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1. Fourier Analysis

For two functions f, g : Fn2 → R define

〈f, g〉 = E[f(x)g(x)] =
1

2n

∑
x

f(x)g(x).

This inner product turns the space of all functions f : Fn2 → R into a Hilbert space. Next we want
to construct an orthonormal basis for this Hilbert space.

Definition 1 (Characters). For S ⊆ {1, . . . , n}, define χS : Fn2 → R as

χS : x 7→
∏
i∈S

(−1)xi = (−1)
∑

i∈S xi .

Note χ∅ ≡ 1.

Observe that χSχT = χS4T , and that

E[χS(x)] =

{
1 S = ∅
0 S 6= ∅

It follows from these two observations (and the fact that there are 2n of them) that characters form
an orthonormal basis for the space of functions f : Fn2 → R:

〈χS , χT 〉 = EχS(x)χT (x) =

{
1 S = T
0 S 6= T

Definition 2. The Fourier expansion of a function f : Fn2 → R is the unique expansion of f in the
Fourier basis:

f =
∑

f̂(S)χS ,

where f̂(S) ∈ R are called Fourier coefficients.

The following facts are very useful.

• f̂(S) = 〈f, χS〉 ≤ E|f(x)|.
• f̂(∅) = E[f(x)].

• Plancharel: 〈f, g〉 =
∑
f̂(S)ĝ(S).

• Parseval: E[f(x)2] = 〈f, f〉 =
∑
f̂(S)2.

Note that if we consider the space of functions f : {−1, 1}n → R, then we have to replace the
definition of the characters to Walsh functions χS : x 7→

∏
i∈S xi, which are just monomials. In

this case the Fourier expansion is the polynomial representation:

f(x) =
∑
S⊆[n]

f̂(S)χS(x).
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Definition 3. Given a function f : {0, 1}n → {0, 1}, the (Fourier) degree of f , denote by deg(f)

is the size of the largest S with f̂(S) 6= 0.

Similar to approximate rank and sign-rank we can define the approximate degree, and the sign-
degree of a function f : {0, 1}n → R:

• For ε ≥ 0, we the ε-approximate degree as degε(f) = min‖f−g‖∞≤ε deg(g).
• The sign-degree is defined as deg±(f) = min deg(g) over all g satisfying f(x)g(x) > 0 for

all x with f(x) 6= 0.

Note that for a function f : {0, 1}n → {−1, 1}, and 0 ≤ ε < 1 we have

deg(f) ≥ degε(f) ≥ lim
ε↗1

degε(f) = deg±(f).

As we saw earlier [Riv81, Corollary 1.4.1] we know that there exists a polynomial p : R → R
such that d := deg(p) = O(1/α) and it satisfies

p([2/3, 4/3]) ⊆ [1− α, 1 + α],

and

p([−4/3,−2/3]) ⊆ [−1− α,−1 + α].

This shows that for every fixed ε ∈ (0, 1),

deg1/3(f) = Θε(degε(f)).

In the light of this fact, without loss of generalization, we often refer to deg1/3(f) as the approximate
degree of f . The degree and approximate degree are closely related to two other complexity
measures, decision tree complexity, and block sensitivity. We will not discuss the block sensitivity
here, and refer the interested reader to the survey [BdW02]. The decision tree complexity of f ,
denoted by dt(f), is the smallest height of a decision tree that computes f . It is an easy exercise
to see that deg1/3(f) ≤ deg(f) ≤ dt(f). It follows from the results of [NS94, BBC+01] that

deg1/3(f) ≤ deg(f) ≤ dt(f) ≤ cdeg61/3(f) ≤ cdeg6(f).

Hence deg1/3(f), deg(f) and dt(f) are polynomially related. The sensitivity of f is defined as

s(f) = maxx |{i : f(x) 6= f(x ⊕ ei)}|. Obviously s(f) ≤ dt(f). It is a major open problem
whether s(f) is polynomially related to deg(f) (equivalently dt(f) or deg1/3(f). We refer the

reader to [HKP11] for more on the variations and the history of this problem.
There are various ways to construct communication problems from a function f : {0, 1}n →

{−1, 1}. Probably the most natural one is to consider the function g : (x, y) 7→ f(x⊕ y). It is easy

to see that the eigenvalues of Mg are {2nf̂(T )}T⊆[n] corresponding to eigenvectors {χT }T⊆[n].

Definition 4. Given f : {0, 1}n → {−1, 1}, its degree-d threshold weight is defined to be the
minimum

∑
|S|≤d |λS | over all integers λS such that

f(x) ≡ sign(
∑
S

λSχS(x)).

If no such λS can be found (equivalently d < deg±(f)) then we set W (f, d) =∞. We also define

W (f) = min
d=0,...,n

W (f, d).
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Note that since λS are integers, the function
∑

S λSχS(x) is integer-valued, and hence if it
sign-represents f : {0, 1}n → {−1, 1}, then for all x,∣∣∣∣∣∑

S

λSχS(x)

∣∣∣∣∣ ≥ 1.

Proposition 5. For every f : {0, 1}n → {−1, 1} we have

R 1
2
− 1

2W (f)
(f(x⊕ y)) = O(1).

Proof. Let

f(x) ≡ sign(
∑
S

λSχS(x))

satisfy
∑
|λS | = W (f) and λS ∈ Z. Alice and Bob choose a random S with their shared randomness

such that

Pr[S is chosen] =
|λS |
W (f)

.

Then Alice sends χS(x) to Bob and Bob outputs sign(λS)χS(x)χS(y). Note

1

2
− PrS [f(x⊕ y) 6= sign(λS)χS(x)χS(y)] =

1

2
ES [f(x⊕ y)sign(λS)χS(x)χS(y)]

=
1

2

∑
S

|λS |
W (f)

f(x⊕ y)sign(λS)χS(x⊕ y)

=
f(x⊕ y)

2W (f)

∑
λSχS(x⊕ y)

=
1

2W (f)

∣∣∣∑λSχS(x⊕ y)
∣∣∣ ≥ 1

2W (f)
.
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