COMP760, SUMMARY OF LECTURE 7.

HAMED HATAMI

¢ Unbounded-error model is due to Paturi and Simon [PS86]. The unbounded-error com-
munication complexity of a function f, denoted by U(f) is the least cost of a private coin
randomized protocol that computes f with the error probability strictly less than % That
is Pr[P(z,y,7) # f(z,y)] < 1 for all (z,y). Note
U(f) = lim RP™(f).
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It is important that protocol is in the private coin model. Indeed for every function f, we
have UP(f) = O(1) (See assignment 2).
In the previous lecture we saw that RE™(f) > logranks.(f). Taking the limit shows

U(f) = lim RP"(f) > lim logranks.(f) = log ranky (f).
e L e/t
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Theorem 1 (Paturi-Simon [PS86]). For every f : {0,1}" x {0,1}" — {—1,1}, we have
logranky (f) < U(f) < log(ranks (f) +1).

Proof. As we discussed above the lower-bound follows from Krause’s result Ri’m( f) >
log ranka.(f). It remains to prove U(f) < log(rank (f)+1). Suppose that A sign-represents
f and rank(A) = d. Hence there exists 2" x d and d x 2™ matrices B and C such that
A = BC'. First we note that if all the entries of B are positive, each row of B sums up to
1, and |Cj;| < %, then we can design an unbounded protocol for f that uses logy d bits of
communication. Then we will show that at the cost of increasing d by at most 1 we can
easily satisfy these conditions.
— Alice chooses j € {1,...,d} randomly s.t. Pr[j =i] = By, and sends j to Bob.
— Bob outputs
1 with probability 3 + Cj,
—1 with probability % — Cly.
Since A = BC, we have

d
Pr[P(z,y) =1] = ZBm_j <; + ij> = % + Az, y).
j=1

and

d
1 1
PrlP(e) = 1= Y- By (5 - i) = 5~ Alwwn)
j=1

Since A sign-represents f, this is an unbounded protocol with cost log(d).

It remains to show that at the cost of increasing d by 1, we can satisfy the conditions that
we used above. Indeed let C’ be obtained by adding a new row to C' to make sure that every
column adds up to 0. That is the y-th entry in this new row is C'(d+1,y) = — Z;l:l C(4,9).
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Let A > 0 be sufficiently large so that the entries of

0
B, = B @ + )\JQ"X(d-i-l)
0

are all positive. Here Jyn,(441) denotes the all 1 matrix of dimensions 2" x (d + 1). Note
that B'C” = BC, and that the entries of B’ are all positive. Now we can divide every row
of B’ by a positive number to make sure that it adds up to 1, and we can divide C’ by a
large positive number so that all its entries are at most 1/2 in absolute value. Obviously
this re-scaling does not change the sign of the entries of the product, and thus we obtain
the desired matrices. g

e Non-determinism N!(f) and N°(f): Consider a function f. An oracle who sees both
x and y wants to convince Alice and Bob that f(z,y) = 1. The smallest amount of
communication required between the oracle and Alice and Bob, so that Alice and Bob get
convinced that f(z,y) = 1 on all such inputs is denoted by N'(f). Obviously if f(z,y) = 0,
no matter what Oracle says, they must not come to the conclusion that f(x,y) = 1. The
communication parameter N°(f) is defined similarly but with swapping the roles of 0 and
1.

As a simple example consider the equality function EQ,,. Here if EQ,,(z,y) = 0, meaning
that = # y, the oracle can tell to Alice and Bob a coordinate i with x; # y;, and then they
can verify this by communicating z; and y;. Hence N°(EQ,,) = O(logy n).

e We have Ni(f) =1log C(f) £ O(1), and No(f) =log CO(f) £ O(1).

e We proved in Lecture 2 that D(f) < log C°(f)log C'(f). With the new notation this means
D(f) < N°(/)N'(f).

1. COMMUNICATION COMPLEXITY CLASSES:

As in the rest of complexity theory by a communication problem we mean a sequence of functions
fn 40,1} x {0,1}" — {0,1} for n € N. For example equality EQ,,, disjointness DISJ,,, and inner
product IP,, are all communication problems.

e Class P is the set of problems with efficient deterministic communication complexity.
That is D(f,) < log®(n) for some constant ¢ > 0.

e Class NP“: is the set of problems with efficient non-deterministic communication com-
plexity. That is N1(f,) < log®(n).

e Class CoNP®: is the negation of the problems in NP°. That is N°(f,) < log®(n).

e Class X{°: For a fixed integer k > 1, a family {f,,} is in 3¢° if and only if for some constant
c> 0,

2logc n zlogC n 210gC n 210gC n

= NNV N g

i1=1 i9=1 1i3=1 =1



COMP760, SUMMARY OF LECTURE 7. 3

here \/ and A alternate, and thus when & is odd, the inner most one must be \/ (instead of
N). If k is odd then g;, .. ;, are rectangles, and if k is even then they are complements of
rectangles.

e Class IIj°: A family {f,} is in II{¢ if and only if {—f,} is in 35°.
e Class PH*: The polynomial hierarchy is defined as PH,.. = U723 = Uy 1I5°.

e Class PSPACE®: A family {f,} is in PSPACE¢c if and only if for some constant ¢ > 0
and odd k < log®n,

210gC n Qlogc n 210gc n 210gc n
o= NNV Vg
i1=1 do2=1 1i3=1 tp=1

where g;,,.. 4, (alternatively we could take k even and then the functions g would become
complements of rectangles...)

e Class BPP“: Problems with R; /3(fy) < log®(n).

e Class PP“: Problems with R1_igem) (frn) < logf(n).
2

e Class UPP“: Problems with U(f,) < log®(n).

2. SOME RELATIONS BETWEEN THESE CLASSES
o NP = ¥{° and CoNP“ = II{*.

o I C B, NS,
e Since D(f) < N°(f)N'(f), we have P = NP“ N CoNP*.
e BPP* C PP* C UPP*,

e PH* C PSPACE®.

e In light of the Paturi-Simon theorem, UPP“ can be characterized as the class of problems
with ranky (fy,) < log®(n).

e It’s not hard to see that PP can be characterized as the class of problems with non-
negligible discrepancy disc(f,) < 271°8°("), (See Assignment 2)

e It’s not hard to see NP, CoNP“ C PP“. (See Assignment 2)
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