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• Unbounded-error model is due to Paturi and Simon [PS86]. The unbounded-error com-
munication complexity of a function f , denoted by U(f) is the least cost of a private coin
randomized protocol that computes f with the error probability strictly less than 1

2 . That

is Pr[P (x, y, r) 6= f(x, y)] < 1
2 for all (x, y). Note

U(f) = lim
ε↗ 1

2

Rprvε (f).

It is important that protocol is in the private coin model. Indeed for every function f , we
have Upub(f) = O(1) (See assignment 2).

In the previous lecture we saw that Rprvε (f) ≥ log rank2ε(f). Taking the limit shows

U(f) = lim
ε↗ 1

2

Rprvε (f) ≥ lim
ε↗ 1

2

log rank2ε(f) = log rank±(f).

Theorem 1 (Paturi-Simon [PS86]). For every f : {0, 1}n × {0, 1}n → {−1, 1}, we have
log rank±(f) ≤ U(f) ≤ log(rank±(f) + 1).

Proof. As we discussed above the lower-bound follows from Krause’s result Rprvε (f) ≥
log rank2ε(f). It remains to prove U(f) ≤ log(rank±(f)+1). Suppose that A sign-represents
f and rank(A) = d. Hence there exists 2n × d and d × 2n matrices B and C such that
A = BC. First we note that if all the entries of B are positive, each row of B sums up to
1, and |Cij | ≤ 1

2 , then we can design an unbounded protocol for f that uses log2 d bits of
communication. Then we will show that at the cost of increasing d by at most 1 we can
easily satisfy these conditions.

– Alice chooses j ∈ {1, . . . , d} randomly s.t. Pr[j = i] = Bxi, and sends j to Bob.
– Bob outputs

1 with probability 1
2 + Cjy

−1 with probability 1
2 − Cjy.

Since A = BC, we have

Pr[P (x, y) = 1] =
d∑
j=1

Bxj

(
1

2
+ Cjy

)
=

1

2
+A(x, y).

and

Pr[P (x, y) = −1] =

d∑
j=1

Bxj

(
1

2
− Cjy

)
=

1

2
−A(x, y).

Since A sign-represents f , this is an unbounded protocol with cost log(d).
It remains to show that at the cost of increasing d by 1, we can satisfy the conditions that

we used above. Indeed let C ′ be obtained by adding a new row to C to make sure that every

column adds up to 0. That is the y-th entry in this new row is C ′(d+1, y) = −
∑d

j=1C(j, y).
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Let λ > 0 be sufficiently large so that the entries of

B′ = B ⊕

 0
...
0

+ λJ2n×(d+1)

are all positive. Here J2n×(d+1) denotes the all 1 matrix of dimensions 2n × (d + 1). Note
that B′C ′ = BC, and that the entries of B′ are all positive. Now we can divide every row
of B′ by a positive number to make sure that it adds up to 1, and we can divide C ′ by a
large positive number so that all its entries are at most 1/2 in absolute value. Obviously
this re-scaling does not change the sign of the entries of the product, and thus we obtain
the desired matrices. �

• Non-determinism N1(f) and N0(f): Consider a function f . An oracle who sees both
x and y wants to convince Alice and Bob that f(x, y) = 1. The smallest amount of
communication required between the oracle and Alice and Bob, so that Alice and Bob get
convinced that f(x, y) = 1 on all such inputs is denoted by N1(f). Obviously if f(x, y) = 0,
no matter what Oracle says, they must not come to the conclusion that f(x, y) = 1. The
communication parameter N0(f) is defined similarly but with swapping the roles of 0 and
1.

As a simple example consider the equality function EQn. Here if EQn(x, y) = 0, meaning
that x 6= y, the oracle can tell to Alice and Bob a coordinate i with xi 6= yi, and then they
can verify this by communicating xi and yi. Hence N0(EQn) = O(log2 n).

• We have N1(f) = logC1(f)±O(1), and N0(f) = logC0(f)±O(1).

• We proved in Lecture 2 that D(f) ≤ logC0(f) logC1(f). With the new notation this means
D(f) ≤ N0(f)N1(f).

1. Communication complexity classes:

As in the rest of complexity theory by a communication problem we mean a sequence of functions
fn : {0, 1}n × {0, 1}n → {0, 1} for n ∈ N. For example equality EQn, disjointness DISJn, and inner
product IPn are all communication problems.

• Class Pcc: is the set of problems with efficient deterministic communication complexity.
That is D(fn) ≤ logc(n) for some constant c > 0.

• Class NPcc: is the set of problems with efficient non-deterministic communication com-
plexity. That is N1(fn) ≤ logc(n).

• Class CoNPcc: is the negation of the problems in NPcc. That is N0(fn) ≤ logc(n).

• Class Σcc
k : For a fixed integer k ≥ 1, a family {fn} is in Σcc

k if and only if for some constant
c > 0,

fn =
2log

c n∨
i1=1

2log
c n∧

i2=1

2log
c n∨

i3=1

. . .

2log
c n∧

ik=1

gi1,...,ik ,
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here
∨

and
∧

alternate, and thus when k is odd, the inner most one must be
∨

(instead of∧
). If k is odd then gi1,...,ik are rectangles, and if k is even then they are complements of

rectangles.

• Class Πcc
k : A family {fn} is in Πcc

k if and only if {¬fn} is in Σcc
k .

• Class PHcc: The polynomial hierarchy is defined as PHcc = ∪∞k=1Σ
cc
k = ∪∞k=1Π

cc
k .

• Class PSPACEcc: A family {fn} is in PSPACEcc if and only if for some constant c > 0
and odd k < logc n,

fn =
2log

c n∨
i1=1

2log
c n∧

i2=1

2log
c n∨

i3=1

. . .
2log

c n∨
ik=1

gi1,...,ik ,

where gi1,...,ik (alternatively we could take k even and then the functions g would become
complements of rectangles...)

• Class BPPcc: Problems with R1/3(fn) ≤ logc(n).

• Class PPcc: Problems with R 1
2
−2logc(n)(fn) ≤ logc(n).

• Class UPPcc: Problems with U(fn) ≤ logc(n).

2. Some relations between these classes

• NPcc = Σcc
1 and CoNPcc = Πcc

1 .

• Σcc
k ,Π

cc
k ⊆ Σcc

k+1 ∩Πcc
k+1.

• Since D(f) ≤ N0(f)N1(f), we have Pcc = NPcc ∩ CoNPcc.

• BPPcc ⊆ PPcc ⊆ UPPcc.

• PHcc ⊆ PSPACEcc.

• In light of the Paturi-Simon theorem, UPPcc can be characterized as the class of problems
with rank±(fn) ≤ logc(n).

• It’s not hard to see that PPcc can be characterized as the class of problems with non-
negligible discrepancy disc(fn) ≤ 2− logc(n). (See Assignment 2)

• It’s not hard to see NP,CoNPcc ⊆ PPcc. (See Assignment 2)
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