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1. Braverman’s 2O(I) compression

Consider a protocol π, and fix the public randomness to R = r. Recall that for an input (x, y)
the probability that a leaf t will be the transcript of the protocol for a given pair of inputs x, y is
given by

PrRA,RB
[Πxy = t] =

 ∏
i∈[`−1]

Alice owns vi

pxvi(vi+1)

×
 ∏

i∈[`−1]
Bob owns vi

pyvi(vi+1)

 = pxA(t)pyB(t),

where (v1, v2, . . . , v`(= t)) denote the unique path from the root to the leaf t. Note that in general
pxA(t) is known only to Alice and pyB(t) is known only to Bob. However Bob has an estimate of
pxA(t) and Alice has an estimate of pyB(t). Namely

qxB(t) =
∏

i∈[`−1]
Bob owns vi

qxvi(vi+1)

is Alice’s estimate of pyB(t) and

qyA(t) =
∏

i∈[`−1]
Alice owns vi

qyvi(vi+1)

is Bob’s estimate of pxA(t).
Hence Alice’s estimate of pxA(t)pyB(t) is pxA(t)qxB(t), and Bob’s estimate is qyA(t)pyB(t). The ex-

pected divergence betweens the actual probability distribution on the leaves and the estimates of
Alice and Bob adds up to the information cost.

Proposition 1. We have

ICµ(πr) = Exy∈µ
[
D(pxAp

y
B ‖ p

x
Aq

x
B) +D(pxAp

y
B ‖ q

y
Ap

y
B)
]
.

Proof. Using the formula

I(A;B|C) = Eac∼AC [D (B|A=a,C=c ‖ B|C=c)]

we have

I(X; Π|Y ) = Exy∼µD(Π|XY=xy ‖ Π|Y=y) = Exy∼µD(pxAp
y
B ‖ q

y
Ap

y
B),

and similarly

I(Y ; Π|X) = Exy∼µD(Π|XY=xy ‖ Π|X=x) = Exy∼µD(pxAp
y
B ‖ p

x
Aq

x
B).
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1.1. The protocol. To simplify the notation we will assume ε ≤ 1/4, and I := ICµ(π) ≥ 1
(otherwise in the following, we have to replace ε with ε/4 and I with I + 1).

Let U be the set of all leaves. Firstly, Alice and Bob use public randomness to generate a sequence
of points (ti, αi, βi) each chosen independently and uniformly from U × [0, 1] × [0, 1]. They only
consider T = 2|U| ln 1/ε such points. Their goal is to find the first index j such that αj ≤ pxA(tj)
and βj ≤ pyB(tj). Note that then Pr[tj = t] = pxA(t)pyB(t) for every t ∈ U . Hence indeed tj has the
correct distribution and this would give a simulation of the original protocol. The challenge is that
Alice can only verify the condition for αi’s and Bob can only verify the condition for βi’s. Note
that the probability that such a j ≤ T does not exist is equal to

(1− 1/|U|)T < e−T/|U| < ε/4.

Alice constructs her set of candidates for j:

CA := {i ≤ T : αi ≤ pxA(ti), βi ≤ KqxB(ti)},
and Bob constructs his candidates

CB := {i ≤ T : αi ≤ KqyB(ti), βi ≤ pyA(ti)},

where K = 28I/ε. Namely the both leave a multiplicative factor of K as a possible margin of error
for the probabilities that they don’t know exactly, and only have a estimate for.

Claim 2. For a random xy ∼ µ, the probability that j does not belong to both CA and CB is at most
ε/4.

Proof. Fix x and y. Since tj has distribution pxAp
y
B, we have

Pr[j 6∈ CA] = Pr[KqxB(tj) < βj ] ≤ Pr[KqxB(tj) < pyB(tj)] ≤
1

logK
E log

pyB(tj)

qxB(tj)

=
1

logK
E log

pxA(tj)p
y
B(tj)

pxA(tj)qxB(tj)
=

1

logK
D(pxAp

y
B ‖ p

x
Aq

x
B).

Similarly

Pr[j 6∈ CB] =
1

logK
D(pxAp

y
B ‖ q

y
Ap

y
B).

Hence taking the expectation with respect to xy ∼ µ, Proposition 1 implies

Prr,xy∼µPr[j 6∈ CA ∩ CB] ≤ 1

logK
ICµ(π) =

I

8I/ε
≤ ε

4
.

�

Note that in the likely case that j belongs to both CA and CB, it will in fact be the first index in
CA ∩ CB. Hence their task now reduces to finding the first element in the intersection of their sets.
To this end, Alice sends many hash values for each element in her set of candidates CA, and Bob
finds the first element b ∈ CB that matches the hash values of one of the elements in CA, and and
declares that this is the index j that they were seeking. Note that he cannot just simply send the
value of j to Alice as that would requite log |T | bits of communication, which can be very large.
Howeve Bob can simply send k to Alice if the hash values of b matched the hash values of the k-th
element of CA.

• They generate a sequence of points (ti, αi, βi)i≤T each chosen independently and uni-
formly from U × [0, 1]× [0, 1].
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• Alice and Bob create the sets CA and CB as above. If any of these sets is larger than
29I/ε, they declare fail.
• For each a ∈ CA, Alice sends the value of d = 30I/ε random public hash function
h1(a), . . . , hd(a) to Bob.
• Bob finds the smallest index b ∈ CB whose hash values h1(b), . . . , hd(b) match the hash

values of one of the elements in CA. He declares j = b and sends to Alice the place of j
in CA.

1.2. Analysis. Let E1 be the “bad” event that the index j ≤ T does not exist, let E2 be the bad
event that j 6∈ CA ∩ CB, let E3 be the bad event that max(|CA|, |CB|) > 29I/ε, and let E4 be the bad
event that Bob’s declared j = b does not belong to CA (i.e. the hash function detected incorrectly
some b 6∈ CA). Note that

Pr[success] ≥ 1− Pr[E1 ∨ E2 ∨ E3 ∨ E4].
We have already shown

Pr[E1] ≤
ε

4
,

and

Pr[E2] ≤
ε

4
.

Also by Markov’s inequality

Pr[E3] ≤
E[|CA|]
29I/ε

+
E[|CB|]
29I/ε

=
K

29I/ε
+

K

29I/ε
≤ ε

4
.

and finally since the protocol guarantees that |CA|, |CB| ≤ 29I/ε if Alice and Bob get to the stage of
the protocol where the hash values are compared, we have

Pr[E4] ≤ Pr[∃a ∈ CA, b ∈ CB, a 6= b, hi(a) = hi(b) ∀i = 1, . . . , d]

≤ 29I/ε × 29I/ε × 2−30I/ε ≤ ε/4.

We conclude

Pr[success] ≥ 1− ε.
Finally the number of communicated bits is

29I/εd+ log |CA| ≤ 210I/ε.

2. The AND function

In the next few sections we will study the 0-error information complexity of the AND function
(of two bits).

2.1. The external information cost of AND.

Theorem 3. We have

ICext(AND) := max
µ

ICext
µ ([AND, µ, 0]) = log 3.
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Proof. First we prove the upper-bound. Consider the following trivial protocol:

• Alice sends X Bob.
• If X = 1, then Bob sends Y to Alice.

Obviously in the end, both Alice and Bob know the value of X ∧ Y . Note that the transcript Π
is either 0, 00 or 01. Hence

ICext
µ (π) = I(Π;XY ) ≤ H(Π) ≤ log 3,

as Π is distributed over three elements.
To prove the lower-bound consider the measure µ with µ(01) = µ(10) = µ(11) = 1

3 , and µ(00) =
0. Let π be a protocol that computes the AND function with 0-error under µ, and let Π denote its
transcript. Then because of the rectangle property

PrRA,RB
[Πxy = t] = pxA(t)pyB(t),

the value of t uniquely determines the value of XY . Indeed if

Pr[Π01 = t],Pr[Π10 = t] > 0

then Pr[Π11 = t] > 0, and this would contradict the assumption that π is a 0-error protocol.
Moreover obviously 11 and 01 (or 10) cannot lead to the same leaf as the value of the AND
function is different for them.

Since Π determines the value of xy, we have

H(Π;XY ) = H(XY ) = log 3.

�
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