
COMP760, SUMMARY OF LECTURE 5.

HAMED HATAMI

• Rectangle size lower bounds: Recall that one can lower-bound D(f) by the logarithm of
the size of f ’s largest fooling set. Another way to lower-bound D(f) is by showing that
all the monochromatic rectangles in the communication matrix of f are small: C0(f) ≥
22n/m0 and C1(f) ≥ 22n/m1 where m0 and m1 are respectively the sizes of the smallest
0-monochromatic number and 1-monochromatic rectangles.

More generally let µ be a probability distribution on {(x, y) | f(x, y) = 1}. Then
C1(f) ≥ 1

maxR µ(R) where the maximum is over all 1-monochromatic rectangles R. A similar

statement holds for 0’s.

• The inner product function: We will apply the rectangle size method to IPn : Fn2 ×Fn2 → F2

defined as IPn : (x, y) 7→
∑n

i=1 xiyi =: 〈x, y〉. Note that the number of 0’s of IPn is ≥ 22n−2

(why?). Let S × T be a 0-monochromatic rectangle. Let S′ := span(S) and T ′ = span(T ).
Since

〈a+ a′, b+ b′〉 = 〈a, b〉+ 〈a, b′〉+ 〈a′, b〉+ 〈a′, b′〉,
the rectangle S′ × T ′ is also 0-monochromatic. Consequently, S′ and T ′ are orthogonal
subspaces of Fn2 , and thus dim(S′) + dim(T ′) ≤ n, which shows |S′ × T ′| = |S′||T ′| ≤ 2n.
Hence C0(IPn) ≥ 22n−2/2n ≥ 2n−2, and D(IPn) ≥ log2(2

n−2) = n− 2.

Definition 1 (Discrepancy). Let f : {0, 1}n × {0, 1}n → {0, 1} and let µ be a probability
distribution on {0, 1}n × {0, 1}n. For a rectangle R define

Discµ(R, f) = |µ(R ∩ f−1(0))− µ(R ∩ f−1(1))|.
Let

Discµ(f) = max
R
|µ(R ∩ f−1(0))− µ(R ∩ f−1(1))|,

and
Disc(f) = min

µ
Discµ(f).

• If we change the range to ±1 (i.e. f : {0, 1}n × {0, 1}n → {−1, 1}), the definition simply
becomes

Discµ(R, f) =

∫
R
f(x, y)dµ(x, y).

If µ is the uniform measure, then this is known as the cut norm

Discµ(f) = sup
R=S×T

∫
R
f(x, y)d(x, y) = Ex,y [1S(x)f(x, y)1T (y)] =: ‖f‖�.

Theorem 2 (Discrepancy lower-bound). Rpub1
2
−ε(f) ≥ log 2ε

Disc(f) .
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Proof. From the previous lecture we know Rpub1
2
−ε = maxµD

µ
1
2
−ε(f). Thus it suffices to show

Dµ
1
2
−ε(f) ≥ log 2ε

Disc(f) . See [KN97, Proposition 3.28] for the proof of this fact. �

• The cut norm and thus the discrepancy with respect to the uniform measure is closely
related to the largest eigenvalue (For more details see Section 2 of Lecture 3 in Toni Pitassi’s
course).

Proposition 3. Let f : X ×X → {−1, 1} be a symmetric function (i.e. f(x, y) = f(y, x)),
and let λmax be the largest eigenvalue in the absolute value of the corresponding matrix Mf .
Then

Ex,y [1S(x)f(x, y)1T (y)] ≤ 1

|X|2
|λmax|

√
|S||T |.

In particular

‖f‖� ≤
|λmax|
|X|

.

• It is not difficult to see that the matrix of IPn is the Hadamard matrix, and hence its
eigenvalues are all ±2n/2. It follows that

Disc(IPn) ≥ Discuniform(IPn) ≤ 2−n2n/2 = 2−n/2.

Consequently

Rpub1/3(IPn) ≥ Ω(n).
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