COMP760, SUMMARY OF LECTURE 7.

HAMED HATAMI

- Unbounded-error model is due to Paturi and Simon [PS86]. The unbounded-error communication complexity of a function f, denoted by $U(f)$ is the least cost of a private coin randomized protocol that computes f with the error probability strictly less than $\frac{1}{2}$. That is $\operatorname{Pr}[P(x, y, r) \neq f(x, y)]<\frac{1}{2}$ for all (x, y). Note

$$
U(f)=\lim _{\epsilon \nearrow \frac{1}{2}} R_{\epsilon}^{p r v}(f) .
$$

It is important that protocol is in the private coin model. Indeed for every function f, we have $U^{p u b}(f)=O(1)$ (See assignment 2).

In the previous lecture we saw that $R_{\epsilon}^{p r v}(f) \geq \log \operatorname{rank}_{2 \epsilon}(f)$. Taking the limit shows

$$
U(f)=\lim _{\epsilon \nearrow^{\frac{1}{2}}} R_{\epsilon}^{p r v}(f) \geq \lim _{\epsilon \nearrow^{\frac{1}{2}}} \log \operatorname{rank}_{2 \epsilon}(f)=\log \operatorname{rank}_{ \pm}(f)
$$

Theorem 1 (Paturi-Simon [PS86]). For every $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{-1,1\}$, we have $\log \operatorname{rank}_{ \pm}(f) \leq U(f) \leq \log \left(\operatorname{rank}_{ \pm}(f)+1\right)$.

Proof. As we discussed above the lower-bound follows from Krause's result $R_{\epsilon}^{p r v}(f) \geq$ $\log \operatorname{rank}_{2 \epsilon}(f)$. It remains to prove $U(f) \leq \log \left(\operatorname{rank}_{ \pm}(f)+1\right)$. Suppose that A sign-represents f and $\operatorname{rank}(A)=d$. Hence there exists $2^{n} \times d$ and $d \times 2^{n}$ matrices B and C such that $A=B C$. First we note that if all the entries of B are positive, each row of B sums up to 1 , and $\left|C_{i j}\right| \leq \frac{1}{2}$, then we can design an unbounded protocol for f that uses $\log _{2} d$ bits of communication. Then we will show that at the cost of increasing d by at most 1 we can easily satisfy these conditions.

- Alice chooses $j \in\{1, \ldots, d\}$ randomly s.t. $\operatorname{Pr}[j=i]=B_{x i}$, and sends j to Bob.
- Bob outputs

1 with probability $\frac{1}{2}+C_{j y}$
-1 with probability $\frac{1}{2}-C_{j y}$.
Since $A=B C$, we have

$$
\operatorname{Pr}[P(x, y)=1]=\sum_{j=1}^{d} B_{x j}\left(\frac{1}{2}+C_{j y}\right)=\frac{1}{2}+A(x, y) .
$$

and

$$
\operatorname{Pr}[P(x, y)=-1]=\sum_{j=1}^{d} B_{x j}\left(\frac{1}{2}-C_{j y}\right)=\frac{1}{2}-A(x, y) .
$$

Since A sign-represents f, this is an unbounded protocol with cost $\log (d)$.
It remains to show that at the cost of increasing d by 1 , we can satisfy the conditions that we used above. Indeed let C^{\prime} be obtained by adding a new row to C to make sure that every column adds up to 0 . That is the y-th entry in this new row is $C^{\prime}(d+1, y)=-\sum_{j=1}^{d} C(j, y)$.

Let $\lambda>0$ be sufficiently large so that the entries of

$$
B^{\prime}=B \oplus\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]+\lambda J_{2^{n} \times(d+1)}
$$

are all positive. Here $J_{2^{n} \times(d+1)}$ denotes the all 1 matrix of dimensions $2^{n} \times(d+1)$. Note that $B^{\prime} C^{\prime}=B C$, and that the entries of B^{\prime} are all positive. Now we can divide every row of B^{\prime} by a positive number to make sure that it adds up to 1 , and we can divide C^{\prime} by a large positive number so that all its entries are at most $1 / 2$ in absolute value. Obviously this re-scaling does not change the sign of the entries of the product, and thus we obtain the desired matrices.

- Non-determinism $N^{1}(f)$ and $N^{0}(f)$: Consider a function f. An oracle who sees both x and y wants to convince Alice and Bob that $f(x, y)=1$. The smallest amount of communication required between the oracle and Alice and Bob, so that Alice and Bob get convinced that $f(x, y)=1$ on all such inputs is denoted by $N^{1}(f)$. Obviously if $f(x, y)=0$, no matter what Oracle says, they must not come to the conclusion that $f(x, y)=1$. The communication parameter $N^{0}(f)$ is defined similarly but with swapping the roles of 0 and 1.

As a simple example consider the equality function EQ_{n}. Here if $\mathrm{EQ}_{n}(x, y)=0$, meaning that $x \neq y$, the oracle can tell to Alice and Bob a coordinate i with $x_{i} \neq y_{i}$, and then they can verify this by communicating x_{i} and y_{i}. Hence $N^{0}\left(\mathrm{EQ}_{n}\right)=O\left(\log _{2} n\right)$.

- We have $N_{1}(f)=\log C^{1}(f) \pm O(1)$, and $N_{0}(f)=\log C^{0}(f) \pm O(1)$.
- We proved in Lecture 2 that $D(f) \leq \log C^{0}(f) \log C^{1}(f)$. With the new notation this means $D(f) \leq N^{0}(f) N^{1}(f)$.

1. Communication complexity classes:

As in the rest of complexity theory by a communication problem we mean a sequence of functions $f_{n}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ for $n \in \mathbb{N}$. For example equality EQ_{n}, disjointness DISJ $_{n}$, and inner product IP_{n} are all communication problems.

- Class $\mathrm{P}^{c c}$: is the set of problems with efficient deterministic communication complexity. That is $D\left(f_{n}\right) \leq \log ^{c}(n)$ for some constant $c>0$.
- Class $\mathrm{NP}^{c c}$: is the set of problems with efficient non-deterministic communication complexity. That is $N^{1}\left(f_{n}\right) \leq \log ^{c}(n)$.
- Class CoNP ${ }^{c c}$: is the negation of the problems in $\operatorname{NP}^{c c}$. That is $N^{0}\left(f_{n}\right) \leq \log ^{c}(n)$.
- Class $\Sigma_{k}^{c c}$: For a fixed integer $k \geq 1$, a family $\left\{f_{n}\right\}$ is in $\Sigma_{k}^{c c}$ if and only if for some constant $c>0$,

$$
f_{n}=\bigvee_{i_{1}=1}^{2^{\log ^{c} n}} \bigwedge_{i_{2}=1}^{2^{\log ^{c} n}} \bigvee_{i_{3}=1}^{2^{\log ^{c} n}} \ldots \bigwedge_{i_{k}=1}^{2^{\log ^{c} n}} g_{i_{1}, \ldots, i_{k}},
$$

here \bigvee and \bigwedge alternate, and thus when k is odd, the inner most one must be \bigvee (instead of $\wedge)$. If k is odd then $g_{i_{1}, \ldots, i_{k}}$ are rectangles, and if k is even then they are complements of rectangles.

- Class $\Pi_{k}^{c c}:$ A family $\left\{f_{n}\right\}$ is in $\Pi_{k}^{c c}$ if and only if $\left\{\neg f_{n}\right\}$ is in $\Sigma_{k}^{c c}$.
- Class $\mathrm{PH}^{c c}$: The polynomial hierarchy is defined as $\mathrm{PH}_{c c}=\cup_{k=1}^{\infty} \Sigma_{k}^{c c}=\cup_{k=1}^{\infty} \Pi_{k}^{c c}$.
- Class PSPACE ${ }^{c c}$: A family $\left\{f_{n}\right\}$ is in $\operatorname{PSPACE}^{c} c$ if and only if for some constant $c>0$ and odd $k<\log ^{c} n$,

$$
f_{n}=\bigvee_{i_{1}=1}^{2^{\log ^{c} n}} \bigwedge_{i_{2}=1}^{2^{\log ^{c} n}} \bigvee_{i_{3}=1}^{2^{\log ^{c} n}} \ldots \bigvee_{i_{k}=1}^{2^{\log ^{c} n}} g_{i_{1}, \ldots, i_{k}},
$$

where $g_{i_{1}, \ldots, i_{k}}$ (alternatively we could take k even and then the functions g would become complements of rectangles...)

- Class $\operatorname{BPP}^{c c}$: Problems with $R_{1 / 3}\left(f_{n}\right) \leq \log ^{c}(n)$.
- Class $\mathrm{PP}^{c c}$: Problems with $R_{\frac{1}{2}-2^{\log (}(n)}\left(f_{n}\right) \leq \log ^{c}(n)$.
- Class UPP ${ }^{c c}$: Problems with $U\left(f_{n}\right) \leq \log ^{c}(n)$.

2. Some relations between these classes

- $\mathrm{NP}^{c c}=\Sigma_{1}^{c c}$ and $\mathrm{CoNP}^{c c}=\Pi_{1}^{c c}$.
- $\Sigma_{k}^{c c}, \Pi_{k}^{c c} \subseteq \Sigma_{k+1}^{c c} \cap \Pi_{k+1}^{c c}$.
- Since $D(f) \leq N^{0}(f) N^{1}(f)$, we have $\mathrm{P}^{c c}=\mathrm{NP}^{c c} \cap \operatorname{CoNP}^{c c}$.
- $\mathrm{BPP}^{c c} \subseteq \mathrm{PP}^{c c} \subseteq \mathrm{UPP}^{c c}$.
- $\mathrm{PH}^{c c} \subseteq \mathrm{PSPACE}{ }^{c c}$.
- In light of the Paturi-Simon theorem, $\mathrm{UPP}^{c c}$ can be characterized as the class of problems with $\operatorname{rank}_{ \pm}\left(f_{n}\right) \leq \log ^{c}(n)$.
- It's not hard to see that $\mathrm{PP}^{c c}$ can be characterized as the class of problems with nonnegligible discrepancy $\operatorname{disc}\left(f_{n}\right) \leq 2^{-\log ^{c}(n)}$. (See Assignment 2)
- It's not hard to see NP, $\mathrm{CoNP}^{c c} \subseteq \mathrm{PP}^{c c}$. (See Assignment 2)

References

[PS86] Ramamohan Paturi and Janos Simon, Probabilistic communication complexity, J. Comput. System Sci. 33 (1986), no. 1, 106-123, Twenty-fifth annual symposium on foundations of computer science (Singer Island, Fla., 1984). MR 864082 (88e:68041)

School of Computer Science, McGill University, Montréal, Canada
E-mail address: hatami@cs.mcgill.ca

