[f(x)− h(x)] = O(ε) with probability at least 1− δ.

Consider the Fourier expansion of f ,

f =
∑
z∈Zn2

f̂(z)χz.

The learning algorithm in Theorem 5.2.1 is based on detecting the large Fourier coefficients of f .

Suppose that we want to detect all the Fourier coefficients that are larger than θ :=
√

ε
|B| > 0

in absolute value. By Parseval the number of such coefficients is at most 1/θ2. Defining g =∑
z:|f̂(z)|≥θ f̂(z)χz, we have

‖f − g‖22 =
∑

S:|f̂(z)|<θ

|f̂(z)|2 ≤ ε+
∑

z:|f̂(z)|<θ
z∈B

|f̂(z)|2 ≤ ε+ θ2|B| ≤ 2ε.

If we can obtain a good approximation of g, then we can round it to a Boolean function as in the
proof of Theorem 5.1.1 by defining

h(x) :=

{
1 g(x) ≥ 1

2
0 g(x) < 1

2

We have Pr[f(x) 6= h(x)] ≤ 4‖f − g‖22 ≤ 8ε.
So from this point on, we will focus on finding an approximation of the function g. To this

end it suffices to find all z for which |f̂(z)| ≥ θ, as once we find those z we can approximate f̂(z)
empirically as in (15).
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The algorithm partitions coefficients according to their prefix. For α ∈ Zk2, let fα : Zn−k2 → R
be defined as

fα(x) = Ey∈Zk2f(y, x)χα(y).

We can simplify this as

fα(x) =
∑

(z1,z2)∈Zn2

f̂(z1, z2)χz2(x)Ey [χz1+α(y)] =
∑

(α,z2)∈Zn2

f̂(α, z2)χz2(x),

where in the first sum z1 ∈ Zk2 and z2 ∈ Zn−k2 . By Parseval

Ex[fα(x)2] =
∑

(α,z2)∈Zn2

|f̂(α, z2)|2.

Note that

Ex[fα(x)2] = Ex∈Zn−k2

(
Ey∈Zk2f(y, x)χα(y)

)2
= Ex∈Zn−k2

Ey1,y2∈Zk2
[f(y1, x)χα(y1)f(y2, x)χα(y2)]

Since |f(y1, x)χα(y1)f(y2, x)χα(y2)| ≤ 1, Chernoff bound implies that if we take sufficiently many
random points x, y1, y2, we can obtain an accurate approximation for Ex[fα(x)2]. More precisely,
similar to (15), we can average over random triples x, y1, y2, and obtain an approximation aα such
that

(17) Pr
[∣∣aα − Ex[fα(x)2]

∣∣ ≥ λ] ≤ 2e−λ
2N/2

By setting λ and N properly we can assume that with high probability we can obtain sufficiently
precise approximation of aα ≈ Ex[fα(x)2] for a given value of α. Hence to simplify the presentation
we assume from now on that we can learn the value of Ex[fα(x)2] correctly. Note that if Ex[fα(x)2] <

θ2, then we know that for all z = (α, z2) we have |f̂(z)| < θ. Hence running the following subroutine
for α = ∅ outputs all the Fourier coefficients that are at least θ in absolute value

Subroutine SA(α)

• if Ex[fα(x)2] ≥ θ2 then
• if |α| = n, then OUTPUT α
• else run SA(α, 0) and SA(α, 1)

Now as mentioned earlier, knowing all the values of z for which |f̂(z)| > θ, we can find a good
approximation h for f .

5.2.1. Functions with bounded spectral norm. The L1 norm of the Fourier spectrum

of a function ‖f̂‖1 :=
∑ |f̂(a)| is sometimes referred to as the spectral norm of f . The concept

classes consisting of Boolean functions with small spectrum norms are an important case where
Theorem 5.2.1 can be applied.

Lemma 5.2.2. Let ε > 0, and let f : Zn2 → {0, 1} satisfy ‖f̂‖1 ≤M , then for θ = ε/M , we have∑
S 6∈Bθ

|f̂(S)|2 ≤ ε,

where

Bθ = {S : |f̂(S)| ≥ θ}.
Furthermore |Bθ| ≤ 1/θ2 = M2/ε2.
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Proof. We have ∑
S 6∈Bθ

|f̂(S)|2 ≤
(

max
S 6∈Bθ

|f̂(S)|
)(∑

|f̂(S)|
)
≤ θM ≤ ε.

Furthermore by Parseval

1 ≥
∑
S∈Bθ

|f̂(S)|2 ≥ |Bθ|θ2,

which leads to the desired conclusion. �

Let us now study Boolean functions with small spectral norm. First we recall some facts from
Lemma 2.1.9 and Remark 2.1.10. Let V ⊆ Zn2 be a linear subspace of co-dimension d. Then there
exists linearly independent a1, . . . , ad ∈ Zn2 such that

V = {x : ∀i 〈ai, x〉 = 0(mod 2)},
or equivalently

V = {x : ∀i χai(x) = 1}.
Then V ⊥ = span{a1, . . . , ad}, and note that

1V =
∑
v∈V ⊥

1

2d
χv.

It follows that

‖1̂V ‖1 = 2d
1

2d
= 1.

More generally consider a co-set of V , say W = y + V for some y ∈ Zn2 . Then

1W =
∑
v∈V ⊥

χv(y)

2d
χv.

and thus ‖1̂W ‖1 = 1. So we established that every co-set of Zn2 has spectral norm 1. Exercise 5.3.4
shows that these are the only sets with spectral norm 1. We will use these facts to show that small
decision trees, or more generally small parity decision trees provide examples of Boolean functions
with small spectral norm.

Definition 5.2.3 (Decision tree). A decision tree is a labeled binary tree. Each internal node of
the tree is labeled with a variable xi, and each leaf by a bit b ∈ {0, 1}. Given an input x ∈ {0, 1}n, a
computation over the tree is executed as follows: Starting at the root, stop if it’s a leaf, and output
its label. Otherwise, query its label xi. If xi = 0, then recursively evaluate the left subtree, and if
xi = 1, evaluate the right subtree.

For a leaf ` of a decision tree, let L` ⊆ Zn2 denote the set of all x ∈ Zn2 whose computational
path ends in `. Let f be the function computed by the decision tree. We have

f =
∑

`:label(`)=1

1L` .

Note that L` is a co-set of the subspace

{x : xi = 0 for all i on the root to ` path},
and hence ‖1̂L`‖1 ≤ 1. Consequently

‖f̂‖1 ≤
∑

`:label(`)=1

‖1̂L`‖1 ≤ |Leaves|.
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These facts can be generalized to the so called parity decision trees.

Definition 5.2.4 (Parity Decision tree). A parity decision tree (also denoted as ⊕-decision
tree) is a labeled binary tree. Each internal node of the tree is labeled with a character χa, and
each leaf by a bit b ∈ {0, 1}. Given an input x ∈ {0, 1}n, a computation over the tree is executed
as follows: Starting at the root, stop if it’s a leaf, and output its label. Otherwise, query its label
χa(x). If χa(x) = 1, then recursively evaluate the left subtree, and if χa(x) = −1, evaluate the right
subtree.

Note that the value of χa(x) is determined by
∑

i∈S xi (mod 2) where S ⊆ [n] is the corre-
sponding subset of a. Hence one can equivalently assume that the internal nodes are labeled with
parity functions ⊕S(x) :=

∑
i∈S xi (mod 2). This justifies the term parity decision trees.

Consider a leaf ` of a ⊕-decision tree, and let a1, . . . , ad, ` be the nodes on the path from the
root to the leaf `. Then L` is the set of all x such that the value of χai(x) is consistent with the
path for all i = 1, . . . , d. Thus L` is a co-set of the subspace

{a1, . . . , ad}⊥ := {x : χai = 1 ∀1 ≤ i ≤ d}.
So similar to the case of the decision tree we conclude that ‖1̂L`‖1 ≤ 1, and consequently ‖f̂‖1
is bounded by the number of the leaves of the tree. Let us state this as a lemma for the future
reference.

Lemma 5.2.5. Let f be a Boolean function computed by a ⊕-decision tree. Then ‖f̂‖1 is bounded
by the number of leaves of the tree.

Combining this with Lemma 5.2.2 and Theorem 5.2.1 we conclude that the class of ⊕-decision

trees of size m is learn-able in the query model in time O
(
m2ε−3 log

(
m2

ε2δ

))
.

5.2.2. Inverse Theorems for Small Spectral norm. Lemma 5.2.5 provides a way to con-
struct Boolean functions with small spectral norms. Now let us investigate the structure of all the
functions with small spectral norm.

Theorem 5.2.6 (Sanders 2014+). Let f : Zn2 → {0, 1} be a boolean function, and suppose

that the spectral norm ‖f̂‖1 is at most M . Then There exists subspaces V1, . . . , VL of Zn2 for some

L ≤ eMO(1)
such that

(18) f =
L∑
j=1

±1Vj

Remark 5.2.7. Note that every function f satisfying (18) has spectral norm bounded by L.

Theorem 5.2.6 is an improvement over an earlier bout of L ≤ 22O(M4)
due to Sanders and Ben

Green [GS08].

We will not prove Theorem 5.2.6 in this course as its proof is based on various results from
additive combinatorics. Instead we will prove a recent different inverse theorem for such functions
by Shpilka, Tal, and Volk [SlV13].

Theorem 5.2.8 (Shpilka, Tal, and Volk [SlV13]). Let f : Zn2 → {0, 1} satisfy ‖f̂‖1 ≤ M .
There exists a co-set V of co-dimension at most M2 such that f is constant on V .

To prove this theorem it is more convenient to work with functions f : Zn2 → {−1, 1}. As we
have mentioned earlier a function f : Zn2 → {0, 1} can be easily converted to such a function via the



5.2. PAC LEARNING UNDER THE QUERY MODEL 47

affine transformation f 7→ 2f−1, and this will not have a significant effect on the Fourier spectrum
of the function.

Consider a function f : Zn2 → {−1, 1}. The proof relies on the simple equation f2 = 1. By
expanding the Fourier representation of both sides we obtain that for every b 6= 0,∑

a∈Zn2

f̂(a)f̂(a+ b) = 0.

This identity could be interpreted as saying that the mass on pairs whose product is positive is the
same as the mass on pairs whose product is negative. In particular, if we consider the two heaviest
elements in the Fourier spectrum, say, f(α) and f(β), and let δ = α + β, then by restricting f to
one of the subspaces χδ = 1 or χδ = −1 we get a substantial saving in the spectral norm. This
happens since there is a significant L1 mass on pairs f(λ) and f(λ+ δ) that have different signs.

Before stating the proof of Theorem 5.2.8, let us discuss the effect that restricting a function
to a coset has on the Fourier spectrum. Consider f : Zn2 → R, and let a ∈ Zn2 be a non-zero
element. Consider the (n − 1)-dimensional subspace V = {a}⊥ = {x : χa(x) = 1} and its coset
W = {x : χa(x) = −1}. Since V is a subspace over Z2, it can be identified with Zn−1

2 , and hence it

is meaningful to discuss the Fourier transform of f |V . Then for every b ∈ V , the coefficients f̂(b)

and f̂(b+ a) collapse to a single coefficient:

(19) f̂ |V (b) := f̂(b) + f̂(a+ b).

Similarly for every b ∈W ,

(20) f̂ |V (b) := f̂(b)− f̂(a+ b).

The following Lemma 5.2.9 is the key part of the proof of Theorem 5.2.8

Lemma 5.2.9. Let f : Zn2 → {−1, 1} be a Boolean function such that ‖f̂‖1 = M > 1. Then

there exists γ ∈ Zn2 and b ∈ {−1, 1} such that ‖f̂ |χγ=b‖1 ≤M − 1/M .

Proof. Let f̂(α) be the maximal Fourier coefficient of f in absolute value, and f̂(β) be the

second largest. It follows from
∑ |f̂(a)| = M and the Parseval identity

∑ |f̂(a)|2 = 1 that |f̂(α)| ≥
1
M . We can assume that β̂ 6= 0, as otherwise the function f must be of the form ±χα, and that
correspond to an (n− 1)-dimensional coset.

Without loss of generality assume that f̂(α)f̂(β) > 0, i.e. they have the same sign, the other
case is completely analogous. By taking the Fourier transform of both sides of f2 = 1, we get that

(21)
∑
γ∈Zn2

f̂(γ)f̂(α+ β + γ) = 1̂(α+ β) = 0.

Let Nα+β ⊆ Zn2 be the set of vectors γ such that f̂(γ)f̂(α+ β + γ) < 0. Note that by assumption,
α, β 6∈ Nα+β. Switching sides in (21), we get

2
∣∣∣f̂(α)f̂(β)

∣∣∣ =
∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣− ∑

γ 6∈Nα+β

γ 6=α,β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ .

In particular,

(22) |f̂(α)||f̂(β)| ≤ 1

2

∑
γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ .
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We now use the fact that f̂(β) is the second largest in absolute value, and f̂(α) does not appear in
the sum, to bound the right hand side:

(23)
∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ ≤ |f̂(β)|

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
.

Then (22) and (23) (as well as the assumption |f̂(β)| 6= 0) together imply

(24) |f̂(α)| ≤ 1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
.

Let f ′ = f |χα+β=1. Then for every γ the coefficients f̂(γ) and f̂(α + β + γ) collapse to a single

coefficient whose absolute value is |f̂(γ) + f̂(α+ β + γ)| (recall Equation (19)). For γ ∈ Nα+β,

|f̂(γ) + f̂(α+ β + γ)| =
∣∣∣|f̂(γ)| − |f̂(α+ β + γ)|

∣∣∣
which reduces the L1 norm of f ′ compared to that of f by at least min(|f̂(γ)|, |f̂(α+ β + γ)|). In
total, since both γ and α+ β + γ belong to Nα+β, we get:

‖f̂ ′‖1 ≤ ‖f̂‖1 −
1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
.

Therefore by (24) we have

‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(α)| ≤M − 1

M
.

�

Proof of Theorem 5.2.8. Apply Lemma 5.2.9 iteratively on f . After less than M2 steps,
we are left with a function g which is a restriction of f on a coset defined by the restrictions so far,
such that ‖g‖1 = 1. Then Exercise 5.3.4 finishes the proof. �

5.3. Concluding remarks and open problems

Recently Tsang, Wong, Xie, and Zhang [TWXZ13] noticed that a slight twist in the proof of
Theorem 5.2.8 improves the co-dimension in to O(M).

It is not difficult to see that in Lemma 5.2.9 the restriction f |χγ 6=b also provides some decrease

in the spectral norm. That is ‖f̂ |χγ 6=b‖1 ≤ ‖f‖1 − |f̂(β)|, where f̂(β) is the second largest Fourier
coefficient in absolute value. Using this one can prove the following theorem which unfortunately
provides a bound that depends on n.

Theorem 5.3.1 (Shpilka, Tal, and Volk [SlV13]). Every f : Zn2 → {0, 1} with ‖f̂‖1 ≤M can

be computed by a ⊕-decision tree of size at most 2M
2
nM .

An interesting class of Boolean functions with small spectral norm are the Fourier sparse func-

tions. Consider a Boolean function f : Zn2 → {0, 1} and denote Support(f̂) := {a : f̂(a) 6= 0}. Note

that the spectral norm is bounded by the size of the Fourier support: ‖f̂‖1 ≤ |Support(f̂)|.
Conjecture 5.3.2 ([MO09, ZS10]). Every f : Zn2 → {0, 1}can be computed by a ⊕-decision

tree of depth at most O(poly(log s)) where s = |Support(f̂)|.
The same techniques that are used in the proof of Theorem 5.3.1 can be applied to prove the

following theorem.
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Theorem 5.3.3 (Shpilka, Tal, and Volk [SlV13]). Every f : Zn2 → {0, 1} with ‖f̂‖1 ≤M can

be computed by a ⊕-decision tree of depth at most M2 log s where s = |Support(f̂)|.

Exercises
Exercise 5.3.4. Show that if f : Zn2 → {−1, 1} satisfies ‖f̂‖1 = 1, then f = ±χα for some

α ∈ Zn2 .

Exercise 5.3.5. Show that if f : Zn2 → {0, 1} can be computed by a ⊕-decision tree of depth d

then |Support(f̂)| ≤ 4d.





CHAPTER 6

Hypercontractivity, Friedgut’s Theorem, KKL inequality

We start the study of an important tool in harmonic analysis. Namely, the hypercontractivity
of the noise operator. The ideas and results were developed by different people (Bonami, Beckner,
Ornstein-Uhlenbeck, Gross, Nelson) in different contexts.

6.1. The noise operator

We begin by formally introducing the noise operator in dimension one, i.e. on the space of
functions f : Z2 → C. Let µp denote the Bernoulli distribution with success probability p (that is
µp({1}) = p and µp({0}) = 1− p).

Definition 6.1.1 (The 1-dimensional noise operator). Let 0 ≤ ρ ≤ 1 and set p = 1
2(1−ρ). For

a function f : Z2 → C, define Tρf : Z2 → C by

Tρf(x) = Ey∼µpf(x+ y).

Note that Tρf(x) = Ez [f(z)], where z is a noisy copy of x (it is flipped with probability p):

(25) z =

{
x with probability 1− p,
1− x with probability p.

The value of p is chosen so that E[(−1)x(−1)z] = ρ. From this one can deduce that for every

f : Z2 → C we have Tρ[f ] = f̂(∅) + ρf̂({1})χ{1} while f = f̂(∅) + f̂({1})χ{1}.
The operator Tρ is linear

Tρ(f + λg) = Tρf + λTρg,

and its corresponding matrix is

(26)

[
1− p p
p 1− p

]
.

Since Tρ is an averaging operator it is contractive:

Theorem 6.1.2 (Contractivity in dimension 1). For 1 ≤ p ≤ ∞, the operator Tρ is a contractive
operator from Lp to Lp. That is,

‖Tρf‖p ≤ ‖f‖p.
Proof. A simple application of Minkowski’s Inequality (Theorem 1.3.2) gives the result.

‖Tρf‖p =
(
Ex
∣∣Ey∼µpf(x+ y)

∣∣p)1/p
≤ Ey∼µp (Ex|f(x+ y)|p)1/p

= ‖f‖p.
�

The operator Tρ satisfies a stronger property. Namely it is hypercontractive.

51
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Theorem 6.1.3 (Hypercontractivity - The one-dimensional case).

Let 1 < p ≤ q <∞. Then for 0 ≤ ρ ≤
√

p−1
q−1 ,

‖Tρf‖q ≤ ‖f‖p.
Proof. Consider f : Z2 → C and set α = 1

2(1− ρ). Then

‖Tρf‖q = (Ex |Ey∼µαf(x+ y)|q)1/q

=

(
1

2

(
(1− α)|f(0)|+ α|f(1)|

)q
+

1

2

(
α|f(0)|+ (1− α)|f(1)|

)q)1/q

≤
(

1

2
|f(0)|p +

1

2
|f(1)|p

)1/p

= ‖f‖p.
Above, the inequality can be derived using standard methods from calculus. �

Next we will consider the noise operator in the general case. Let µnp denote the product
probability measure on {0, 1}n corresponding to the Bernoulli measure µp. In other words for

y ∈ {0, 1}n, we have µnp (y) = p
∑
yi(1 − p)n−

∑
yi . The noise operator in general is defined as the

tensor of the 1-dimensional noise operators: Tρ ⊗ . . .⊗ Tρ:
Definition 6.1.4 (Noise operator in general). Let 0 ≤ ρ ≤ 1 and set p = 1

2(1 − ρ). For a
function f : Zn2 → C, define Tρf : Zn2 → C by

Tρf(x) = Ey∼µnp f(x+ y).

There are several equivalent ways to define the noise operator. First observe that for every
x ∈ Zn2 , we have

Ey∼µnp [f(x+ y)] = 2nEy
[
f(x+ y)µnp (y)

]
= 2nf ∗ µnp (x),

where in the second expected value y ∈ Zn2 is chosen according to the uniform distribution. We can
also write Tρf(x) = Ez [f(z)], where

(27) zi =

{
xi with probability 1− p,
1− xi with probability p,

independently for each i. In other words z is a noisy copy of x (each coordinate is flipped with
probability p). Again Tρ is a linear operator

Tρ(f + λg) = Tρf + λTρg,

and its corresponding matrix can be obtained by taking the n-th tensor power of the matrix in
(26).

Note that Tρ has a smoothing property. When ρ = 1, we have Tρf = f , but as one decreases
ρ, the function Tρf “converges” to the constant E[f ] and indeed, for ρ = 0, we have Tρf = E[f ].
Note Tρf(x) takes the average of f evaluated at points sampled according to z. When ρ = 1, the
random variable z is concentrated on point x, and thus the average is just over x so we obtain the
original function f . As ρ decreases, the variable z becomes more spread out. Finally ρ = 0, we
lose the information about x and z is distributed uniformly over all points in Zn2 . Therefore in this
case we get the constant function E[f ]. Recall from Lecture 3, when introducing the concept of
convolution, we saw that if S is the Hamming ball of radius r around 0 in Zn2 , then f ∗1S(x) is the
average of f over the Hamming ball of radius r around x. The noise operator, which is basically
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a convolution itself, has a smoother definition and the Hamming ball is replaced by a distribution
centered at x.

Let us now see the effect of the noise operator on the Fourier spectrum.

Lemma 6.1.5. If f : Zn2 → C, then

Tρf =
∑
S⊆[n]

ρ|S|f̂(S)χS .

Proof. Since Tρ is linear it suffices to show that for every S ⊆ [n], we have

TρχS = ρ|S|χS .

Indeed we have

TρχS(x) = Ey∼µnpχS(x+ y) = χS(x)Ey∼µnpχS(y) = χS(x)Eyi∼µp
∏
i∈S

(−1)yi

= χS(x)
∏
i∈S

Eyi∼µp(−1)yi = χS(x)ρ|S|.

�

In other words, the noise operator dampens the high frequency Fourier coefficients, and the
dampening effect increases exponentially with the frequency.

In the above proof, we utilized the fact that the noise operator acts on each coordinate inde-
pendently. In fact, in many results regarding the noise operator we can employ the same trick:
analyze the effect of the noise in one coordinate and then use the direct product structure to obtain
the desired result. It was for this reason that we first treated the 1-dimensional case separately.

Note that the proof of Theorem 6.1.2 remains valid for the general case.

Theorem 6.1.6 (Contractivity). For 1 ≤ p ≤ ∞, the operator Tρ (acting on the space of
functions Zn2 → C) is a contractive operator from Lp to Lp. That is,

‖Tρf‖p ≤ ‖f‖p.
Next we will show that Tρ in general is hypercontractive. Before stating this theorem and

presenting its proof, we introduce some notation.
As stated before, the direct product structure of Zn2 is very useful and is often exploited in proofs.

For this reason we introduce some notation for product probability spaces. For a distribution µ
over X and a distribution ν over Y , consider the product probability distribution µ× ν. Consider
f : (X × Y, µ × ν) → C. We define ‖f‖Lp(ν) to be the function x 7→ ‖fx‖Lp(ν), where fx = f(x, ·).
Similarly, define ‖f‖Lp(µ) to be the function y 7→ ‖fy‖Lp(µ), where fy = f(·, y).

Given a subset S ⊂ [n], we can view a function f : Zn2 → C as a function f : ZS2 × ZS̄2 → C.
Then it is straightforward to verify,

(28) ‖f‖q =
∥∥∥‖f‖Lq(ZS2 )

∥∥∥
Lq(ZS̄2 )

.

It can be instructive to see how
∥∥∥‖f‖Lp(ZS2 )

∥∥∥
Lq(ZS̄2 )

expands out:

(29)
∥∥∥‖f‖Lp(ZS2 )

∥∥∥
Lq(ZS̄2 )

=
(
Ey∈ZS̄2

∣∣∣‖fy‖Lp(ZS2 )

∣∣∣q)1/q
=

(
Ey∈ZS̄2

∣∣∣∣(Ex∈ZS2 |fy(x)|p
)1/p

∣∣∣∣q)1/q

.

Equation (28) follows immediately as fy(x) = f(x, y).
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As in the proof of Theorem 6.1.2, a simple application of Minkowski’s Inequality gives∥∥‖f‖L1(µ)

∥∥
Lp(ν)

≤
∥∥‖f‖Lp(ν)

∥∥
L1(µ)

.

Indeed, ∥∥‖f‖L1(µ)

∥∥
Lp(ν)

= ‖Ex∼µ|f(x, ·)|‖Lp(ν) ≤ Ex∼µ ‖ |f(x, ·)| ‖Lp(ν) =
∥∥‖f‖Lp(ν)

∥∥
L1(µ)

.

This is in fact a special case of a more general inequality:

Theorem 6.1.7 (Generalized Minkowski’s Inequality). For 1 ≤ p ≤ q ≤ ∞, we have∥∥‖f‖Lp(ν)

∥∥
Lq(µ)

≤
∥∥‖f‖Lq(µ)

∥∥
Lp(ν)

.

Now we have all the tools we need to prove the Bonami-Beckner inequality. Recall that Lp
norms are increasing on probability space. That is for 1 ≤ p ≤ q ≤ ∞ we have ‖f‖p ≤ ‖f‖q. The
Bonami-Beckner inequality says that if we sufficiently smooth f by applying the operator Tρ, we
can reverse the direction of this inequality.

Theorem 6.1.8 (Hypercontractivity - Bonami 1970, Beckner 1975, Nelson 1973, Gross 1975).

Let 1 < p ≤ q <∞. Then for 0 ≤ ρ ≤
√

p−1
q−1 ,

‖Tρf‖q ≤ ‖f‖p.
Proof. The proof is by induction on n. We have already verified the inequality for n = 1 in

Theorem 6.1.3. Next we exploit the direct product structure to prove it for all n.
Consider f : Zn2 → C. For S ⊆ [n], let TSρ denote the noise operator applied to the coordinates

in S. That is, it is an operator on the function f(·, xS̄), where xS̄ denotes the variables xi for i 6∈ S.
Let S = {1}. In light of Equation (29), we have

‖Tρf‖q = ‖TSρ T S̄ρ f‖q
=
∥∥∥‖TSρ T S̄ρ f‖Lq(ZS2 )

∥∥∥
Lq(ZS̄2 )

(Equation (28))

≤
∥∥∥‖T S̄ρ f‖Lp(ZS2 )

∥∥∥
Lq(ZS̄2 )

(Induction Hypothesis)

≤
∥∥∥‖T S̄ρ f‖Lq(ZS̄2 )

∥∥∥
Lp(ZS2 )

(Generalized Minkowski)

≤
∥∥∥‖f‖Lp(ZS̄2 )

∥∥∥
Lp(ZS2 )

(Induction Hypothesis)

= ‖f‖p (Equation (28)).

�

Next we state a very useful corollary of the Bonami-Beckner inequality.

Corollary 6.1.9. Let f : Zn2 → C be a function and k > 0 be an integer. Then for 1 < p ≤ 2

‖f≤k‖2 ≤
(

1√
p− 1

)k
‖f‖p,

and for 2 ≤ q <∞,

‖f≤k‖q ≤
(√

q − 1
)k
‖f‖2.
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Proof. In the case of 1 < p ≤ 2, we can apply the Bonami-Beckner inequality with ρ =
√
p− 1

and get

‖Tρf‖2 ≤ ‖f‖p.
Observe that

‖Tρf‖22 =
∑
S

ρ2|S||f̂(S)|2 ≥ ρ2k
∑

S:|S|≤k

|f̂(S)|2 = ρ2k‖f≤k‖22.

Therefore

‖f≤k‖2 ≤
1

ρk
‖f‖p =

(
1√
p− 1

)k
‖f‖p.

Case q ≥ 2 follows by duality. Let p satisfy 1
p + 1

q = 1. Note that 1 < p ≤ 2 so we can apply the first

part using the Lp norm. Since Lp and Lq are dual norms we have (see question 2 of assignment 1):

‖f≤k‖q = sup
g 6=0

〈f≤k, g〉
‖g‖p

≤ sup
g 6=0

〈f≤k, g〉
(
√
p− 1)k‖g≤k‖2

= (
√
q − 1)k sup

g 6=0

〈f≤k, g≤k〉
‖g≤k‖2

.

Since the dual of the L2 norm is the L2 norm itself,

(
√
q − 1)k sup

g 6=0

〈f≤k, g≤k〉
‖g≤k‖2

= (
√
q − 1)k‖f≤k‖2 ≤ (

√
q − 1)k‖f‖2.

�

Exercise 6.1.10. Prove the q ≥ 2 case of Corollary 6.1.9 by applying the Bonami-Beckner

inequality to g =
∑

S ρ
−|S|f̂(S)χS.

Recall that the Lp norms are increasing, that is, ‖f‖p ≤ ‖f‖q when 1 ≤ p ≤ q ≤ ∞. An
immediate consequence of Corollary 6.1.9 is that if deg(f) ≤ k, then for 1 < p ≤ 2,

‖f‖p ≤ ‖f‖2 ≤
(

1√
p− 1

)k
‖f‖p,

and for 2 ≤ q <∞,

‖f‖2 ≤ ‖f‖q ≤
(√

q − 1
)k
‖f‖2.

Remark 6.1.11. The above inequalities show that the function is “flat”. If there are large
fluctuations in f , then we cannot hope to have such strong equivalences between the different
norms. In this sense, one can think of the Bonami-Beckner inequality as a concentration inequality.
Indeed, viewing f as a random variable, by bounding the q-norms in terms of the 2-norm, we are
essentially bounding the moments of f in terms of the standard deviation of f .

Remark 6.1.12. The case of deg(f) = 1 is known as Khintchine inequality: for a1, a2, . . . , an ∈
C, √

p− 1

(∑
i

|ai|2
)1/2

≤
(
E

∣∣∣∣∣∑
i

εiai

∣∣∣∣∣
p)1/p

≤
(∑

i

|ai|2
)1/2

,

where the expectation is over {εi} which are±1 valued i.i.d. random variables with Pr[εi = 1] = 1/2.
By setting f =

∑
i aiχ{i}, we see the correspondence immediately.
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6.2. Influence and Friedgut’s Theorem

The Bonami-Beckner inequality is a powerful tool in the analysis of Boolean functions. Recall
that in Definition 4.3.1, we defined the influence of the ith variable on f is the probability that
changing the ith coordinate changes the the value of f . That is,

Ii(f) = Pr[f(x) 6= f(x+ ei)],

where x ∈ {0, 1}n is sampled uniformly and ei is the i-th standard vector, and the total influence
of f is defined as

If =
n∑
i=1

Ii(f).

Remark 6.2.1. Considering the support of f , Supp(f) = {x : f(x) 6= 0}, as a subset of the
hypercube Qn, If corresponds to the edge boundary of Supp(f). For a subset S of the hypercube,
the edge boundary of S, denoted ∂S, is the set of edges of Qn with one end point in S and the
other endpoint outside of S. It follows by definition that

If =
2|∂Supp(f)|

2n
.

When studying influences, it is natural to consider f(i) : Zn2 → {−1, 0, 1} (sometimes referred
to as the ith derivative of f), which is defined as

f(i)(x) = f(x)− f(x+ ei).

Indeed, since |f(i)(x)| = |f(i)(x)|2, we have

Ii(f) = Ex|f(i)(x)| = Ex|f(i)(x)|2 = ‖f(i)‖22.
The Fourier expansion of f(i) is

f(i)(x) =
∑
S

f̂(S)χS(x+ ei)− f̂(S)χS(x) = 2
∑
S:i∈S

f̂(S)χS(x),

and therefore
Ii(f) = 4

∑
S:i∈S

|f̂(S)|2.

We can also get a nice expression for the total influence of f in terms of its Fourier coefficients:

If =
∑
i

4
∑
S:i∈S

|f̂(S)|2 = 4
∑
S

|S||f̂(S)|2.

With this, we can get a simple lower bound for the total influence in terms of the variance of f .

Note that Var(f) = E[f2]− (E[f ])2 =
∑

S:S 6=∅ |f̂(S)|2 and therefore

(30) If ≥ 4Var(f).

This bound in general can be quite weak. A stronger bound can be obtained by a discrete
isoperimetric inequality.

Theorem 6.2.2 (Edge Isoperimetric Inequality). For S a subset of the vertices of the hypercube
Qn we have

|∂S| ≥ −|S| log2

|S|
2n
.

Equality is achieved when S is a subcube.
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Proof. The proof is quite straightforward using induction on n. The base case, n = 1, is
easily verified so we directly move to the induction step. Partition Qn into two disjoint subcubes
Q1
n−1 and Q2

n−1 of dimension n−1 each. Similarly partition S into two sets S1 = S ∩V (Q1
n−1) and

S2 = S ∩ V (Q2
n−1). Without loss of generality assume |S1| = |S2|+ t. Now the boundary of S will

have edges from the boundary of S1 in Q1
n−1, edges from the boundary of S2 in Q2

n−1, and also at
least t edges that must go between the two subcubes. Using the induction hypothesis, we have

|∂S| ≥ |S1|(n− 1− log |S1|) + |S2|(n− 1− log |S2|) + t

= |S1|n− |S1| − |S1| log |S1|+ |S2|n− |S2| − |S2| log |S2|+ t

= |S1|n− |S1| log |S1|+ |S2|n− |S2| log |S2| − 2|S2|.

Note that |S|(n− log |S|) = |S1|n+ |S2|n− (|S1|+ |S2|) log(|S1|+ |S2|), so we are done provided

|S1| log |S1|+ |S2| log |S2|+ 2|S2| ≤ (|S1|+ |S2|) log(|S1|+ |S2|).
This inequality is easily derived using simple manipulations. �

Defining f such that Supp(f) = S, we can rewrite the Edge Isoperimetric Inequality in terms
of the total influence:

(31) If ≥ −E[f ] log2 E[f ].

Consider a balanced function f : Zn2 → {0, 1}, i.e. E[f ] = 1/2. Both lower bounds (30) and
(31) on If imply that If ≥ 1/2, which shows

max
i
Ii(f) ≥ 1

2n
.

Note that the lower bound If ≥ 1/2 is tight for half-cubes, i.e. for f(x) = xi or f(x) = −xi for
some i. Two questions naturally arise:

(1) (Ben-Or Linial) How small can maxi Ii(f) be for balanced functions?
(2) What are the functions with small total influence?

We first give an answer to the second question. For this we need to define a junta.

Definition 6.2.3. A Boolean function f : {0, 1}n → {0, 1} is called a k-junta if there exists
J ⊆ [n] of size at most k and g : {0, 1}J → {0, 1} such that f(x) = g(xJ). In other words, f is a
k-junta if its output only depends on at most k input coordinates.

Observe that if f is a k-junta then If ≤ k/2. This is because every variable that f does not
depend on has influence 0, and every other variable has influence at most 1/2. Friedgut’s Theorem
gives a partial converse to this observation and states that a Boolean function with small total
influence is well approximated by a k-junta with a small k.

Theorem 6.2.4 (Friedgut). Let f : {0, 1}n → {0, 1} be a Boolean function. Then there exists

a 2O(If/ε)-junta g : {0, 1}n → {0, 1} such that

Pr[f(x) 6= g(x)] ≤ ε.

Proof. First note that the probabilistic approximation can be interpreted in terms of the L2

difference:

‖f − g‖22 = Pr[f(x) 6= g(x)].
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Let J be the set of most influential variables of f , that is, J = {i ∈ [n] | Ii(f) ≥ δ} for some
parameter δ to be determined later. It is natural to try to find a g that depends only on the
variables in J . Define h to be

h =
∑
S⊆J

f̂(S)χS .

Clearly h depends only on the variables in J , but it is not necessarily a Boolean function. Neverthe-
less we can round h to make it Boolean. Let g(x) = 1 if h(x) > 1/2 and let g(x) = 0 if h(x) ≤ 1/2.
By rounding we haven’t lost much in the following sense. If ‖f −h‖22 ≤ ε, then ‖f − g‖22 ≤ 4ε. This
is easy to see since for any x with f(x) 6= g(x), |f(x)− h(x)|2 ≥ 1/4.

Thus our task reduces to showing that

‖f − h‖22 ≤
ε

4
.

By Parseval we have

‖f − h‖22 =
∑
S

(f̂(S)− ĥ(S))2 =
∑
S 6⊆J

f̂(S)2.

So we want to upper bound the `2 mass of f̂ on sets S with S 6⊆ J . To do this we will divide
the above sum into two parts, the low degree part and the high degree part, and deal with them
separately.

Intuitively, a function with small total influence should not have large `2 mass on high degree
characters as high degree characters, viewed as 0/1 valued functions, have large total influence.
This intuition is easy to formalize. Set k = 2If/ε. Then

If = 4
∑
S

|S||f̂(S)|2 ≥ 4k
∑
|S|≥k

|f̂(S)|2,

which implies ∑
S:|S|≥k

|f̂(S)|2 ≤ If
4k
≤ ε

2
.

Thus,

‖f − h‖22 ≤
ε

8
+

∑
S:|S|<k
S 6⊆J

f̂(S)2.

Now to bound the low degree part we will use Bonami-Beckner inequality (the form given in
Corollary 6.1.9). First observe that

(32)
∑

S:|S|<k
S 6⊆J

f̂(S)2 =
∑
i 6∈J

∑
S:|S|<k
i∈S

f̂(S)2.

We want to bound the inside sum on the RHS above. Recall that

f(i)(x) = f(x)− f(x+ ei) = 2
∑
i∈S

f̂(S)χS(x),

So the quantity we want to bound is ‖f<k(i) ‖22. We apply Corollary 6.1.9 with p = 4/3 to get

‖f<k(i) ‖2 ≤ 3k/2‖f(i)‖4/3,
and so

‖f<k(i) ‖22 ≤ 3k
(
Ex|f(i)(x)|4/3

)3/2
= 3k

(
Ex|f(i)(x)|2

)3/2
.
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Recall that Ii(f) = ‖f(i)‖22. Also, since i 6∈ J , Ii(f) < δ. Thus,

‖f<k(i) ‖22 ≤ 3kIi(f)3/2 ≤ 3kδ1/2Ii(f).

Equivalently,

4
∑

S:|S|<k
i∈S

f̂(S)2 ≤ 3kδ1/2Ii(f).

Going back to (32), we have∑
i 6∈J

∑
S:|S|<k
i∈S

f̂(S)2 ≤
∑
i 6∈J

3kδ1/2Ii(f) ≤ 3kδ1/2If .

Putting things together

‖f − h‖22 ≤
ε

8
+ 3kδ1/2If ≤

ε

8
+
ε

8
=
ε

4
,

when δ is set to be sufficiently small. Recall that we set k = 2If/ε, i.e. If = kε/2. Now a simple

calculation shows that we can set δ = 1/33k+2. With this δ, we have

|J | ≤ If
δ
≤ 2O(If/ε),

as required.
�

6.3. Kahn-Kalai-Linial Theorem

In this lecture we are going to prove the Kahn-Kalai-Linial (KKL) Theorem that says that every

balanced function has an influential variable, that is, there is some i ∈ [n] such that Ii(f) = Ω( logn
n ).

The proof is essentially the same as Friedgut’s Theorem1. We separate the Fourier spectrum
of f into high degree and low degree parts. The high degree part is easy to handle and for
the low degree part we apply the Bonami-Beckner inequality. The reason why Bonami-Beckner
inequality is effective can be seen as follows. For 1 ≤ p < 2, when g is a Boolean function, we

have E[|g|] = E[|g|p] = E[|g|2], which implies that ‖g‖p = ‖g‖2/p2 . Now if ‖g‖2 =: δ is small, then

‖g‖p = δ · δ(2/p−1) is very small. So applying Corollary 6.1.9 to g, we get a good bound on ‖g<k‖2
and gain a factor of δ2/p−1.

Theorem 6.3.1 (Kahn-Kalai-Linial). Let f : Zn2 → {0, 1} be such that E[f ] = α. If δ =
maxi Ii(f), then

If ≥ Ω (α(1− α) log 1/δ)

In particular

δ ≥ Ω

(
α(1− α)

log n

n

)
.

Proof. Recall that Var(f) = E[f2]− (E[f ])2 = α− α2 = α(1− α). Also since E[f ]2 = f̂(∅)2,

Var(f) =
∑

S:|S|≥1

|f̂(S)|2.

1Historically the KKL Theorem came before Friedgut’s Theorem.
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In (30) we observed that Var(f) ≤ 1
4If and that this leads to the bound δ ≥ 1

n for balanced
functions. Our goal now is to obtain a better upper bound on the variance, which will lead to a
better lower bound on δ. In particular we are aiming for the upper bound

Var(f) =
∑

S:|S|≥1

|f̂(S)|2 . If
log 1/δ

.

Our strategy will be as in the proof of Friedgut’s Theorem. We divide the sum into the low degree
and high degree parts, and upper bound each part separately.

Recall that

If = 4
∑
S

|S||f̂(S)|2 ≥ 4k
∑
|S|>k

|f̂(S)|2.

This implies ∑
|S|>k

|f̂(S)|2 ≤ If
4k
.

Setting k ≈ log 1/δ, the upper bound above is what we want for Var(f). So with this choice of k,
we would like to show an upper bound on the low degree part that is negligible compared to If/4k.

To handle the low degree part, we will apply Bonami-Beckner inequality to ‖f(i)‖2 with p = 3/2:

∑
1≤|S|≤k

|f̂(S)|2 ≤
n∑
i=1

∑
i∈S
|S|≤k

|f̂(S)|2 =
1

4

n∑
i=1

‖f≤k(i) ‖
2
2 ≤

1

4

n∑
i=1

2k‖f(i)‖23/2.

Using the fact that |f(i)(x)| ∈ {0, 1}, we have

1

4

n∑
i=1

2k‖f(i)‖23/2 =
1

4
2k

n∑
i=1

‖f(i)‖8/32 =
1

4
2k

n∑
i=1

Ii(f)4/3 ≤ 2kδ1/3
n∑
i=1

Ii(f) = 2kδ1/3If .

Putting things together we get

α(1− α) =
∑

S:|S|≥1

|f̂(S)|2 ≤ If
2k

+ 2kδ1/3If .

Setting k = 1
10 log 1/δ shows

1

10
α(1− α) log 1/δ ≤ If .

We also know that If ≤ δn. These upper and lower bounds on If imply by a straightforward
calculation that

δ ≥ Ω

(
α(1− α)

log n

n

)
.

�

The KKL Theorem is tight, which can be seen by considering the tribes function. Let

f(x) =
m∨
i=1

k∧
j=1

xij ,
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where k = log n− log lnn and m = n/k. Without loss of generality consider the first variable. For
x1 to be able to change the output, all other variables in the first clause must be set to 1, and all
other clauses must be evaluating to 0. Thus,

I1(f) = Pr[f(x) 6= f(x+ ei)] = (1− 2−k)m−1 · 2−k+1

= 21−k(1− 2−k)m−1 =
2 lnn

n
(1− lnn

n
)m−1 =

2 lnn

n
(1− o(1)).

Now we will see some corollaries to KKL Theorem and some related conjectures.

Corollary 6.3.2. If a balanced function f : Zn2 → {0, 1} satisfies I1(f) = I2(f) = · · · = In(f)
(e.g. f is invariant under certain symmetries), then If & log n.

Bourgain and Kalai show that under strong symmetry assumptions, the above bound can be
improved significantly. For instance if f is a symmetric function, i.e. f ’s output only depends on
the Hamming weight of the input, then If &

√
n.

A Boolean function f : {0, 1}n → {0, 1} is called increasing (or monotone) if f(x) ≤ f(y)
whenever xi ≤ yi for all i.

Corollary 6.3.3. Let f : {0, 1}n → {0, 1} increasing balanced function. Then there is a set
J ⊆ [n] of size Oε(

n
logn) such that

E
[
f(x)|xJ = ~1

]
≥ 1− ε,

and

E
[
f(x)|xJ = ~0

]
≤ ε,

Proof Sketch. Let i ∈ [n] have the highest influence. Then setting xi = 1 will increase the

average of f by at least Ω( logn
n ). Repeat with the new function to obtain a set J1 of size Oε(

n
logn)

with

E
[
f(x)|xJ1 = ~1

]
≥ 1− ε.

Repeating the same process but setting the variables to 0 leads to another set J2 of size Oε(
n

logn)

with

E
[
f(x)|xJ2 = ~0

]
≤ ε.

The set J := J1 ∪ J2 satisfies the desired properties. �

Ajtai and Linial constructed examples to show that there are functions for which Corollary 6.3.3
cannot be improved significantly in any direction.

Theorem 6.3.4 ([AL93]). There exists a balanced and increasing function f : {0, 1}n → {0, 1}
such that for every set J of size o

(
n

log2 n

)
, we have

E
[
f(x)|xJ = ~1

]
− E[f ] = o(1),

and

E
[
f(x)|xJ = ~0

]
− E[f ] = o(1).

Problem 6.3.5 (Open Problem). It is believed that in Theorem 6.3.4, the bound o( n
log2(n)

) can

be improved to close to o( n
log(n)) matching the bound in Corollary 6.3.3
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Conjecture 6.3.6 (Freidgut). Let f : [0, 1]n → {0, 1} be an increasing function. Then there
exists a subset J ⊆ [n] with |J | = oε(n) such that

E
[
f(x)|xJ = ~0

]
≤ ε or E

[
f(x)|xJ = ~1

]
≥ 1− ε.

Conjecture 6.3.7 (Freidgut). Suppose f : {0, 1}n → {0, 1} is increasing and maxi Ii(f) ≤
c logn
n , for some constant c. Then there is J ⊆ [n] of size Oε,c(log n) such that

E
[
f(x)|xJ = ~0

]
≤ ε or E

[
f(x)|xJ = ~1

]
≥ 1− ε.

We can make a similar conjecture for non-monotone functions.

Conjecture 6.3.8. Suppose f : {0, 1}n → {0, 1} satisfies maxi Ii(f) ≤ c logn
n , for some constant

c. Then there is J ⊆ [n] of size Oε,c(log n) and y ∈ {0, 1}J such that

E [f(x)|xJ = y] ≤ ε or E [f(x)|xJ = y] ≥ 1− ε.
The influences of increasing Boolean functions have a very special and useful characterization

in terms of f ’s Fourier coefficients. It is not hard to verify that

Ii(f) = Pr[f(x) 6= f(x+ ei)] = −Ef(x)χ{i}(x) = −f̂({i}).
Using this and the Cauchy-Schwarz inequality, it is easy to get an upper bound on the total influence
of increasing functions:

If =
∑
i

|f̂({i})| ≤ √n
∑
i

(
|f̂({i})|2

)1/2
≤ √n.

Note that for non-monotone functions we can have If = n (e.g. f = parity). The above bound is
tight since Imaj = Θ(

√
n), where maj denotes the majority function:

maj(x) :=

{
1 if

∑
i xi ≥ n/2,

0 otherwise.



CHAPTER 7

The Semigroup method

In Chapter 6 we introduced the noise operator Tρ, and studied some of its useful properties.
In this chapter we take a more general approach, and study the noise operator as an instance of
a big class of operators. This point of view will also shed some light on the definition of the noise
operator.

These general classes of operators are defined through random walks. They are parametrized
by time t ∈ [0,∞), and defined in the following way. Given a (continuous time) random walk,
the corresponding operator Qt maps f to the function Qtf : a 7→ E[f(Xa(t))] where Xa(t) is the
position of the random walk at time t if it is started at point a.

We start this chapter by studying the simple discrete random walk on the cube.

7.1. The Poisson random walk on the cube

Consider the n-dimensional hypercube with vertex set Zn2 , where two vertices are neighbours
if and only if they differ in one coordinate. Let us examine the standard discrete random walk on
this graph started at a vertex a ∈ Zn2 :

• Y a(0) = a is the starting point.
• At time t ∈ N, we choose Y a(t) from the n neighbors of Y a(t− 1) uniformly at random.

Let ft be the distribution of Yt, i.e. ft(x) = Pr[Y a(t) = x]. Note that

f0(x) = 1a(x) = 2−n
n∏
i=1

(1− (−1)ai(−1)xi) = 2−n
∑
S⊆[n]

χS(a)χS(x).

Define the operator K : L2(Zn2 )→ L2(Zn2 ) as

(33) Kf(x) =
1

n

n∑
i=1

f(x+ ei),

so that ft = Kft−1 = K2ft−2 = . . . = Ktf0 for every integer t > 1. Note that for every character
χS , we have

KχS =
1

n
((n− |S|)χS − |S|χS) =

(
1− 2|S|

n

)
χS .

This shows that χS are eigenvectors of the operator K with corresponding eigenvalues (1− 2|S|/n).
It follows that

ft = 2−n
∑
S⊆[n]

(
1− 2|S|

n

)t
χS(a)χS ,

and since |1− 2|S|/n| < 1− 2/n for S 6= ∅, [n], we have∥∥ft − 2−n
(
χ∅ + (−1)tχ[n]

)∥∥
∞ ≤ (1− 2/n)t ≤ e−2t/n.

63
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So as t→∞, we obtain an exponentially fast convergence of the form

f2t → 2−n
(
χ∅ + χ[n]

)
= 21−n1[

∑
xi≡20],

and similarly

f2t+1 → 2−n
(
χ∅ − χ[n]

)
= 21−n1[

∑
xi≡21].

In other words, on even times, this random walk quickly converges to the uniform measure on
points with even parity, and on odd times it converges to the uniform distribution on the points
with odd parity. This means that the random walk is not fully ergodic (i.e. it does not converge
to the uniform measure), as the bipartite structure of the cube prevents it from being so.

To obtain an ergodic random walk, we modify the transitions slightly by making them “lazy”.
We choose a parameter λ(0, 1

2) and define the random walk Z(t) := Za,λ(t) as

• Z(0) = a is the starting point.
• At time t ∈ N, with probability 1− λ we set Z(t) = Z(t− 1), and with probability λ, we

choose Z(t) from the n neighbors of Z(t− 1) uniformly at random.

Now if we again denote the distribution at time t by ft, then ft = Kλft−1, where now Kλ =
(1− λ)Id + λK with K is defined in (33). Hence for a character χS ,

KλχS = (1− λ)χS + λ

(
1− 2|S|

n

)
χS =

(
1− 2λ|S|

n

)
χS ,

and consequently

ft = Kt
λf0 = 2−n

∑
S⊆[n]

(
1− 2|S|λ

n

)t
χS(a)χS .

Note that 1− 2λ|S|/n < 1 unless S = ∅, and this time ft will converge to the uniform measure on
the cube as t tends to infinity. Here we obtained a fully ergodic random walk by using the laziness
to destroy the periodicity of the original random walk.

By the law of large numbers, when t is large, we make a move at roughly λ fraction of time
steps. Hence it is more natural to consider a different rescaling of time and study fbnt/λc. That is
now we are considering n epochs, each consisting of 1/λ steps, and on average we expect to make
one move in every epoch. By tending λ to 0 we obtain a “continuous” version of the walk in the
limit. This leads to the formula

lim
λ→0

fbnt/λc = 2−n
∑
S⊆[n]

χS(a)e−2t|S|χS .

We can rescale time by another factor of 2 to obtain the nicer formula:

lim
λ→0

fbnt/2λc = 2−n
∑
S⊆[n]

χS(a)e−t|S|χS .

The continuous random walk (Xa(t))t∈[0,∞) that is obtained as the limit in this way, has the
property that

(34) Xa(t) ∼ 2−n
∑
S⊆[n]

χS(a)e−t|S|χS .

Note further that if instead of f0, we start with an arbitrary distribution µ and pick the starting
point a randomly according to µ, then the distribution at time t will be

(35) lim
λ→0

µbnt/2λc =
∑
S⊆[n]

e−t|S|µ̂(S)χS .
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This is equal to Te−t|S|µ. Now for the moment we depart from analyzing this random walk as the
limit of the discrete random walks, and consider a different and more direct perspective.

Recall that the exponential distribution with parameter λ is defined through its probability
density function (pdf)

f(x, λ) =

{
λe−λx x ≥ 0
0 x < 0.

An exponential distribution is supported on the interval [0,∞). Here λ > 0 is the parameter
of the distribution, and if λ = 1 the distribution is called the standard exponential distribution.
Exponential distribution is the continuous analogue of the geometric distribution, and can be
interpreted as the time that it takes for an event to happen if it has the occurrence rate of λ per
unit of time (say a customer showing up in a store). It has the key property of being memoryless,
that is if E is exponentially distributed, then Pr(E ≤ s+ t|E > s) = Pr(E ≤ t). This means that
as you continue to wait, the chance of something happening “soon” neither increases nor decreases.

The Poisson distribution with parameter λ, denoted by Pois(λ), is the probability distribution
on {0, 1, 2, . . .} defined by

Pr[{k}] =
λke−λ

k!
.

The Poisson distribution can be obtained using exponential random variables as time increments.
Let E1, E2, . . . be i.i.d. exponential random variables with parameter λ, and suppose the first event
happens at time E1, the second at time E1 + E2, the third at time E1 + E2 + E3, etc. Then

maxk(
∑k

i=1Ei < t), which is the number events that happen until time t, has Poisson distribution
with parameter λt. Now our goal is to define a continuous random walk on the cube. First we need
to define the standard Poisson process.

Definition 7.1.1. The standard Poisson process (N(t))t∈[0,∞) is an increasing integer-valued
Markov process with independent Poisson increments:

• N(0) = 0;
• For 0 ≤ s ≤ t, we have N(t)−N(s) ∼ N(t− s) ∼ Pois(t− s).

It follows from the above discussion that a Poisson process can be generated using increments
with exponential distributions: If E1, E2, . . . are i.i.d. random variables with standard exponential
distribution, then defining

N(t) = max
k

(
k∑
i=1

Ei < t)

we obtain the standard Poisson process. The Poisson process has the Markov property which is
defined as being memoryless in the sense that the conditional probability distribution of future
states of the process conditional on both past and present values depends only upon the present
state, not on the sequence of events that preceded it.

Since we are only concerned with the cube {0, 1}n, we project the Poisson process into Z2.
Define the {0, 1}-valued process (N(t))t∈[0,∞) with M(t) = N(t) mod 2. Note that in general it is
not true that the image of a Markov process is always a Markov process, but in this case it is easy
to see that (M(t))t∈(0,∞] is a Markov process.

Exercise 7.1.2. Show that the process (M(t))t∈[0,∞) defined above is a Markov process.

Exercise 7.1.3. Construct a Markov process (X(t))t∈[0,∞) and a function f such that (f(X(t)))t∈[0,∞)

is not a Markov process.

Let us now calculate the transition probabilities of this process.
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Claim 7.1.4. For 0 ≤ s < t, we have

Pr[M(t) = 0|M(s) = 0] = Pr[M(t) = 1|M(s) = 1] =
(1 + e−2(t−s))

2
,

and

Pr[M(t) = 0|M(s) = 1] = Pr[M(t) = 1|M(s) = 0] =
(1− e−2(t−s))

2
.

Proof. We have

Pr[M(t) = 0|M(s) = 0] = Pr[N(t) ≡2 0|N(s) ≡2 0] = Pr[N(t)−N(s) ≡2 0|N(s) ≡2 0]

= Pr[N(t− s) ≡2 0] = Poist−s({0, 2, 4, . . .}) =
(1 + e−2(t−s))

2
.

The other cases are similar. �

We rescale time and define the process (X(t))t∈[0,∞) as X(t) = M(t/2) so that

(36) Pr[X(t) = 0|X(s) = 0] = Pr[X(t) = 1|X(s) = 1] =
(1 + e−(t−s))

2
,

and

(37) Pr[X(t) = 0|X(s) = 1] = Pr[X(t) = 1|X(s) = 0] =
(1− e−(t−s))

2
.

This process is homogeneous in both time and space. It is time homogeneous as the distribution
of X(t)−X(s) depends only on t− s, and it is space homogeneous as it is symmetric with respect
to 0 and 1.

Let us also remark that we could construct the process (X(t))t∈[0,∞) directly from the transition
equations (36) and (37) without starting from the Poisson process. Indeed one only needs to verify
that the Chapman-Kolmogorov equations are satisfied. That is, setting ps,t(x, y) to the value of
Pr[X(t) = y|X(s) = x] according to (36) and (37), we need to verify that for 0 ≤ s < t < u, and
z, x ∈ {0, 1}, we have

(38) ps,u(x, z) =
∑

y∈{0,1}

ps,t(x, y)pt,u(y, z).

Then Kolmogorov’s extension theorem guarantees that there is a Markov process (X(t))t∈[0,∞)

satisfying the transition inequalities (36) and (37).
Now that we have constructed the Markov process (X(t))t∈[0,∞) on {0, 1}, we will use it to

define a continuous random walk on the cube {0, 1}n. Let a ∈ {0, 1}n be the starting point, and
let (X1(t), . . . , Xn(t))t∈[0,∞) be i.i.d. copies of (X(t))t∈[0,∞). Define the process (Xa(t))t∈[0,∞) as

Xa(t) = (a1 +X1(t), . . . , an +Xn(t)),

where the additions are in Z2. Note that the process starts at Xa(0) = a, and then when the first
change occurs in (X1(t), . . . , Xn(t)), it jumps to the corresponding neighbors of a in the cube (i.e.
to a+ ei for some 1 ≤ i ≤ n), and so on.

Denoting by ft the distribution of Xa(t), by (36) and (37), we have

ft(x) =
n∏
i=1

(
1 + (−1)ai+xie−t

2

)
= 2−n

∑
S⊆[n]

χS(a)e−t|S|χS .

This is the same distribution that we obtained in (34) as the limit of the discrete lazy walks
with proper rescaling of time. As we will formally see in Section 7.2, this means that the two
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random walks coincide. This is a curious fact. In the lazy random walk, there is no coordinate-
wise independence, as at every move we change exactly one of the coordinates. However in the
Poisson random walk, coordinates behave totally independently. So it might seem mysterious that
in the limit, the lazy random walk converges to the Poisson random walk and the coordinate-
wise dependencies disappear. Indeed this is part of a more general phenomenon that is called
Poissonization. Let us explain this using a simple example.

Example 7.1.5. [Poissonization] Consider a biased coin that comes up Head with probability
p, and Tail with probability 1 − p. We flip the coin infinitely many times, and let Hn and Tn
respectively denote the number of heads and tails until time n. Obviously, these two random
variables are totally dependent as Hn = n− Tn.

Now consider the following different process. Let E1, E2, . . . be an i.i.d. sequence of standard
exponential random variables. We wait until time E1 and toss the coin for the first time, then
we wait for another E2 units of time and toss the coin again, etc. For t ∈ [0,∞), let H ′t and T ′t
respectively denote the number of heads and tails until time t. Then H ′t has distribution Pois(pt)
and T ′t has distribution Pois((1− p)t), and it is not hard to see that they are (rather miraculously)
independent.

The reason for this independence becomes apparent when we examine how the second process
can be obtained as the limit of the first one. Let N be a large number and set λ = 1

N , and consider
the lazy version of the first process, where now at time t, we do nothing with probability 1 − λ,
and with probability λ we flip our biased coin.

Let us compare this to two independent processes, one responsible for producing heads, and the
other one for producing tails. In the first one, at each time step, with probability λp we produce
a Head, and we do nothing we probability 1− λp. In the second process, at every time step, with
probability λ(1− p) we produce a Tail, and we do nothing we probability 1− λ(1− p). Observing
these two processes simultaneously at a single time step, we see that

Pr[Nothing is produced] = (1− pλ)(1− (1− p)λ) = 1− λ+ p(1− p)λ2,

and
Pr[A Head is produced] = pλ(1− (1− p)λ) = pλ− p(1− p)λ2,

and
Pr[A Tail is produced] = (1− pλ)(1− p)λ = (1− p)λ− p(1− p)λ2,

and
Pr[A Head and a Tail are produced] = p(1− p)λ2.

Now if we let λ tend to 0, the quadratic terms in λ become negligible, and the process becomes
indistinguishable form the lazy biased coin process that we described above. That is in the limit,
after proper rescaling of the time, the lazy biased coin process, and the independent production of
heads and tails converge to the same limit, the Poisson process (H ′t, T

′
t)t∈[0,∞) that we described

above. This in particular verifies the independence for (H ′t, T
′
t)t∈[0,∞).

The independence achieved by Poissonization of the discrete lazy random walk on the cube
is highly desirable, and it is one of the main motivations behind considering the random Poisson
processes rather than the more elementary object of the discrete random walk on the cube.

7.2. Semigroups

Consider the Poisson random walk (Xa(t))t∈[0,∞) constructed in Section 7.1. This random walk
can be used to define a class of operators. For f : {0, 1}n → R, a ∈ {0, 1}n and t ≥ 0 define

Ptf(a) = E[f(Xa(t))].
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In other words, to evaluate Ptf at a point a, we start our random walk at a, and look at the
expected value of f on the point Xa(t) obtained by running the random walk until time t. Note
that by (36) and (37), we have

PtχS(a) = E[χS(Xa(t))] = E
∏
i∈S

(−1)ai+Xi(t) = χS(a)
∏
i∈S

E[(−1)Xi(t)] = χS(a)
∏
i∈S

e−t = e−t|S|χS(a).

Thus PtχS = χS and consequently for every function f : Zn2 → C, we have

(39) Ptf =
∑
S⊆[n]

e−t|S|f̂(S)χS .

Hence, not surprisingly at this point, similar to (35), we have Ptf = Te−tf .
The operators Pt are clearly linear operators from L2(Zn2 ) to L2(Zn2 ). The next lemma shows

that they form a semigroup.

Lemma 7.2.1. We have P0 = Id, and Pt ◦ Ps = Pt+s for s, t ≥ 0.

Proof. The fact that P0 is trivial. The identity Pt ◦ Ps = Pt+s can be verified using the
definition Ptf(a) = E[f(Xa(t))] through Chapman-Kolmogorov equation (38) for the random walk.
We leave the details as an exercise to the reader. �

Trivially Pt satisfies the following basic properties

• Preserves Identity: Pt1 = 1.
• Preserves Positivity: If f ≥ 0, then Ptf ≥ 0.
• Preserves Order: If f ≥ g, then Ptf ≥ Ptg.

These observations motivate the following definition.

Definition 7.2.2. A set of linear operators (Qt)t∈[0,1) is called a semigroup if Q0 = Id, and
Qt ◦Qs = Qt+s for t, s ∈ [0,∞). If it furthermore satisfies

(1) Preserves Identity: Qt1 = 1,
(2) Preserves Positivity: Qtf ≥ 0 almost everywhere if f ≥ 0 almost everywhere,
(3) Preserves Order: If f ≥ g almost everywhere, then Ptf ≥ Ptg almost everywhere.

then it is called a Markovian semigroup.

Note that preserving order follows from preserving positivity, and can be omitted from the
definition. Obviously the semigroup (Pt)t∈[0,∞) constructed above is Markovian. Next we will show
that in fact every Markovian semigroup can be constructed through a Makrov process. Consider
a Markovian semigroup (Qt)t∈[0,∞) and define the transition probabilities of a time homogenuous
random walk as

(40) qt(a, b) := (Qt1b)(a),

where 1b is the indicator function of the point {b}. That is in the corresponding Markov process
(Yt)t∈[0,∞), we would like for every s ≥ 0, to have

Pr[Ys+t = b|Ys = a] = qt(a, b) := (Qt1b)(a).

Since Qt preserves positivity, we have qt(a, b) ≥ 0, and since Qt1 = 1 we have that∑
b

qt(a, b) =
∑
b

(Qt1b)(a) = (Qt1)(a) = 1.

The Chapman-Kolmogorov equation (38) can also be verified using the semigroup propertyQt◦Qs =
Qs+t which we leave to the reader as an exercise.
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Exercise 7.2.3. If (Qt)t∈[0,∞) is Markovian semigroup, and qt(a, b) is defined as in (40). Show
that qt(a, b) satisfies the Chapman-Kolmogorov equation (38).

Hence by Kolmogorov’s extension theorem, there exists a corresponding Markov process (Y a(t))t∈[0,∞)

with transition probabilities qt(a, b). Now note that

E[f(Y a(t))] =
∑
b

qt(a, b)f(b) =
∑
b

(Qt1b)(a)f(b) = Qt(
∑
b

1bf(b))(a) = (Qtf)(a).

Hence the semigroup (Qt)t∈[0,∞) could be recovered as Qtf(a) = E[f(Y a(t))].
To summarize we showed that Markov processes (Y a

t )t∈[0,∞) are in one to one correspon-
dence with Markovian semigroup (Qt)t∈[0,∞) via the formulas Qtf(a) = E[f(Xa(t))] and qt(a, b) =
(Qt1b)(a).

Now that we established this equivalence, we can mention an important property of Markovian
semigroups, namely that they preserve expectation with respect to the so called invariant measure.

Definition 7.2.4. A probability measure µ on a finite set Ω is an invariant measure for a
Markovian semigroup (Qt)t∈[0,∞), or a stationary distribution for the corresponding Markov process
qt, if for every y ∈ Ω and t > 0,

(41)
∑
x∈Ω

µ({x})qt(x, y) = µ(y).

This means that the total “immigration” to y balances “emigration” from y. Note that (41)
is equivalent to Eµ[Qt1y] = 1y. Since {1y : y ∈ Ω} spans the set of all functions on Ω, we see
that µ is invariant for the semigroup if and only if Eµ[Qtf ] = f for every f : Ω → R. Hence A
Markovian semigroup preserve expectation with respect to invariant measure. When we work with
a semigroup or a Markov process, invariant measures are the “right” measures to consider on the
space. From this point on when we talk about a semigroup or a Markov process we always assume
that the underlying measure space is an invariant measure for the semigroup, and that expectations
are taken with respect to that measure.

The operators Pt is a symmetric (a.k.a. Hermitian) operator, and in fact self-adjoint as it is
defined everywhere. Indeed by Plancherel,

〈Ptf, g〉 =
∑
S⊆[n]

e−t|S|f̂ ĝ = 〈f, Ptg〉.

In the more general case of the Markovian semi-groups when the invariant measure µ is nonuni-
form, the symmetry of the operator Qt does not mean that the transition matrix qt(x, y) is sym-
metric. For example, in the finite case, it means that

µ({x})qt(x, y) = 〈Qt1x,1y〉 = 〈1x, Qt1y〉 = µ({y})qt(y, x),

In general the semigroup (Qt)t∈[0,∞) is symmetric if and only if the corresponding Markov
process is time reversible. A symmetric Markovian semigroup preserve expectation. Indeed

(42) E[Qtf ] = 〈Qtf, 1〉 = 〈f,Qt1〉 = 〈f, 1〉 = E[f ].

7.2.1. Generator of a semigroup. To define the generator of a semigroup we would like to
differentiate Qt in t, but unfortunately a Markovian semigroup need not even be continuous with
respect to the parameter t: As an example one may consider Q0f := f and Qt[f ] := E[f ] for t > 0,
which is not continuous in time unless f is constant almost surely. However, in many cases Markov
semigroups are not only continuous but also differentiable with respect to time.
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Definition 7.2.5. The linear operator − d
dtQt

∣∣
t=0+ is called a generator of the semigroup

(Qt)t∈[0,∞).

Note that for a Markovian operator, since Qt1 = 1 for every t ≥ 0, we always have that
(− d

dtQt
∣∣
t=0+)1 = 0.

Remark 7.2.6. For non-discrete spaces usually the generator cannot be defined on the whole L2

function space but only a dense linear subspace. There are many technical problems and extensive
literature concerning relations between a Markov semigroup and its generator. The assumption
that is usually used is that Qt is strongly continuous, i.e. it is continuous in t in the strong operator
topology. Then it is not difficult to see that d

dtQt
∣∣
t=0+ is well-defined on the dense set of all

“smoothed” functions {Qεg : ε > 0, g ∈ L2}.
Let us go back to the semi-group (Pt)t∈(0,∞] that we constructed from the parity Poisson process.

Remark 7.2.7. We have shown that Te−t ≡ Pt. The notation Pt is preferred by probability
theorists. Harmonic analysts however prefer the notation Tρ as for example it allows considering
complex values of ρ with |ρ| ≤ 1 which leads to the definition of the so called holomorphic semi-
groups. Computer scientists also adopted the notation Tρ as it is simpler, however there is a price
to this, as the intuition that t corresponds to time, and that this operator is defined through a
Markov process becomes less apparent.

Note that taking the derivative of

Ptf =
∑
S⊆[n]

e−t|S|f̂(S)χS .

we see that the generator L := − d
dtPt

∣∣
t=0+ of this semigroup is defined as

Lf =
∑
S⊆[n]

|S|f̂(S)χS .

Our semigroup Pt can be easily recovered from its generator:

Pt := e−tL = Id +
∞∑
k=1

(−t)kLk
k!

.

Indeed for a character, we have

PtχS =

(
1 +

∞∑
k=1

(−t)k|S|k
k!

)
χS = e−t|S|χS .

Remark 7.2.8. For this approach to work, it is necessary that the generator is a bounded
operator (as it is the case for L, the generator of Pt). However in the more general settings of
Markovian semigroups, the generator is not always defined on all of the space. Nevertheless, the
notation e−tL is still used, and it usually means the solution to the differential equation d

dtQt =
−LQt with the boundary condition Q0 = Id.

For the semigroup (Pt)t∈[0,∞), there is a more direct way to define the generator L. We have

Lf =
1

2

n∑
i=1

f(x)− f(x+ ei),

as it can be easily verified using the Fourier transform. Hence L = n
2 (Id−K), where K is defined

in (33).



7.3. SOME EXAMPLES 71

In Theorem 6.1.6 we saw that the operator Tρ is a contractive operator from Lp to Lp. This
phenomenon holds for general symmetric Markovian semigroups.

Theorem 7.2.9. Let (Qt)t∈[0,∞) be a symmetric Markovian semigroup, and Φ : R → R be a
convex function. For every t ≥ 0 and every function f ∈ L2 we have

E[Φ(Qtf)] ≤ E[Φ(f)].

In particular taking Φ = | · |p for p ≥ 1 we obtain ‖Qtf‖p ≤ ‖f‖p.

Proof. Since Φ is convex we have Φ(x) = supα∈I aαx+bα for some family I of affine functions
aαx+ bα. Then for every α ∈ I, we have the pointwise inequality Φ(f) ≥ aαf + bα which using the
order-preserving property of Markovian semigroups reduces to the pointwise inequality

Qt(Φ(f)) ≥ Qt(aαf + bα) = aα(Qtf) + bα.

Taking the supremum we obtain Qt(Φ(f)) ≥ Φ(Qtf). Taking the expectation and using the fact
that symmetric Markovian semigroups preserve expectation (See 42), we obtain

E[Φ(f)] = E[Qt(Φ(f))] ≥ E[Φ(Qtf)].

�

7.3. Some Examples

We close this chapter by mentioning some examples of Markovian semigroups.

Example 7.3.1. Consider the space (R, λ) where λ is the Lesbagues measure. Define the
semigroup (Pt)t∈[0,∞) as Pt : f(·)→ f(·+t). It can be easily seen that this is a Markovian semigroup.
Note that the generator L of this semigroup is equal to −D where D is the differentiation:

(Lf)(x) = − d

dt
Ptf

∣∣∣∣
0+

= −f ′(x).

Then if try to recover Pt from the generator using the formula

(43) Pt = e−tL = Id +

∞∑
k=1

(−t)k
k!

Lk,

we obtain

Ptf(x) = f(x) + tf ′(x) +
t2

2!
f ′′(x) + . . .

This is the Taylor expansion for f(x + t), and is equal to f(x + t) when f is analytic. Note that
there are smooth functions that are not analytic. For example, it is well-known that the function

f(x) =

{
e−1/x2

x 6= 0
0 x = 0

is smooth (i.e. it has derivatives of all orders), but it is easy to see that f (k)(0) = 0 for all k, and

thus f(x + t) 6= f(x) + tf ′(x) + t2

2!f
′′(x) + . . . for x = 0. Note that even if we replace our original

space (R, λ) with the compact space (R/Z, λ), this example still shows that it is not always possible
to recover the semigroup from its generator using (43).
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Example 7.3.2. [Heat semigroup] Joseph Fourier initiated the investigation of Fourier series
and their applications to problems of heat transfer and vibrations. He discovered the law of heat
conduction, also known as Fourier’s law, which states that the time rate of heat transfer through
a material is proportional to the negative gradient in the temperature and to the area, at right
angles to that gradient, through which the heat flows. Fourier’s law combined with conservation
of energy implies the so called heat equation. Suppose one has a function f(x) that describes the
temperature at a given location of a metal bar. This function will change over time as heat spreads
throughout space. The heat equation can be used to determine the change in the function f over
time. It says that if Ptf denotes the distribution of the temperature at time t, then

d

dt
(Ptf)(x) = α

∂2

∂2x
Ptf(x),

where α > 0 is a constant depending on the material and is called the thermal diffusivity. If instead
of a bar, we consider a 3-dimensional object, and denote the temperature at point x = (x1, x2, x3)
with f(x1, x2, x3), then the heat equation becomes

d

dt
(Ptf) = α∆(Ptf)(x),

where ∆ denotes the Laplacian ∆ := ∂2

∂2x1
+ ∂2

∂2x2
+ ∂2

∂2x3
.

The heat equation is used in probability and describes random walks. It is also applied in finan-
cial mathematics for this reason.vIt is also important in Riemannian geometry and thus topology:
it was adapted by Richard Hamilton when he defined the Ricci flow that was later used by Grigori
Perelman to solve the topological Poincaré conjecture.

The heat equation can be understood through the heat semigroup. First we need to introduce
the Brownian motion, an important notion that occurs frequently in pure and applied mathemat-
ics, economics and physics. The (1-dimensional) Brownian motion (a.k.a. Wiener process) is a
continuous-time stochastic process (Bt)t∈[0,∞) that is characterized by four facts:

• B0 = 0.
• Bt is almost surely continuous.
• Bt has independent increments (i.e. Bt1 − Bs1 is independent of Bt2 − Bs2 for 0 ≤ s1 ≤
t1 ≤ s2 ≤ t2.
• Bt − Bs ∼ N(0, t − s) for t > s, where N(0, t − s) denotes the normal distribution with

expected value 0 and variance t− s.
The Brownian motion can be obtained as the limit of the following discrete random walks. Let

λ > 0 be the time increment. The random walk starts at the origin X0 = 0, and at time (t + 1)λ

its value X(t+1)λ is set with equal probability to either Xtλ +
√
λ or Xtλ −

√
λ (we make a left or

right jump of magnitude
√
λ with equal probability). Now as the time increment λ ≥ 0 goes to 0,

this random walk converges to the Brownian motion.
Now that we have a process (Bt)t∈[0,∞) , we can consider the corresponding semigroup (Pt)t∈[0,∞).

It maps every function f : R → R, that satisfies certain integrability conditions, to Ptf(x) :=
E[f(Bx

t )], where (Bx
t )t∈[0,∞) is the Brownian motion started at point x. Note that Bx

t has the same
distribution as x+Bt as the Brownian motion is space homogeneous, and hence

Ptf(x) = E[f(Bx
t )] = E[f(x+Bt)] = E[f(x+

√
tG)],

where G ∼ N(0, 1) is the standard Gaussian random variable, so that
√
tG ∼ N(0, t).
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To find the generator, differentiating the operator and using the formula for the density of the
normal distribution, we get

d

dt
Ptf(x) =

d

dt
E[f(x+

√
tG)] =

1

2
√
t
E[f ′(x+

√
tG)G] =

1

2
√
t

1√
2π

∫
f ′(x+

√
ty)e−y

2/2ydy

=
1

2
√

2tπ

∫
f ′(x+

√
ty)

d

dy
(−e−y2/2)dy =

1

2
√

2tπ

∫ √
tf ′′(x+

√
ty)e−y

2/2dy

=
1

2
Ef ′′(x+

√
tG),(44)

where in the integration by part we assumed that f vanishes at ±∞. Taking the limit t → 0
we obtain that the generator is Lf = −1

2 f
′′, or in other words L = −1

2 ∆ where ∆ is the (one-
dimensional) Laplace operator. Note that (44) shows that

d

dt
Ptf(x) =

1

2
∆x(Ptf(x)),

where ∆x denotes the Laplacian with respect to x. This is the famous heat equation discussed
above which roughly means that the flow of heat can be approximated as the movement of many
small particles, where each particle moves according to a Brownian motion.

The heat semigroup can be defined on the n-dimensional space. Let B1(t), . . . , Bn(t) be inde-
pendent 1-dimensional Brownian motions as defined above. The n-dimensional Brownian motion
(Bt)t∈[0,1) is defined as

Bt =

(
B1(t)√
n
, . . . ,

Bn(t)√
n

)
t∈[0,∞)

.

The normalization factor 1√
n

is chosen so that Bt ∼ Nn(0, 1) is an n-dimensional Gaussian random

variable and thus has density

Φn(x) :=
1

(2π)n/2
e−‖x‖

2
2/2 =

1

(2π)n/2
e−(

∑n
i=1 x

2
i )/2.

Repeating the calculation in (44), we see that the generator of the heat semigroup defined via this

process is −1
2 ∆ where ∆ = ∂2

∂2x1
+ . . .+ ∂2

∂2xn
is the Laplace operator, and the heat equation

d

dt
Ptf(x) =

1

2
∆(Ptf(x)),

holds.

Example 7.3.3. [The Ornstein-Uhlenbeck semigroup] This semigroup is defined on (R, γ) where
γ is the Gaussian measure. In some aspects it is closely related to the semigroup (Pt)t∈[0,∞) that
we defined on the cube Zn2 . We will define a process similar to the Brownian motion. Consider
a time increment λ > 0, and define the process (Xtλ)t∈Z+ in the following way. To make a move

from a point a, we first dilate a by multiply it by e−λ and then we make a jump of magnitude
√
λ

either to the left or right with equal probability. That is X(t+1)λ is set to one of e−λXtλ±
√
λ with

equal probability. If we take the limit as λ → 0, we obtain a Gaussian process (Xt)t∈[0,∞). Now,
because of the dilation, unlike the Brownian motion, Xt does not escape to infinity as t grows, and
in fact Xt converges to N(0, 1) in distribution. It is not difficult to see that if we start the process

at a point a, then Xa
t ∼ e−ta+

√
1− e−2tG, where G ∼ N(0, 1) is a standard Gaussian. Hence the

corresponding semigroup Ut satisfies

Utf(x) = E
[
f(e−tx+

√
1− e−2tG)

]
.



74 7. THE SEMIGROUP METHOD

To describe the connection to the semigroup (Pt)t∈[0,∞) on the cube Zn2 , consider a function

f : (R, γ) → R, and define gn : Zn2 → R as gn(x1, . . . , xn) = f(2(
∑
xi)−n√
n

). Note that Ptgn is a

symmetric function and thus Ptgn(x1, . . . , xn) = fn(2(
∑
xi)−n√
n

) for a function fn : R→ R. It is not

difficult to see that
lim
n→∞

fn = Utf,

which can be interpreted as
lim
n→∞

Ptgn = Utf.

The same trick of approximating a gaussian with2(
∑
xi)−n√
n

allows one to deduce many geometric

results in the Gaussian space from results on the cube. Going in the opposite direction is usu-
ally much harder, but there are some tools like the invariance principle that we will see later in
Chapter ?? that allow it under some conditions.

the Ornstein-Uhlenbeck semigroup, similar to the heat-semigroup, can be defined in the n-
dimensional space endowed with the Gaussian measure. For f : (Rn, γn)→ R we have

Utf(x) = E
[
f(e−tx+

√
1− e−2tG)

]
,

where G is the standard n-dimensional Gaussian random variable.
We leave to the reader to verify that the generator of the Ornstein-Uhlenbeck semigroup in

general is
(Lf)(x) = 〈x,∇f(x)〉 − (∆f)(x).

Exercise 7.3.4. Show that the generator of the n-dimensional Ornstein-Uhlenbeck semigroup
is

(Lf)(x) = 〈x,∇f(x)〉 − (∆f)(x).



CHAPTER 8

Isoperimetric Type Inequalities

Consider the hypercube with vertex set Zn2 , and let S ⊆ Zn2 be a subset of the vertices. As we
have discussed earlier the total influence of the indicator function of S corresponds to the size of
the edge boundary of S. In other words for f := 1S , we have

If = E

[
n∑
i=1

|f(x)− f(x+ ei)|
]

=
2|∂f |

2n
,

where the edge boundary of S, denoted ∂S, is the set of edges of the cube with one endpoint in S
and the other endpoint outside of S. In this chapter we study concepts related to edge-boundries.

8.0.1. Energy functions. Consider the semigroup (Pt)t∈[0,∞) that we constructed from the
Poisson random walk on the cube. Define the bi-linear form E(·, ·) via the generator L of the
semigroup (Pt)t∈[0,∞) as

E(f, g) := 〈f, Lg〉 = 〈Lf, g〉.
This is a positive semi-definite form as E(f) := E(f, f) =

∑ |S||f̂(S)|2 ≥ 0.
The positive semi-definiteness of the E can also be verified directly, without appealing to Fourier

expansion, from contractivity of the semi-group. Indeed, for t ≥ 0 and f ∈ L2, set Ψ(t) = ‖Ptf‖22 =
E[(Ptf)2]. Then taking the derivative with respect to t, we obtain

Ψ′(t) = 2E
[
(Ptf)

d

dt
Ptf

]
= 2E[−(Ptf) · L(Ptf)],

and thus Ψ′(0+) := limt→0 Ψ′(t) = −2E[f · Lf ] = −2E(f, f). On the other hand, because of the
contractivity of (Pt)t∈[0,∞) we have

Ψ(t) ≤ ‖f‖22 = ‖P0f‖22 = Ψ(0),

so that Ψ′(0+) ≤ 0. Thus E(f) := E(f, f) ≥ 0, and E is positive semidefinite.
Let us now find a combinatorial way of describing E . Using the formula

Lf(x) =
1

2

n∑
i=1

f(x)− f(x+ ei),

we obtain
E(f, g) = 〈f, Lg〉 = 2−n−1

∑
x∼y

f(x)g(x)− f(x)g(y),

where x ∼ y means that x and y are neighbours in the cube (i.e. y = x+ei for some i ∈ [n]). Using

f(x)g(x)− f(x)g(y) + f(y)g(y)− f(y)g(x) = (f(x)− f(y))(g(x)− g(y)),

we can simplify this to

E(f, g) = 2−n−2
∑
x∼y

(f(x)− f(y))(g(x)− g(y)),

75
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which in particular shows

(45) E(f) = E(f, f) = 2−n
∑
x∼y

(
f(x)− f(y)

2

)2

.

The last expression is a discrete counterpart of the averaged |∇f |2. The similarity to the
physical kinetic energy notion explains the name given to this quadratic form. Quadratic forms
of this type (under some additional conditions) are called Dirichlet forms and play important role
in the theory of Markov semigroups. Given an open set Ω ⊆ Rn and function f : Ω → R, the
Dirichlet’s energy of the function f is the real number

(46) E(f) =
1

2

∫
|∇f |2dxdy,

where ∇f =
(
∂f
∂x1

, . . . , ∂f∂xn

)
is the gradient of the function f .

Definition 8.0.5 (Discrete gradient). For a function f : Zn2 → R, define the discrete gradient
of f at point x as

∇f(x) =

(
f(x)− f(x+ e1)

2
, . . . ,

f(x)− f(x+ en)

2

)
.

With this notation we have for every function f : Zn2 → R

E(f) = 2−n
∑
x∼y

(
f(x)− f(y)

2

)2

= E|∇f(x)|2,

which reminisces the Dirichlet energy formula (46). There is an extensive literature that investigates
the conditions under which the generator of a semigroup can be constructed from a Dirichlet form.
In the case of the finite spaces the following are indeed equivalent.

Markov processes ∼ semigroups ∼ generators ∼ Dirichlet forms

Let us finish this section by mentioning that the energy function behaves nicely when composed
with Lipschitz maps. Let Ψ : R → R be a Lipschitz map with constant C, i.e. |Ψ(a) − Ψ(b)| ≤
C|a− b| for all a, b ∈ R. Then the formula

E(Ψ(f)) = 2−n
∑
x∼y

(
Ψ(f(x))−Ψ(f(x))

2

)2

shows that for every f ∈ Zn2 → R, we have

E(Ψ(f)) ≤ C2E(f).

In particular, E(|f |) ≤ E(f). This can be generalized to other symmetric Markovian sermigroups
under some mild technical conditions.

8.1. Poincaré inequalities

The classical Poincaré inequality comes from partial differential equations. It says that given
a bounded connected open subset D ⊆ Rn with a sufficiently “regular” boundary, there exists a
constant CD such that for every function f ∈ C1(D) (that is f differentiable and it’s derivative is
continuous) satisfying

∫
D f = 0, we have∫

D
f2 ≤ CD

∫
D
|∇f |2.
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The probabilistic analog of this is more relevant to us. A probability Borel measure ν on Rn is
said to satisfy the Poincaré inequality with constant C if for every C1 function f : Rn → R with∫
fdν <∞, we have

Varν(f) :=

∫
f2dν −

(∫
fdν

)2

≤ C
∫
|∇f |2dν.

On the discrete group Zn2 , using the discrete gradient, the Energy function will take the place
of
∫
|∇f |2dν, and we will obtain the following Poincaré inequality

E[f2]− E[f ]2 ≤ E(f) := E
[
|∇f |2

]
:= E[fLf ].

This follows by noticing that the left hand side is equal to
∑

S 6=∅ |f̂(S)|2 while the right hand side
is equal to

〈f, Lf〉 =
∑
S⊆[n]

|S||f̂(S)|2.

The above variance-energy inequality is also called an spectral gap inequality. It holds because
there is a gap in the spectrum σ(L) between the eigenvalue 0, associated to the constant function
1 (principal character), and the second smallest eigenvalue in absolute value (which is 1 and it
associated to the characters χS for |S| = 1).

The existence of the spectral gap for a symmetric Markov semigroup (Qt)t∈[0,∞) implies Qtf →
E[f ] as t → ∞ and the size of the gap is responsible for the speed of convergence. This is of
extreme importance in physics, and not surprisingly the Poincaré-type inequalities were considered
in physics first, already in the middle of the nineteenth century.

8.2. Stroock-Varopoulos inequality

In this section we prove the Stroock-Varopoulos inequality which is an important inequality in
the theory of semigroups. We start with an elementary inequality whose proof can be skipped by
uninterested reader.

Lemma 8.2.1. For p > 1 and a, b ≥ 0 we have

(p− 2)2(ap + bp)− p2(ap−1b+ abp−1) + 8(p− 1)ap/2bp/2 ≥ 0.

Proof. Because of the homogeneity, it suffices to prove that for t ≥ 1

u(t) = (p− 2)2tp − p2tp−1 + 8(p− 1)tp/2 − p2t+ (p− 2)2 ≥ 0.

Indeed, u(1) = 2(p2 − 4p+ 4)− 2p2 + 8p− 8 = 0, and

u′(t) = p(p− 2)2tp−1 − p2(p− 1)tp−2 + 4p(p− 1)tp/2−1 − p2,

so that u′(1) = (p3 − 4p2 + 4p)− (p3 − p2) + (4p2 − 4p)− p2 = 0. Now it suffices to note that

u′′(t) = p(p− 1)(p− 2)2tp−2 − p2(p− 1)(p− 2)tp−3 + 2p(p− 1)(p− 2)t
p
2
−2

= p2(p− 1)(p− 2)tp−2

(
p− 2

p
+

2

p
t−p/2 − t−1

)
= 2p(p− 1)(p− 2)tp−2

(
2− p

2
+
p

2
t−1 − t−p/2

)
.

Since for p ≥ 2,

p− 2

p
+

2

p
t−p/2 =

p− 2

p
· 1 +

2

p
t−p/2 · t−p/2 ≥ 1

p−2
p

(
t−p/2

)2/p
= t−1,
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while for p ∈ (1, 2],

2− p
2

+
p

2
t−1 =

2− p
2
· 1 +

p

2
t−1 ≥ 1

p−2
2
(
t−1
)p/2

= t−p/2,

we conclude u′′(t) ≥ 0 and the proof is finished. �

Now we will deduce the Stroock-Varopoulos inequality from Lemma 8.2.1. We state the proof
for the semigroup Pt on the hupercube, but the same proof works for every symmetric Markov
semigroup (under some additional assumptions about f).

Theorem 8.2.2 (Stroock-Varopoulos). For any f : Zn2 → [0,∞), and every p > 1, we have

E(fp/2) := E
[
fp/2L(fp/2)

]
≤ p2

4(p− 1)
E[fp−1Lf ].

Proof. By Lemma 8.2.1, for any a ≥ 0, we have the ponitwise inequality

(p− 2)2(ap + fp)− p2(ap−1f + afp−1) + 8(p− 1)ap/2fp/2 ≥ 0.

Since Pt is linear and order preserving for any t ≥ 0, it holds pointwise that

(p− 2)2(ap + Pt(f
p))− p2(ap−1Ptf + aPt(f

p−1)) + 8(p− 1)ap/2Pt(f
p/2) ≥ 0.

Hence setting a = f we have

(p− 2)2(fp + Pt(f
p))− p2(fp−1Ptf + fPt(f

p−1)) + 8(p− 1)fp/2Pt(f
p/2) ≥ 0.

We can take the expected value and arrive at

(p− 2)2(E[fp] + E[Pt(f
p)])− p2(E[fp−1Ptf ] + E[fPt(f

p−1)]) + 8(p− 1)E[fp/2Pt(f
p/2)] ≥ 0.

Since Pt is symmetric, it preserves expectation, and the above reduces to

(47) β(t) = 2(p− 2)2E[fp]− 2p2E[fp−1Ptf ] + 8(p− 1)E[fp/2Pt(f
p/2)] ≥ 0.

Now as P0 = Id, we have

β(0) = (2(p− 2)2 − 2p2 + 8(p− 1))E[fp] ≥ 0,

and thus (47) implies that β′(0+) ≥ 0. But as L = − d
dtPtf

∣∣
0+ , we have

0 ≤ β′(0+) = 2p2E[fp−1Lf ]− 8(p− 1)E[fp/2L(fp/2)],

which completes the proof. �

Remark 8.2.3. Note that in Theorem 8.2.2 we have equality when p = 2.

Remark 8.2.4. Recall that for The Ornstein-Uhlenbeck semigroup on (Rn, (2π)−n/2e−|x|/2dx)
the generator is given by

(Lf)(x) = 〈x,∇f(x)〉 − (∆f)(x).

In this case for f, g ∈ C∞, it is not difficult to see that

E[f · Lg] = (2π)−n/2
∫
〈∇f(x),∇g(x)〉f(x)e−|x|/2dx = E[〈∇f(x),∇g(x)〉],

where the expectation is with respect to the Gaussian measure.
Note that in this case we will actually have equality in Theorem 8.2.2 for any p > 1.



8.3. ENTROPY AND LOGARITHMIC SOBOLEV INEQUALITIES 79

8.3. Entropy and Logarithmic Sobolev inequalities

We start by defining the notion of entropy.

Definition 8.3.1. For an integrable non-negative function g on a probability space we define
its entropy as

Ent(g) = E[g ln g]− E[g] ln(E[g]),

where we adopt a natural convention 0 ln(0) = 0.

Clearly, Ent[g] < ∞ if and only if g ln g is integrable. Since x ln(x) is strictly convex, always
Ent[g] ≥ 0, and Ent[g] = 0 if and only if g is constant almost everywhere. Note also that

Ent(λg) = λEnt(g).

The logarithmic Sobolev inequality (called also entropy-energy inequality) was introduced by
L. Gross. It resembles the Poincaré inequality - the variance functional on the left hand side is
replaced by the entropy of the square of the function. The inequality has the form:

Ent[f2] ≤ CE(f).

Both sides of this inequality measure how far f is from being constant. Note that for a constant
f , both Ent[f2] and E(f) are 0.

Definition 8.3.2. A symmetric Markov semigroup (Qt)t∈[0,∞) on Ω, with an invariant measure
µ and a self-adjoint (with respect to the L2(Ω, µ) structure) generator L, satisfies the logarithmic
Sobolev inequality with constant C > 0 if for every function f belonging to the domain of L, we
have

Eµ[f2 ln(f2)]− Eµ[f2] lnEµ[f2] ≤ CEµ[fLf ].

It turns out that logarithmic Sobolev inequalities are equivalent to hyper-contractive inequal-

ities. Recall that in Theorem 6.1.8 we showed that for 1 < p ≤ q < ∞, and 0 ≤ ρ ≤
√

p−1
q−1 , we

always have

‖Tρf‖q ≤ ‖f‖p.
Using our semigroup notation, we can rewrite this as ‖Ptf‖q ≤ ‖f‖p for 0 ≤ t ≤ 1

2(ln(p − 1) −
ln(q − 1)). A semigroup (Qt)t∈[0,∞) is (p, q)-hypercontractive with parameter t(p, q) if for every f
in the domain and every 0 ≤ t ≤ t(p, q) we have

‖Qtf‖q ≤ ‖f‖p.
Theorem 8.3.3 (Gross). A symmetric generator L satisfies the logarithmic Sobolev inequality

with constant C if and only if for all p > q > 1 the semigroup (Pt)t∈[0,∞ generated by L is (p, q)-

hypercontractive with t(p, q) = C
4 (ln(p− 1)− ln(q − 1)).

Theorem 8.3.3 combined with the hypercontractive estimates that we obtained in Theorem 6.1.8
show that the semigroup (Pt)t∈[0,∞) on the hypercube satisfies the logarithmic Sobolev inequality
with constant 2, i.e. for every f : Zn2 → R, we have

E[f2 ln(f2)]− E[f2] lnE[f2] ≤ 2E[fLf ].

In order to prove Theorem 8.3.3 we first need the following lemma whose proof is based on the
Stroock-Varopoulos theorem.

Lemma 8.3.4. The following statements are equivalent:
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(a): For every f : Zn2 → R,

E[f2 ln(f2)]− E[f2] lnE[f2] ≤ CE[fLf ].

(b): For every nonnegative f : Zn2 → R,

E[f2 ln(f2)]− E[f2] lnE[f2] ≤ CE[fLf ].

(c): For every nonnegative f : Zn2 → R, and every p > 1,

E[fp ln(fp)]− E[fp] lnE[fp] ≤ Cp2

4(p− 1)
E[fp−1Lf ].

Proof. Obviously (a) implies (b), and also setting P = 2 in (c) we recover (b). So it suffices
to show that (b) implies (a) and (c).

(b) ⇒ (a): This follows from E(|f |) ≤ E(f) which we proved in Section 8.0.1.

(b) ⇒ (c): This follows immediately from applying (b) to fp/2 and then using the Stroock-
Varopoulos inequality (Theorem 8.2.2). �

Proof of Theorem 8.3.3. For p ≥ q > 1, define tq(p) = C
4 ln p−1

q−1 . Consider a nonnegative

function f ∈ L2, and set

φq(p) = ln ‖Ptq(p)f‖q =
1

p
E
[
ln |Ptq(p)f |p

]
.

Note that t(q, q) = 0 and thus φq(q) = ln ‖f‖q. Hence hypercontractivity is equivalent to φq(p) ≤
φq(q) for p ≥ q. For p ≥ q denote

fp := Ptq(p)f ≥ 0.

Using d
dtPtf = −L(ptf), we obtain

d

dp
fpp =

1

p
fpp ln(fpp )− Cp

4(p− 1)
fp−1
p L(fp).

This shows

d

dp
φq(p) =

1

p

E[ ddp(fpp )]

E[fpp ]
− 1

p2
lnE[fpp ]

=
1

p2

E[fpp ln(fpp )]

E[fpp ]
− C

4(p− 1)

E[fp−1
p L(fp)]

E[fpp ]
− 1

p2
lnE[fpp ]

=
1

p2E[fpp ]

(
Ent(fpp )− Cp2

4(p− 1)
E[fp−1

p L(fp)]

)
.

Hence
d

dp
φq(p) ≤ 0⇐⇒ Ent(fpp ) ≤ Cp2

4(p− 1)
E[fp−1

p L(fp)]

Thus φq(p) is decreasing if the semigroup satisfies the logarithmic Sobolev inequality with constant
C, and we obtain the desired hyper-contractive estimates.

To deduce the logarithmic Sobolev inequality from hyper-contractivity, it suffices to notice that

if hypercontractivity holds, then d
dpφq(p)

∣∣∣
p=q
≤ 0. Since fq = f , this gives

Ent(f q) ≤ Cq2

4(q − 1)
E[f q−1L(f)],

which verifies the logarithmic Sobolev inequality by setting q = 2. �
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Exercise 8.3.5. This exercises shows that the logarithmic Sobolev inequality is stronger than
the Poincaré inequality (the converse is not true). Show that if a semigroup satisfies the logarithmic
Sobolev inequality with constant C, then it satisfies the Poincaré inequality with constant 2C.

8.3.1. Tensorization of logarithmic Sobolev inequality. Recall that in Chapter 6 to
prove the hypercontractivity for the noise operator, first we proved it for dimension 1 and then
used generalized Minkowski’s inequality to show that the inequality tensorizes. Theorem 8.3.3
shows that hypercontractivy us equivalent to the logarithmic Sobolev inequality. This suggest that
the logarithmic sobolev inequlity must also tensorize. Indeed there is also a standard method of
tensorizing both Poincaré and logarithmic Sobolev inequalities by using the subadditivity of the
variance and entropy functionals.

Thus the logorithmic sobolev inequalty and hypercontractive estimates on the cube could also
be obtained by proving the logarithmic Sobolev inequality on 0, 1 and then deducing it on the
general cube via subadditivity. For f : {0, 1}n → [0,∞), and i ∈ [n] define the coordinate-wise
entropy as

Enti(f) = Ex[n]\{i}

[
Entfx[n]\{i}(xi)

]
,

where fx[n]\{i} : xi 7→ f(x1, . . . , xn).

Lemma 8.3.6 (Subadditivity of Entropy). For f : Zn2 → [0,∞), we have

Ent(f) ≤
n∑
i=1

Enti(f).

Exercise 8.3.7. Prove the variational formulation of entropy:

Ent(f) = sup{〈f, g〉 : E[eg] ≤ 1, g : Zn2 → R},
for every f : Zn2 → [0,∞).

Exercise 8.3.8. Prove Lemma 8.3.6 using the variational formulation of entropy.

Exercise 8.3.9. Use 8.3.6 to show that the logarithmic sobolev inequality tensorizes. That
is if it holds with constant C for nonegative functions on Z2, then it holds with constant C for
nonnegative functions on Zn2 .

Exercise 8.3.10. Use the subadditivity of variance to show that the Poincaré inequality ten-
sorizes. That is if it holds with constant C for nonegative functions on Z2, then it holds with
constant C for nonnegative functions on Zn2 .

8.4. Reverse Hypercontractivity

In this lecture we are going to address a question related to expansion. We choose an element in
a product space and change each coordinate with a small probability. How large is the probability
that starting in a given small set A, the new point lands in another small set B? We are going to
prove a lower bound on this probability that depends on the relative densities of such sets. To this
end we introduce new tools concerning ‖ · ‖p with p < 1.

Recall that for 0 ≤ ρ ≤ 1, the noise operator is defined as

Tρf(x) = Eyf(y),

where y is obtained by changing each coordinate x ∈ {0, 1}n2 is obtained by changing each coordinate

independently with probability 1−ρ
2 . Here y is called a ρ-correlated copy of x. Equivalently, we can
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take y = Xx(t0) when e−t0 = ρ and (Xx(t))t∈[0,∞) is the continuous random walk that we defined
in Section 7.1 started at x.

Consider A,B ⊆ {0, 1}n with relative densities α, β. That is

|A|
2n

= α,
|B|
2n

= β.

Note that α, β are small but may not be constant. We are interested in the following question:
Pick a random x ∈ {0, 1}n and ρ-correlated copy y of x; How small can the following probability
can be?

Pr[x ∈ A, y ∈ B] = αPr[y ∈ B|x ∈ A].

Minimizing and and maximizing this quantity are both highly nontrivial. We will focus on minimiza-
tion here, and defer the maximization problem to a later chapter where we discuss noise-stability.
If we want to minimize this probability, intuitively, we would like to choose two opposite corners
of the cube. The probability in this case can be upper-bounded using the following lemma whose
proof we omit.

Lemma 8.4.1. Fix a, b > 0 and let A,B ⊆ {0, 1}n be

A =
{
x|
∑

xi ≤
n

2
− a√n

}
,

B =
{
x|
∑

xi ≥
n

2
+ b
√
n
}
.

Let x ∈ {0, 1}n be uniform and y be a correlated copy of x. Then we have the following upper bound

lim
n→∞

Pr[x ∈ A, y ∈ B] ≤
√

1− ρ2

2πa(ρa+ b)
e

{
−1

2
· a

2 + b2 + 2ρab

1− ρ2

}
The main term in the bound above is the exponential one and it involves the relative densities

of A and B as

lim
n→∞

|A|
2n

=
1√
2πa

e−a
2/2,

lim
n→∞

|B|
2n

=
1√
2πb

e−b
2/2.

We are going to establish a lower-bound in Theorem 8.4.6 that almost matches the upper-bound
of Lemma 8.4.1.

Let us first try the straight forward Fourier analytic approach that correspond to a spectral
gap method as the eigenvectors of Tρ are the characters because

TρχS = ρ|S|χS .

Therefore, the eigenvalues of Tρ are ρ|S|, the largest is 1, corresponding to the principal character
(S = ∅), and the second largest is ρ, recall ρ < 1. To compute the Fourier expansions, fix x and
average over y,

Pr[x ∈ A, y ∈ B] = E1A(x)1B(y) = E1A(x)Tρ1B(x).
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We can use an spectral gap method, that is, to remove the first coefficient and bound the other
ones by the second largest, finally we use Cauchy-Schwarz to derive the following,∑

1̂A(S)1̂B(S)ρ|S| ≥ 1̂A(∅)1̂B(∅)− ρ
∑
S 6=∅

∣∣∣1̂A(S)1̂B(S)
∣∣∣

≥ αβ − ρ

∑
S 6=∅

∣∣∣1̂A(S)
∣∣∣2
1/2∑

S 6=∅

∣∣∣1̂A(S)
∣∣∣2
1/2

= αβ − ρ
√
α− α2

√
β − β2.

When α and β are small, the second term in the right hand side is larger than the first term
and the bound is negative (and useless) unless ρ is very small. So we need a deeper approach.

8.4.1. Reverse hypercontractivity and its applications. We are going to use “Lp-norms”
for p < 1, and obtain a reverse hypercontractivity inequality. It is similar to the hypercontractivity
theorem but the direction of the inequality is reversed and applies to −∞ < q ≤ p < 1. Also unlike
the original hypercontractivity inequality, it only applies to non-negative functions. In fact all of
the next four theorems and lemmas require the functions to be non-negative.

Theorem 8.4.2 (Inverse Hölder Inequality). If f, g ≥ 0 are measurable functions with respect
to a measure space then

〈f, g〉 ≥ ‖f‖p‖g‖q,
where −∞ < q, p < 1 and 1

p + 1
q = 1.

Remark 8.4.3. When p < 1, although the function ‖·‖p is not a norm, we still use this notation
to denote (∫

|f |p
)1/p

.

In fact if f, g ≥ 0 then the triangle inequality is reversed for −∞ < p < 1,

‖f + g‖p ≥ ‖f‖p+ ‖g‖p.
To see this note that by Inverse Hölder Inequality

‖f + g‖pp =

∫
(f + g)p =

∫
(f + g)p−1f +

∫
(f + g)p−1g

≥
(∫

(f + g)p
) p−1

p

‖f‖p +

(∫
(f + g)p

) p−1
p

‖g‖p,

which simplifies to the desired inequality.

Theorem 8.4.4 (Reverse Hypercontractivity inequality). Let f : {0, 1}n → [0,∞), then

‖Tρf‖q ≥ ‖f‖p,

for 0 ≤ ρ ≤
√

p−1
q−1 and −∞ < q ≤ p < 1.

The proof is similar to the Hypercontractivity inequality. First one proves it for the 1-dimensional
case and then induction establishes the general case.

Corollary 8.4.5. Let f, g : {0, 1}n → [0,∞) and x ∈ {0, 1}n uniform and a ρ-correlated y
copy of x, then

Ef(x)g(y) ≥ ‖f‖p‖g‖q,
where 0 < ρ ≤

√
(1− p)(1− q) ≤ 1 and −∞ < q, p < 1.
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Proof. Let p′ = p
p−1 , so that p, p′ are conjugate exponents. We use the reverse Hölder’s

inequality and then apply the inverse hypercontractivity inequality,

Ef(x)g(y) = Ef(x)Tρg(x)

≥ ‖f‖p‖Tρg‖p′

≥ ‖f‖p‖g‖q,

where the last inequality requires 0 < ρ ≤
√

1−q
1−p′ =

√
(1− p)(1− q). �

Now we can prove the main theorem of the lecture, regarding the lower bound on the probability
that a ρ-correlated copy of a uniform element that is in A lands in B.

Theorem 8.4.6. Let A,B ⊆ {0, 1}n have relative densities

|A|
2n

= e−a
2/2 |B|

2n
= e−b

2/2,

and let x ∈ {0, 1}n be uniform and y be a ρ-correlated copy of x. Then

Pr[x ∈ A, y ∈ B] ≥ e
{
−1

2
· a

2 + b2 + 2ρab

1− ρ2

}
.

Proof. Let p, q be such that ρ2 = (1− p)(1− q), by corollary 8.4.5 we have that

Pr[x ∈ A, y ∈ B] = E1A(x)1B(y) ≥ ‖1A‖p‖1B‖q.
Now our task is to optimize p so that the the R.H.S. is maximized. Note that the Lp norm can be
expressed in term of the relative density because we are dealing with an indicator function

‖1A‖p = e−a
2/2p ‖1B‖p = e−b

2/2q.

To simplify computations, write p = 1− ρr and q = 1− ρ
r with r > 0, where

r =
1− p
ρ

=
ρ

1− q .

Then the optimal solution is achieved when

r =
b
a + ρ

1 + ρ ba
.

This gives the claimed lower bound as for the optimal value of r,

a2

p
+
b2

q
=
a2 + b2 + 2ρab

1− ρ2
.

�

We obtain the following corollary.

Corollary 8.4.7. Let A,B ⊆ {0, 1}n with relative densities α > 0 and ασ > 0 respectively,
where σ > 0. Let x ∈ {0, 1}n be uniform and y be a ρ-correlated copy of x. Then

Pr[x ∈ A, y ∈ B] ≥ αα(
√
σ+ρ)2/(1−ρ2).

In particular, if |A| = |B|, the this probability is at least α(1+ρ)/(1−ρ).

Another interesting corollary of the inverse hypercontractivity inequality is that we can measure
how Tρ “smooths” the “peaks” of the function f . That is, we can bound Pr[Tρf(x) > 1− δ].



8.4. REVERSE HYPERCONTRACTIVITY 85

Theorem 8.4.8. Let f : {0, 1}n → [0, 1] with Ef = α. Then for any 0 < ρ < 1 and 0 ≤ ε ≤ 1−α
we have

Pr[Tρf > 1− δ] < ε

provided that 0 ≤ δ < ερ
2/(1−ρ2)+O(κ), where κ =

√
α log(e/(1−α))

1−ρ .

Proof. Define indicator functions

g : x→
{

1 if Tρf(x) > 1− δ
0 otherwise

h : x→
{

1 if f(x) > b

0 otherwise,

where b = 1
2(1 + α). We need to show that ε′ := Eg ≤ ε. By the first moment method,

α = Ef ≥ (1− Eh)b,

then

Eh > 1− α

b
=

1− α
1 + α

,

and therefore support of h is not very small. Now, when g(x) = 1 we have Tρ(1− f(x)) ≤ δ, so

Tρ[(1− b)h(x)] < δ

and so

Tρ[h(x)] ≤ δ

1− b .
Thus

(48) E[gTρh] ≤ δε′

1− b =
2δε′

1− α.

Meanwhile, by Corollary 8.4.7

(49) E[gTρh] ≥ ε′ · ε′
(
√
β+ρ)2

1−ρ2

where β = logEh
log ε′ . Now (48) and (49) together with our assumption on δ leads to the desired bound

ε′ ≤ ε. �





CHAPTER 9

Noise Stability

In Section ?? we studied lower bounds for

Pr[x ∈ A, y ∈ B] = αPr[y ∈ B|x ∈ A],

when the densities α = 2−n|A| and β = 2−n|B| are fixed, and y is a ρ-correlated copy of x. We
have

Pr[x ∈ A, y ∈ B] = E[1A(x)1B(y)] = E[1A(x)Tρ(x)].

In this chapter we focus on maximizing this probability. A particular case of interest is when
A = B. This leads to the notion of noise stability, which measures the proportion of elements x
that remains in the support of a function f when we add some noise to them.

Definition 9.0.9. For 0 ≤ ρ ≤ 1, the noise stability of f : {0, 1}n → R is

Sρ(f) := Ef(x)f(y),

where y is a ρ-correlated copy of x and x ∈ {0, 1}n is uniform.

We are interested in finding the Boolean functions that have large noise stability. Note that for
fixed x, Ef(y) = Tρf(x), so we can look at Sρf as the correlation between f and Tρf , then

Sρ(f) = Ef(x)Tρf(x) =
∑
S⊆[n]

ρ|S||f̂(S)|2.

Now, for a function f : {0, 1}n → {0, 1} with E[f ] = 1/2 what is the largest possible value of
Sρf(x)? A first approach is to use the spectral gap. That is to separate the principal coefficient

and upper bound ρ|S| by ρ to get

Sρ(f) =
∑
S⊆[n]

ρ|S||f̂(S)|2

≤ |Ef |2 + ρ
∑
S 6=∅

|f̂(S)|2 =
1

4
+
ρ

4
,

where in the last equality we used the assumption that f is balanced and boolean. On the other
hand, half-cubes achieve this upper bound, for example, if f(x) = x1, then the Fourier expansion
is

f =
1

2
+

1

2
χ{i},

and so

Sρ(f) =
1

4
+
ρ

4
.

In general if the value of the function f depends only on few coordinates, then the function will
become stable under noise as with some non-negligible probability x and its correlated copy ρ will

87
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be the same on those coordinates. It turns out that the question becomes more interesting if we
avoid these examples by assuming that all the variables have small influences.

In contrast with the half-cubes where the Fourier coefficients are concentrated in the first level,
the next theorem states that even when all the influences are small, if one looks at the levels above
d, the sum of the squared Fourier coefficients is still large.

Theorem 9.0.10 (Bourgain 2000). If f : {0, 1}n → {0, 1} is balanced and Ii ≤ 10−d for all
i ∈ [n], then

‖f≥d‖22 =
∑
|S|≥d

|f̂(S)|2 ≥ d
−1/2−o

(√
ln ln d
ln d

)
,

which is d−1/2−o(1).

Theorem 9.0.10 whose proof is highly nontrivial provides an upperbound on noise stability

Corollary 9.0.11. If f : {0, 1}n → {0, 1} is balanced and Ii(f) = 2−O(1/ε) for all i ∈ [n], then

S1−ε(f) ≤ 1

2
− ε1/2+o(1)

Exercise 9.0.12. Prove Corollary 9.0.11.

Note that Corollary 9.0.11 is a great improvement compared with the bound obtained through
the spectral gap, namely 1

2 − ε
4 . However, this is not sharp as the majority function has an even

larger noise stability and it is conjecture that it achieves essentially the maximum noise stability
among balanced functions. The majority function Majn : {0, 1}n → {0, 1} is defined as

Majn : x→
{

1
∑
xi ≥ n/2

0
∑
xi < n/2.

Theorem 9.0.13. The limit as n tends to ∞ of the noise stability of the majority function is

lim
n→∞

Sρ(Majn) =
1

4
+

arcsin ρ

2π
.

It was conjectured by Subash Khot that under the condition of low influences, the majority
function is the stablest Boolean function. The analogous statement in the Gaussian setting was
proved in 1983 by Borell. Recently Mossel, O’Donnell, Oleszkiewicz found a method to deduce the
discrete case from Borell’s result.

Theorem 9.0.14 (Majority is stablest). For 0 < ρ < 1, if f : {0, 1}n → {0, 1} is balanced and
Ii(f) ≤ ε for all i ∈ [n], then

Sρ(f) ≤ 1

4
+

arcsin ρ

2π
+O

(
log log 1/ε

log 1/ε

)
.

Note that O
(

log log 1/ε
log 1/ε

)
= o(ε). This theorem together with the so called “unique games

conjecture” imply strong results about hardness of approximation.
For the proof of Theorem 9.0.14, we actually have to use geometry. The rest of the lecture

we will define gaussian random variables in Rn, state some of their basics properties and settle an
analogous setup for the noise operators. In the next lecture we will prove the analogue of Theorem
9.0.13 in Rn and then translate it back to the discrete case.
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Definition 9.0.15. The normal distribution on R is the probability distribution γ1 on R with
density function

e−x
2/2

√
2π

,

that is

γ1([a, b]) =

∫ b

a

e−x
2/2

√
2π

dx.

A random variable g with distribution γ1 is called a gaussian, these random variables have the
property that Eg = 0 and Eg2 = 1.

Definition 9.0.16. Let γn denote the corresponding product probability distribution on Rn. In
other words,

(50) γn({x ∈ Rn|ai ≤ xi ≤ bi}) =
n∏
i=1

γ1([ai, bi]).

The density function of γn is

Φn(x) =

(
1√
2π

)n
e
−‖x‖2

2 ,

that is, if A ∈ Rn, then γn(A) =
∫
A Φn(x)dx.

Remark 9.0.17. The way that we defined the gaussian measure on Rn as the product space in
(50) it is natural to expect that gaussians depend on the coordinates but they do not. The measure
γn is uniformly distributed in spheres centered at the origin; when one fixes a sphere, the function
Φn becomes constant and therefore independent of the coordinates.

In particular if g1, . . . , gn are i.i.d. gaussians and α, β ∈ Rn with ‖α‖2 = ‖β‖2, then the random
variables

α1g1,+ · · ·+ αngn and β1g1 + · · ·+ βngn,

have the same distribution. In particular,
∑
αigi has the same distribution as ‖α‖2g, where g is a

one dimensional gaussian.

Now we consider the characters of Zn2 in the gaussian space. Let S ⊆ [n], then we define

ωS : x 7→
∏
i∈S

xi.

Lemma 9.0.18. The functions ωS : (Rn, γn)→ R are orthonormal.

Proof. The inner product of any two function ωS , ωT can be express as the expected value of
its product with respect to γn, so

〈ωS , ωT 〉 =
∫
ωS(x)ωT (x)dγn(x) = EωS(g1, . . . , gn)ωS(g1, . . . , gn),

where gi are i.i.d. gaussians, so by independence

EωS(g1, . . . , gn)ωS(g1, . . . , gn) = E
∏
i∈S

gi
∏
i∈T

gi =

( ∏
i∈S∩T

Eg2
i

) ∏
i∈S4T

Egi

 =

{
0 S4T 6= ∅
1 otherwise

Therefore, the inner product of any two of those functions is zero unless they are the same functions,
and the norm of all of them is 1. �

Remark 9.0.19. {ωS}S⊆[n] do not generate all of L2(Rn, γn) but one can extend them using
the so called Hermité polynomials to a basis for L2(Rn, γn).
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To define the noise stability we have to define what a ρ-correlated of a gaussian is:

Definition 9.0.20. Let 0 ≤ ρ ≤ 1, two gaussians g, h are ρ-correlated if

g = ρh+
√

1− ρ2g′,

where g′ is a gaussian independent of g, h.

Here g and h have ρ correlation. To see this use the definition of g to get

E(g(x)h(x)) = E[ρh2 +
√

1− ρ2hg′] = Eρ = ρ,

we again used that the expected value of a gaussian is zero and the second moment is 1. On the

other hand, the coefficients are chosen so that g is a gaussian, note that g = ρh +
√

1− ρ2g′ has
the same distribution as

(ρ2 +
√

1− ρ2)g′′ = g′′,

where g′′ is a gaussian. Now, we define the analogue of the “noise operator” for the functions on
the gaussian space.

Definition 9.0.21. Let 0 ≤ ρ ≤ 1, then the Ornestein-Uhlenbeck operator acting on L2(Rn, γn)
is defined as

Uρf(x) = Ef(y),

where y = ρx+
√

1− ρ2g is a ρ-correlated copy of x.

Lemma 9.0.22. We have UρωS = ρ|S|ωS .

Proof. For fixed xi’s we have

UρωS(x) = E
∏
i∈S

(ρxi +
√

1− ρ2gi) = ρ|S|
∏
i∈S

xi = ρ|S|ωS(x).

�

9.1. Noise Stability in Gaussian Space

Finally, we get to define the noise stability for function on the guassian space.

Definition 9.1.1. The noise stability of f : (Rn, γn)→ R is defined as

Sρ(f) := E(fUρf) = Ef(x)f(y),

where x has distribution γn and y is a ρ-correlated copy of x.

The following is the analogue of Theorem 9.0.13 in the gaussian space.

Theorem 9.1.2 (Noise Stability of Majority Function). Let Majn : (Rn, γn)→ {0, 1}

Majn : x→
{

1
∑
xi ≥ 0

0
∑
xi < 0

then we have

Sρ(Majn) =
1

4
+

arcsin(ρ)

2π
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Proof.

Sρ(Majn) = E1[
∑
xi≥0]1[

∑
yi≥0] = E1

[ρ
∑
yi+
√

1−ρ2
∑
gi≥0]

1[
∑
yi≥0]

where yi’s and gi’s are i.i.d. Gaussians.
∑
yi has the same distribution as

√
nh, where h is a

Gaussian in R. Similarly,
∑
gi has distribution the same as

√
nh′. Therefore, the expected value

is equal to:

E1
[ρh+
√

1−ρ2h′≥0]
1[h≥0] =

1

4
+

arcsin ρ

2π
�

Definition 9.1.3 (Gaussian Rearrangement). Given A ⊂ Rn its Gaussian Rearrangement A∗

is defined to be the interval (t,∞) with γ1(t,∞) = γn(A).

Recall that γi is the Gaussian measure on R∗. The following is the analogue of Theorem 9.0.14
in the gaussian space.

Theorem 9.1.4 (Borrell 83). Let A,B ⊆ Rn. Then for any 0 ≤ ρ ≤ 1 and q ≥ 1 we have:

E(UρA)qB ≤ E(UρA
∗)qB∗

In particular,
Sρ(A) = EAUρA ≤ EA∗UρA∗ = Sρ(A∗)

Hence, γn(A) = 1
2 then Sρ(A) ≤ Sρ(Majn) = 1

4 + arcsin ρ
2π .

Note that unlike in Theorem 9.0.14, the previous theorem does not require any conditions on
the influences.

9.2. Invariance Principle

Theorem 9.2.1 (Invariance Principal I). Let Q(x1, . . . , xn) =
∑

S≤[n] αS
∏
i∈S xi satisfies:

(51) deg(Q) ≤ d

(52)
∑
|S|>0

α2
S = 1

(53) Ii :=
∑
S:i∈S

α2
S ≤ τ ∀i : 1, . . . , n

Then:
sup
t
|prob[Q(ε1, . . . , εn) ≤ t]− Pr[Q(g1, . . . , gn) ≤ t]| ≤ O(dτ

1
8d )

Where ε1, . . . , εn are i.i.d. ±1 uniform random variables and g1, . . . , gnare i.i.d. Gaussians.

Definition 9.2.2 (Rademacher Random Variable). A uniform ±1 random variable is called a
rademacher random variable.

Theorem 9.2.3 (Invariance Principal II).

|E[Ψ(Q(ε1, . . . , εn))]− E[Ψ(Q(g1, . . . , gn))]| ≤ O(d9dBτ)

for all Ψ : R→ R in C4 (four times differentiable) with |Ψ(4)(t)| < B for all t.

Remark that if we could take Ψ : x→
{
|x| x ≤ t
0 otherwise

then theorem II would imply theorem

I. One instead has to approximate functions with bounded fourth derivatives.
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Proof. Let Zi = Q(g1, . . . , gi, εi+1, . . . , εn). We claim that |EΨ(Zi−1 − EΨ(Zi)| ≤ O(B9dI2
i ).

First we show that the theorem can be extracted from this claim. Indeed,

|EΨ(Z0)− EΨ(Zn)| ≤
n∑
i=1

|EΨ((Zi−1)− EΨ(Zi)|

≤ O(B9d)
n∑
i=1

I2
i = O(B9d)

(max Ii)
∑

Ii ≤ O(B9dτ)
∑

Ii = O(B9dτ)
∑
|S|>0

|S|α2
S ≤ O(dB9dτ)

∑
|S|>0

α2
S = O(τB9dd)

To prove the claim Q(x1, . . . , xn) =
∑

S:i/∈S αS
∏
j∈s xj + xi

∑
S:i∈S αS

∏
j∈s\{i} xj =

r(x1, . . . , xi−1, xi+1, . . . , xn) + xis(x1, . . . , xi−1, xi+1, . . . , xn) , let R = r(g1, . . . , gi−1, εi+1, . . . , εn)
and S = s(g1, . . . , gi−1, εi+1, . . . , εn). We have Zi−1 = R + εiS and Zi = R + giS. Now using
Taylor’s theorem:

|EΨ(Zi−1)− EΨ(Zi)| ≤ |EΨ(R) + εiSΨ′(R) +
(εiS)2

2
Ψ′′(R) +

(εiS)3Ψ(3)(R)

6
+ E1

−EΨ(R)− giSΨ′(R)− (giS)2

2
Ψ′′(R)− (giS)3Ψ(3)(R)

6
− E2|

Where |E1| ≤ |Ψ
(4)(ξ)|(εiS)4

24 ≤ B(εiS)4

24 for some ξ between R and R+ εiS. Similarly, |E2| ≤ B(giS)4

24 .
All terms get canceled except the error terms E1 and E2. So the expression is bounded by:

E|B(εiS)4

24
|+ E|B(giS)4

24
| ≤ B

24
ES4 +

3B

24
ES4 ≤ B

6
ES4

by Hypercontractivity

≤ B9d

6
(ES2)2 =

B9d

6

∑
i∈S

α2
S =

B9d

6
I2
i

�

Above we claimed that Majority Function is the stablest in Gaussian space. Now, we are going
to prove this fact using the properties of Threshold Function.

Definition 9.2.4. TρQ =
∑
ρ|S|αS

∏
i∈S xi

Definition 9.2.5 (Threshold Function). For any µ ∈ [−1, 1], the function Thr(µ) : (R, γ1) →
{−1, 1} is defined as:

Thr(µ) : x→
{

1 x ≥ t0
−1 x < t0

with EThr(µ) = µ.

Theorem 9.2.6 (Majority is stablest in Gaussian space). Let f : (Rn, γn) → [1,−1] with
Ef = µ. Then:

Sρ(f) ≤ Sρ(Thr(µ))

Theorem 9.2.7 (Majority is stablest in discrete setting). Let f : {0, 1}n → [−1, 1] and Ii(f) =∑
S3i |f̂(s)|2 ≤ τ for every i. Then for every 0 ≤ ρ ≤ 1, Sρ(f) ≤ Sρ(Thr(µ)) + Oρ(

loglog 1
τ

log 1
τ

) where

µ = Ef
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Proof. Express f =
∑
f̂(S)χS . LetQ(x1, . . . , xn) =

∑
s⊆[[n] f̂(S)

∏
i∈S xi. Therefore, f(x1, . . . , xn) =

Q(ε1, . . . , εn) where εi = (−1)xi . Let (g1, . . . , gn) be an i.i.d. Gaussian. We have

Sρ(f) =
∑

ρ|S||f̂(S)|2 = Sρ(Q(g1, . . . , gn))

We would like to apply invariance principal to replace rademachers with Gaussians. However, since
the degree of Q can be as large as n, we cannot apply invariance directly to Q. Instead, we apply
a smoothed version of the theorem, which can be applied on TβQ for β < 1. Let ρ = ρ′β2 where
β < 1 is very close to 1. (0 < 1− β << 1− ρ) to be determined later.

Sρ(f) =
∑

ρ|S||f̂(S)|2 =
∑

(ρ′β2)|S||f̂(S)|2 = Sρ′(TβQ(g1, . . . , gn)).

Now using the smoothed invariance, TβQ(g1, . . . , gn) is close in distribution to TβQ(ε1, . . . , εn) and
hence it cannot be far from being in [−1, 1]. To make this precise we define function ξ as follows:

ξ : t→
{

0 |t| ≤ 1
(|t| − 1)2 |t| > 1

Note that ξ measures the L2-distance of t from its truncated value in [-1, 1]. By invariance principle
of random variables R = TβQ(ε1, . . . , εn) and S = TβQ(g1, . . . , gn) satisfy |Eξ(R) − Eξ(S)| ≤
τΩ(1−β). Let S’ be the truncation of S to the interval [-1, 1]:

S′ =

 S |S| ≤ 1
1 S > 1
−1 S < −1

By assumption, Q(ε1, . . . , εn) ∈ [−1, 1] and since Tβ is an averaging operator, TβQ(ε1, . . . , εn) ∈
[−1, 1] and hence ξ(R) = 0.
Thus,

E|ξ(S)| = E(S − S′)2 ≤ τΩ(1−β)

⇒ |Sρ′(S)− Sρ′(S′)| = |ESUρ′S − ES′Uρ′S′|

≤ |ESUρ′S − ES′Uρ′S|+ |ES′Uρ′S − ES′Uρ′S′|

≤ ‖S − S′‖2‖Uρ′S‖2 + ‖S′‖2‖Uρ′(S − S′)‖2

≤ ‖S − S′‖2‖S‖2 + ‖S′‖2‖S − S′‖2 ≤ τ (Ω(1− β)).

By Borrell’s theorem, Sρ′(S′) ≤ Sρ′(Thrµ
′
) where µ′ = ES′. Now, we just have to show that µ = µ′:

|µ− µ′| = |E(S − S′)| ≤ ‖S − S′‖2 ≤ τ (Ω(1− β))

⇒ |Sρ′(Thrµ)− Sρ′(Thrµ
′
)| ≤ O(

1− β
1− ρ )

⇒ Sρ(f) = Sρ(Thr(µ)) +O(τ (Ω(1−β)) +
1− β
1− ρ

and by optimizing the last expression over β the result yields to the theorem claim. �
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9.3. Applications of “Majority is Stablest” Theorem

Definition 9.3.1 (Condorcet Method for Ranking 3 Candidates). In an election with n voters
and 3 candidates, A, B and C, each voter submits 3 bits representing his preferences. The first bit
indicates whether he prefers A to B; The second one shows his preference between B and C and
the third one shows the same fact over C and A. These preferences are aggregated into 3 strings
x, y, z ∈ (−1, 1)n. A boolean function f : {−1, 1}n 7→ {−1, 1} is applied to x, y and z and the
aggregated preference is represented by (f(x), f(y), f(z)).

Definition 9.3.2 (Condorcet Paradox). If f is the Majority function we have an irrational
outcome, in which all 3 aggregated bits are 1 or all are -1 representing preferences A < B < C < A
or A > B > C > A.

Definition 9.3.3. A triple (a, b, c) ∈ {−1, 1}3 is called rational, if it corresponds to a non-cyclic
ordering.

Theorem 9.3.4 (Ken Arrow’s Impossibility Theorem). The only functions f that never give
irrational outcomes are dictator functions f(x) = xi or f(x) = 1− xi for some i.

Note that every voter has 6 possible rational rankings. Suppose that every voter votes indepen-
dently at random from the 6 possible choices. Let x, y, z ∈ {−1, 1}n be the corresponding random
string. Note that:

1[a1=a2=a3] =
1

4
+

1

4
a1a2 +

1

4
a1a3 +

1

4
a2a3

⇒ Pr[(f(x), f(y), f(z))] = 1− E1[f(x)=f(y)=f(z)] =
3

4
− 1

4
Ef(x)f(y)− 1

4
Ef(x)f(z)− 1

4
Ef(y)f(z)

=
3

4
− 3

4
Ef(x)f(y) =

3

4
− 3

4

∑
f̂(S)f̂(T )EχS(x)χT (y)

Now we know that,

EχS(x)χT (y) = (
∏

i∈S∩T
Exiyi)(

∏
i∈S\T

Exi)(
∏
i∈T\S

Eyi)

Since Eyi = Exi = 0 and Exiyi = 2
6 − 4

6 = −1
3 , so EχS(x)χT (y) =

{
0 S 6= T

(−1
3 )|S| S = T

. Hence,

Pr[(f(x), f(y), f(z)) is rational] =
3

4
+

3

4

∑
(
−1

3
)|S||f̂(S)|2 ≤ 3

4
+

3

4
S 1

3
(f)

Corollary 9.3.5. If f satisfies Ii(f) = on(1) and Ef = 0, then rationality of f ≤ 3
4 +

3
4 arcsin 1

3 + on(1) ≤ 0.9123 + on(1).
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