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• Limitation of the discrepancy method : The bound Rpub1
2
−ε(f) ≥ log 2ε

Disc(f) provides a strong

lower bound even when ε is very small, say ε ≈ 1
n . This shows that the method cannot be

applied to lower-bound Rpub1/3(f) if Rpub1
2
−O( 1

n
)
(f) is small. Let’s see an example.

Recall

Disj : S × T 7→
{

1 S ∩ T = ∅
0 otherwise

Consider the following public coin protocol
– Alice and Bob pick i ∈ {1, . . . , n} uniformly at random.
– If xi = yi = 1 they output Disj(x, y) = 0.
– Otherwise, with probability 1

2 −
1
2n they output Disj(x, y) = 0, and with probability

1
2 + 1

2n they output Disj(x, y) = 1.
Note that the communication is O(1) and

S ∩ T 6= ∅ ⇒ Pr[success] ≥ 1

n
+

1

2
− 1

2n
=

1

2
+

1

2n
.

and

S ∩ T = ∅ ⇒ Pr[success] ≥ 1

2
+

1

2n
.

Hence

Rpub1
2
− 1

2n

(Disj) = O(1),

which shows 1

Disc(Disj) = Ω(1/n).

Thus using discrepancy method we can only get R1/3(Disj) = Ω(log n). But we will see
later that R1/3(Disj) = Θ(n).

• Limitation of the discrepancy method : While we are on the subject of limitations let us also
look at the fooling set method.

Proposition 1. If f : {0, 1}n × {0, 1}n → {0, 1} has a 1-fooling set S, then rankF(Mf ) ≥√
|S| for every field F.

Proof. Let A be the submatrix of Mf induced by the rows and columns corresponding to
S. Since S is a 1-fooling set A � A = I where � represents the Hadaramard product (i.e.
entrywise). Since B � C is a submatrix of B ⊗ C, we have

|S| = rankF(A�AT ) ≤ rankF(A⊗AT ) = rankF(A)2 ≤ rankF(Mf )2.

�

1Note that we used a protocol to prove a lower-bound on the discrepancy which is cool!
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Let’s consider the inner product function again. We have

MIPn = [〈x, y〉]x,y∈Fn
2

=

[
n∑
i=1

xiyi

]
x,y∈Fn

2

=
n∑
i=1

[xiyi]x,y∈Fn
2
.

Note that obviously for every 1 ≤ i ≤ n, we have

rankF2

(
[xiyi]x,y∈Fn

2

)
= 1,

and hence rankF2(IPn) ≤ n, which shows that the size of the largest 1-fooling set for IPn
is n2. We can apply a similar argument to 0-fooling sets too, and thus the fooling set
method would only show D(IPn) ≥ Ω(log n). However in the previous lecture we saw that
D(IPn) ≥ n− 2.

• Let A be a sign matrix (i.e. entries are ±1). For 0 ≤ α < 1 define the α-approximate rank
as

rankα(A) = min
‖A−B‖∞≤α

rank(B).

The sign-rank of A is defined as

rank±(A) = min
B:sgn(Bij)=Aij

rank(B).

• Observation: Note that in the definition of the sign-rank we can scale B so that ‖B‖∞ < 1.
Hence

rank(A) = rank0(A) ≥ rankα(A) ≥ lim
α↗1

rankα(A) = rank±(A).

• Approximate rank is provides a lower-bound for the randomized communication complexity.

Theorem 2 ([Kra96]). For f : {0, 1}n × {0, 1}n → {−1, 1} and 0 < ε < 1/2, we have

Rprvε (f) ≥ log rank2ε(f).

Proof. For this proof it will be easier to work with Boolean functions. Thus let g = 1+f
2 :

{0, 1}n × {0, 1}n → {0, 1}. Consider a randomized protocol P (x, rA, y, rB) with communi-
cation cost c = Rprvε (f) and error

∀x, y PrrA,rB [P (x, rA, y, rB) 6= g(x, y)] ≤ ε.

Let B(x, y) = PrrA,rB [P (x, rA, y, rB) = 1]. We have Mg =
J+Mf

2 , and

‖Mg −B‖∞ ≤ ε⇒ ‖Mf − (2B − J)‖∞ ≤ 2ε.

It remains to bound rank(B) (as rank(J) = 1). We will show that rank(B) ≤ 2c. Consider a
leaf ` in the communication tree, and let v1, . . . , vk, ` be the path from the root to this leaf,
and let s1, . . . , sk be the bits communicated through this path. Without loss of generality
assume that Alice and Bob alternate on this path and that Bob speaks on `. On an input
(x, y), the probability that the protocol arrives at the leaf ` and outputs 1 is

Pr[av1(x, rA) = s1]Pr[bv2(y, rB) = s2] . . .Pr[b`(y, rB) = 1] = U`(x)V`(y),

for some functions U` and V`. Hence

B(x, y) = PrrA,rB [P (x, rA, y, rB) = 1] =
∑
`

U`(x)V`(y).
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Note that rank([U`(x)V`(y)]x,y∈{0,1}n) = 1. This shows rank(B) ≤ #leaves ≤ 2c. �

• The following lemma shows that for the purposes of lower-bounds in communication com-
plexity, for a constant 0 < α < 1, rankα and rank1/3 are equivalent.

Lemma 3. For every 0 < α < 1, we have log rankα(A) = θα(log rank1/3(A)).

Proof. We assume α < 1/3, the other case is similar. Suppose B is a matrix with ‖A −
B‖∞ < 1

3 . By a basic fact from approximation theory [Riv81, Corollary 1.4.1] we know
that there exists a polynomial p : R→ R such that d := deg(p) = O(1/α) and it satisfies

p([2/3, 4/3]) ⊆ [1− α, 1 + α],

and
p([−4/3,−2/3]) ⊆ [−1− α,−1 + α].

We will apply p() to B entry-wise: Let C = [p(Bij)]ij so that ‖A − C‖∞ ≤ α. It remains
to show that the rank does not increase by much.

rank(C) ≤
d∑

k=0

rank(B�k) ≤
d∑

k=0

rank(B⊗k) =

d∑
k=0

rank(B)k ≤ d · rank(B)d.

Hence

log rank(C) ≤ log(1/α) +
1

α
log rank(B),

which proves the desired result. �

In light of this lemma, when we talk about the approximate rank of a matrix A, we often
mean rank1/3(A).
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