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e Limitation of the discrepancy method: The bound R}Zu_be(f) > log #e(f) provides a strong
2

lower bound even when € is very small, say € & % This shows that the method cannot be
applied to lower-bound Rf;”g (f) if A" oL )( f) is small. Let’s see an example.
Recall o
. 1 SNT =10
Disj : 53T = { 0 otherwise
Consider the following public coin protocol
— Alice and Bob pick i € {1,...,n} uniformly at random.
— If ; = y; = 1 they output Disj(z,y) = 0.
— Otherwise, with probability % — % they output Disj(x,y) = 0, and with probability
% + ﬁ they output Disj(z,y) = 1.
Note that the communication is O(1) and
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RY™ | (Disj) = O(1),
2
which shows !
Disc(Disj) = Q(1/n).
Thus using discrepancy method we can only get R;/3(Disj) = Q(logn). But we will see
later that R, 3(Disj) = O(n).

e Limitation of the discrepancy method: While we are on the subject of limitations let us also
look at the fooling set method.

Proposition 1. If f: {0,1}" x {0,1}" — {0,1} has a 1-fooling set S, then rankp(My) >
VS| for every field F.

Proof. Let A be the submatrix of My induced by the rows and columns corresponding to
S. Since S is a 1-fooling set A ® A = I where ® represents the Hadaramard product (i.e.
entrywise). Since B ® C'is a submatrix of B ® C, we have

S| = rankp(A © AT) < rankp(A ® AT) = rankp(A4)? < rankp(M;)?.

INote that we used a protocol to prove a lower-bound on the discrepancy which is cool!



HAMED HATAMI

Let’s consider the inner product function again. We have

n n
Mip, = [<x7y>}x,y€]l7’2’b = [Z szyz] = Z [wiyi]x,yng :
z,yefy

=1 i=1

Note that obviously for every 1 < i < n, we have

rankp, <[xiyi]z7yng> =1,

and hence ranky, (IP,,) < n, which shows that the size of the largest 1-fooling set for IP,,
is n2. We can apply a similar argument to O-fooling sets too, and thus the fooling set

method would only show D(IP,,) > Q(logn). However in the previous lecture we saw that
D(IP,) >n —2.

Let A be a sign matrix (i.e. entries are +1). For 0 < a < 1 define the a-approximate rank
as

rank,(A) = min rank(B).
“) |[A—Blloo<a B)

The sign-rank of A is defined as

ranky (A) = B %réin)_A rank(B).
sgn ij)=AAij

Observation: Note that in the definition of the sign-rank we can scale B so that || B||lo < 1.
Hence

rank(A) = ranko(A) > rank,(4) > li/m1 rank, (A) = ranky (A4).

Approximate rank is provides a lower-bound for the randomized communication complexity.
Theorem 2 ([Kra96]). For f:{0,1}" x {0,1}" — {—1,1} and 0 < e < 1/2, we have
RP™(f) > logranka(f).

Proof. For this proof it will be easier to work with Boolean functions. Thus let g = % :
{0,1}" x {0,1}™ — {0,1}. Consider a randomized protocol P(x,r4,y,rp) with communi-
cation cost ¢ = RY""(f) and error

Va,y Py rp[P(2,74,y,78) # g(7,y)] < e
Let B(z,y) = Pry, ,5[P(x,74,y,75) = 1]. We have M, = J+2Mf, and

My = Blloo < €= [Mf = (2B = J)[lo < 2€.

It remains to bound rank(B) (as rank(J) = 1). We will show that rank(B) < 2¢. Consider a
leaf ¢ in the communication tree, and let v1, ..., vk, £ be the path from the root to this leaf,
and let sq,...,s; be the bits communicated through this path. Without loss of generality
assume that Alice and Bob alternate on this path and that Bob speaks on £. On an input
(z,y), the probability that the protocol arrives at the leaf ¢ and outputs 1 is

Prlay, (z,74) = $1]Pr[by, (y,75) = sao] ... Pr[be(y,75) = 1] = Us(x)Vi(y),

for some functions U, and V. Hence

B(x,y) = Prryrp [Pl@,ra,y,r5) = 1] = Y Un(@)Vi(y).
¢




[Kra96]

[Riv81]
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Note that rank([Ue(z)Ve(y)], yefo,13») = 1. This shows rank(B) < #leaves < 2°. O

The following lemma shows that for the purposes of lower-bounds in communication com-
plexity, for a constant 0 < a < 1, rank, and rank, /3 are equivalent.

Lemma 3. For every 0 < a < 1, we have logrank,(A) = 6, (logrank; ;3(A)).

Proof. We assume a < 1/3, the other case is similar. Suppose B is a matrix with ||A —
Blloo < % By a basic fact from approximation theory [Riv81, Corollary 1.4.1] we know
that there exists a polynomial p : R — R such that d := deg(p) = O(1/«) and it satisfies

and

p([_4/37 _2/3]) g [_1 -, -1 + Ct].
We will apply p() to B entry-wise: Let C = [p(B;;)]ij so that ||[A — C|loc < . It remains
to show that the rank does not increase by much.

d d d
rank(C Z rank(BF) < rank(B%¥) = Z rank(B)¥ < d - rank(B)%.
k=0 k=0 k=0
Hence 1
log rank(C') <log(1/a) + — log rank(B),
«
which proves the desired result. O

In light of this lemma, when we talk about the approximate rank of a matrix A, we often
mean rank; /3(A).
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