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1. Set Disjointness

In the previous lecture we proved the following theorem.

Theorem 1. We have

lim
γ→0

max
µ:µ(11)<γ

ICµ(AND, µ, 0) = max
µ:µ(11)=0

ICµ(AND) = 0.482702 . . . .

Recall that we showed ICµ(f, µ, ε) is continuous with respect to ε at every point ε ∈ (0, 1]. In
fact ICµ(f, µ, ε) is continuous at ε = 0 too. However the proof is more involved, and we refer the
reader to [BGPW13] for a proof.

Theorem 2 ([BGPW13]). For every function f and measure µ, and every δ ∈ [0, 1] we have

lim
ε→δ

ICµ(f, µ, ε) = ICµ(f, µ, δ).

One can deduce the following corollary from Theorem 1 and continuity.

Corollary 3. We have

lim
ε→0

max
µ:µ(11)=0

ICµ(AND, ε) = 0.482702 . . . .

Proof. The “≤” direction is obvious from Theorem 1. It remains to prove the “≥” direction. The
proof of Theorem 2 shows that for every ε > 0, we have

ICµ(AND, µ, 0)− δε ≤ ICµ(AND, µ, ε) ≤ ICµ(AND, ε),

with limε→0 δε = 0. Note that δε does not depend on µ. Now let us take the maximum over all µ
with µ(11) ≤ γ where γ > 0. We have

max
µ:µ(11)≤γ

ICµ(AND, µ, 0)− δε ≤ max
µ:µ(11)≤γ

ICµ(AND, ε).

Theorem 1 shows that taking the limit of γ → 0, the left hand side converges to (0.482 . . .) − δε.
Hence we obtain

(0.482 . . .)− δε ≤ max
µ:µ(11)≤γ

ICµ(AND, ε).

Taking the limit ε→ 0 completes the proof. �

In this lecture we will show how one can use this corollary to determine the exact asymptotics of
the randomized communication complexity of the DISJ problem. The AND function comes from
the fact that

DISJ(X,Y ) = ∨ni=1(xi ∧ yi).

Theorem 4. We have

lim
ε→0

Rε(DISJn)

n
= 0.482702 . . . .
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1.1. Proof of Theorem 4: the lower-bound. Consider a protocol πε that computes DISJ with
error probability at most ε > 0 and has the optimal communication cost CC(πε) = Rε(DISJ).
Consider any measure ν ∈ ∆({0, 1} × {0, 1}) with ν(11) = 0. We will use πε to obtain a protocol
τε that solves AND with error probability at most ε, and with information cost at most CC(πε)/n
under ν. The idea is to use the same approach that we used to prove

ICµn(Tn) = nICµ(T ).

Namely, this protocol τε is obtained by restricting πε to a single random coordinate where the other
coordinates are sampled randomly (some parts privately and some publicly) according to ν. See
Figure 1. As we have already shown earlier in the course:

ICν(τε) =
ICνn(πε)

n
.

Note further that since ν(11) = 0, if (Xi, Yi) are sampled according to ν for i ∈ [n] \ {j} (as they
are in τε), then with probability 1 we have

πε((X1, . . . , Xj−1, x,Xj+1, . . . , Xn), (Y1, . . . , Yj−1, y, Yj+1, . . . , Yn)) = x ∧ y.

It follows that for every (x, y) ∈ {0, 1} × {0, 1} we have

Pr[τε(x, y) 6= (x ∧ y)] ≤ ε.

Hence

Rε(DISJn)

n
=

CC(πε)

n
≥ ICν(AND, ε).

Taking the limit as ε→ 0, we obtain

lim
ε→0

Rε(DISJn)

n
≥ lim

ε→0
max

ν:ν(11)=0
ICν(AND, ε) = 0.482702 . . . .

Figure 1. The protocol τε that solves AND using πε that solves DISJn.

• On input (x, y) for the AND function, Alice and Bob publicly choose:
– j ∈ {1, . . . , n} uniformly at random, and set Xj = x and Yj = y individually.
– X1, . . . , Xj−1 independently, each according to νx.
– Yj+1, . . . , Yn independently, each according to νy.

• Alice privately chooses Xj+1, . . . , Xn according to ν conditioned on the values of
Yj+1, . . . , Yn.
• Bob privately chooses Y1, . . . , Yj−1 according to ν conditioned on the values of
X1, . . . , Xj−1.
• They run the protocol πε on (X,Y ) with X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), and

output the j-th coordinate.
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1.2. Proof of Theorem 4: the upper-bound. Consider a measure (not necessarily a product
measure) µ on {0, 1}n×{0, 1}n. First note that if |{i : Xi = Yi}| is typically large when (X,Y ) are
sampled according to µ, then the average case communication complexity of DISJ is small under
this distribution. Indeed if Alice and Bob exchange some random coordinates, then soon they will
discover an intersection. Hence the difficult measures are the ones whose coordinate marginals µi
satisfy µi(11) = o(1) for almost all i. First we will construct a protocol that has zero error and low
information cost (but has large communication cost).

Theorem 5. There is a protocol τ that solves DISJn correctly on all inputs and for every distri-
bution µ satisfies

ICµ(π) ≤ (0.482702 . . .)n+ o(n).

Proof. Consider the protocol in Figure 2.

Figure 2. A protocol τ with small information cost for DISJ.

• For i = 1, . . . ,M := o(n) do
• Publicly pick a random coordinate j and exchange the inputs bits on this coordi-

nate. If they are both 1, output 1 and terminate.
• For every coordinate run π∧ on that coordinate and if it outputs 1, output 1 and

terminate.
• If not terminated yet, output 0.

Let E be the random variable that is 1 if they find an intersection in the first M coordinates,
and 0 otherwise. Let Π1Π2 be the transcript where Π1 corresponds to the first phase where the M
coordinates are probed, and Π2 the rest of the protocol. Since Π1 determines E, and conditioned
on EXY , Pi2 is independent of Π1, we have

I(Π;X|Y ) = I(Π1Π2;X|Y ) = I(Π1;X|Y ) + I(Π2;X|Π1Y ) = I(Π1;X|Y ) + I(Π2;X|Π1EY )

≤ I(Π1;X|Y ) + I(Π2;X|EY ) ≤ 2M + I(Π2;X|EY )

= 2M + Pr[E = 0]I(Π2;X|Y,E = 0) ≤ 2M + Pr[E = 0](2n).

This shows that the theorem holds if Pr[E = 0] = o(1). Hence we can assume Pr[E = 0] = Ω(1).
By taking M to be sufficiently large we can guarantee that for sufficiently large n we have

Pr[(|X ∩ Y | ≥
√
n) ∧ (E = 0)] ≤ 1

n2
,

and hence

Pr[(|X ∩ Y | ≥
√
n) | (E = 0)] ≤ Ω(1)

n
≤ 1

n
,

for sufficiently large n. Consequently

E[|X ∩ Y | | E = 0] ≤
√
n.

The following theorem shows that the information cost of a protocol τ that runs a protocol π
independently on many copies chosen according to the joint distribution ν is less or equal than the
sum of the information costs of the protocol π on the marginals ν1, . . . , νn.
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Theorem 6 (See [Bra12, Theorem 4.2]). Let ν be a distribution on {0, 1}n × {0, 1}n and let
ν1, . . . , νn be marginals of ν on the coordinates 1, . . . , n. Let π be a protocol on {0, 1} × {0, 1} and
let πn be the protocol that runs π on all the coordinates. Then

ICνn(πn) ≤ ICν1(π) + . . .+ ICνn(π).

Let µ1, . . . , µn be marginals of µ|E=0 on the coordinates 1, . . . , n. Let εi := Pr[Xi = Yi = 1|E =
0] = µi(11) for i = 1, . . . , n. Note

ε1 + . . .+ εn = E[|X ∩ Y | | E = 0] ≤
√
n.

Let J be the set of coordinates with εi ≥ 1
n1/4 . Then |J | ≤

√
n

n1/4 = n3/4. Thus we conclude that

ICµ(τ) ≤ 4M + ICµ1(π∧) + . . .+ ICµn(π∧) ≤ 4M + 2n3/4 +
∑
i 6∈J

ICµi(π∧)

= (0.482702 . . .)n+ o(n),

by Theorem 1 as µi(11) = o(1) for i 6∈ J . �

Finally we prove the upper-bound (in Theorem 4) on the randomized communication complexity
of DISJ. The proof will use a prior free version of “information equals amortized communication”.
To define the prior-free information cost we need the following Min-Max theorem. Roughly speaking
it says that if you are given a convex and compact set of measures, then there is a sequence of
protocols that converges to the optimal information cost (on the hardest measure) for all of these
measures simultaneously.

Theorem 7 (An information theoretic Min-Max theorem [Bra12]). Let f : X × Y → Z be a
function, and let K ⊆ ∆(X × Y) be closed and convex. Then

inf
π

max
µ∈K

ICµ(π) = max
µ∈K

inf
π

ICµ(π),

where both infimums are over protocols π that compute f correctly on all inputs.

Then for a function f : X × Y → Z we can define

IC(f) := inf
π

max
µ∈∆

ICµ(π) = max
µ∈∆

inf
π

ICµ(π).

Braverman [Bra12] proved the following “information equals amortized communication” theorem.

Theorem 8 ([Bra12]). Let f : X × Y → Z be a function, and let IC(f) = I. Then for every
δ1, δ2 > 0, and sufficiently large N > Nδ1,δ2(f), there exists a protocol πN that computes N copies
of f , and has communication cost ≤ N · I · (1 + δ1), and answers correctly on all coordinates except
with probability δ2.

Finally we will state the proof of the upper-bound in Theorem 4.

The upper-bound in Theorem 4. Theorem 5 shows that we can solve disjointness with low infor-
mation cost. How can we convert this to low communication cost? The trick is to use the so
called “self-reducibility” properties of the disjointness function to treat solving one instance of it as
solving many smaller instances of it in parallel. Then one can apply “information equals amortized
communication” to finish the proof.

Consider a sufficiently large m and N and let n = N ·m, and δ = 1/m. In particular we assume
N ≥ Nδ,δ(DISJ). Theorem 5 shows that IC(DISJm) ≤ (0.4827 . . .)m+ o(m). By Theorem 8, there
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is a protocol πN that solves N instances of DISJm with communication at most

N · IC(DISJn) · (1 + δ) = N((0.4827 . . .)m+ o(m)) (1 + δ) = (0.4827 . . .)n+ o(N)

= (0.4827 . . .)n+ o(n),

and with error at most δ. Then the protocol in Figure 3 solves DISJ with error at most δ and has
communication cost at most (0.4827 . . .)n+ o(n).

Figure 3. A protocol with small communication cost for DISJ.

• Divide n = N ·m inputs into N blocks of size m.
• Run πN on each block.
• Output 0 if πN outputs 0 on some block.

�
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