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• To every function f : {0, 1}n × {0, 1}n → {0, 1} we can associate a 2n × 2n matrix Mf .
Define rankF(f) = rankF(Mf ) as the rank of this matrix over the field F. We use rank(f)
to denote the rank over reals R.

• D(f) ≥ log2 rankF(f) for every field F. See [KN97, Lemma 1.28].

• The log-rank conjecture ([LS88]): D(f) ≤ (log2 rank(f))O(1).

– Until recently D(f) ≤ log(4/3)rank(f) was the best known upper-bound.

– Recently [Lov14] proved D(f) ≤ O(
√

rank(f) log2 rank(f)).

– An equivalent formulation of the conjecture is that for every 0-1 matrix B, we have
log2 rank+(B) ≤ (log2 rank(B))O(1), where rank+(B) is the minimum k such that

B =
∑k

i=1 viw
T
i where vi, wi ∈ Rn are vectors with non-negative entries. (See [LS07],

Sections 2.2 and 3.2)

• Definition: C0(f) and C1(f) are respectively the minimum number of monochromatic rect-
angles in a cover of 0’s and 1’s of f . The cover number is C(f) = C0(f) + C1(f), and is
obviously upper-bounded by the partition number CD(f).

• Theorem: D(f) = O
(

(log2C(f))2
)

. See [KN97, Theorem 2.11] for a proof.

• Randomized models

– Private coin: Alice and Bob have access to random strings rA and rB respectively.
These strings are private and independent.

– Public Coin: Alice and Bob both see a common public random string r.

• For ε > 0, we define Rprvε (f) to be the smallest c such that there exists a randomized
protocol P (x, rA, y, rB) satisfying the following:

– For every (x, rA, y, rB) the communication is at most c.

– For every (x, y),

PrrA,rB [P (x, rA, y, rB) 6= f(x, y)] ≤ ε.

• The public coin randomized communication complexity Rpubε (f) is defined similarly but now
with public coin protocols P (x, y, r).
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• Some trivial facts:

– Rprv1/2(f) = Rpub1/2(f) = 0: Just output uniformly at random.

– Rprvε (f) ≥ Rpubε (f): We can have r = (rA, rB). Namely, we can think of the public coin
case as a scenario where Alice and Bob can see eachother’s private random string.

– Rε(f) ≥ R1/3(f)O(log(1/ε)): Let P be a protocol of cost R1/3(f) achieving error of
1/3. Repeat P, O(log(1/ε)) times and take the majority of the outputs, in order to
achieve an error bound of ε.
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