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HAMED HATAMI

1. MUTUAL INFORMATION

Let’s start from a simple example. Let Bi,...,Bg be independent random bits, i.e. inde-
pendent Bernoulli random variables with parameter % Let X = (B1,Bs,Bs,By), and Y =
(B2, B3, By, Bs, Bg). Then obviously

H(X)=14 and H(Y)=5.
On the other hand
H(XY) =6,
as XY is determined by the six random variables By, ..., Bsg.

e HX|Y)=H(XY)— H(Y) =1, so the amount of information left in X after we know Y
is 1. We just need to know B; and Y to fully recover X.

e HY|X)=H(XY)— H(X) =2, so the amount of information left in Y after we know X
is 2. We just need to know Bg, Bg and X to fully recover Y.

Note that by knowing either X or Y we can learn the value of the three independent bits
(B2, B3, Bs). In other words, we can think of these two bits as the shared information between X
and Y. The mutual information I(X;Y) between X and Y is the amount of information that one
can learn about X knowing Y, and it turns out this is equal to the amount of the information that
one can learn about Y knowing X. This corresponds to the amount of shared information between
X and Y. This is demonstrated in Figure [I}

F1GURE 1. A Venn diagram showing the mutual information between two variables.

X = B1ByB3By Y = ByB3BB;5Bg

Now let us formally define the notion of mutual information.

Definition 1 (Mutual information). The mutual information between two variables X and Y is
defined as

I(X;Y)=I1(Y;X) = H(X)-HX|Y)
H(Y) - H(Y|X)
= H(X)+H(Y)—-H(XY).

By subadditivity of entropy, 1(X;Y) > 0.
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Example 2. Let By,...,Bs be independent random bits, and let X = (By,B2,Bs) and Y =
(B ® By, Bo ® By, B3 ® By, Bs). Note that the distribution of Y is uniform on {0,1}* as it can be
easily seen that its coordinates are mutually independent. Hence obviously
H(X)=3 and H(Y)=4.
On the other hand
H(XY) =5,
as XY is determined by the five random variables By, ..., Bs.

e HX|Y)=H(XY)— H(Y) =1, so the amount of information left in X after we know Y
is 1. For example we just need to know Bj and Y to fully recover X.

e HY|X)=H(XY)— H(X) =2, so the amount of information left in Y after we know X
is 2. For example we just need to know By, Bs and X to fully recover Y.

We have I(X;Y)=H(X)-HX|Y)=H(Y)-HY|X)=HX)+H(Y)—- H(XY) = 2. Note
that by knowing either X or Y we can learn the value of the two (independent) bits (B; & Bz, Ba &
Bs). In other words, we can think of these two bits as the shared information between X and Y. m

Remark 3. Note that the Venn diagram of Figure [I| has its limitations. For example if X, Y, Z are
random bits conditioned on X @Y @ Z = 0, then they are pairwise independent while for example
I(XY;Z) = 1. Note that we cannot use a Venn diagram to ilustrate this. |

We can similarly define the conditional mutual information

Definition 4 (Mutual information). The mutual information between two variables X and Y
conditioned on Z is defined as

I(X;Y|Z) = E.I(X;Y|Z=2)
H(X|Z)- H(XY|Z)= H(Y|Z) - HY|XZ)
— H(X|Z)+H(Y|Z)— H(XY|Z) > 0.

Recall that X and Y are independent if and only if H(X) = H(X|Y). This leads to the following
remark.

Remark 5. Note that X and Y are independent if and only if I(X;Y) = 0, and similarly X and
Y are independent conditioned on Z if and only if I(X,Y]Z) = 0. ]

Example 6. Note that conditioning can increase the mutual information. For example if X,Y, Z
are random uniform bits conditioned on X &Y & Z = 0, then I(X;Y) = 0 while I(X;Y|Z) =1 as
after knowing Z the value of Y is determined by the value of X. [

Theorem 7 (Chain Rule). We have
I(XY;2) = I(X;Z) + I(Y; Z|X).
Proof.
I(XY;Z)=H(Z)-H(Z|XY)=H(Z) - H(Z|X)+ H(Z|X) - H(Z|XY) = I(X; Z) + I(Y; Z|X).
U

The chain rule says that the amount of information that Z shares with XY equals to the amount
of information that Z shares with X plus the amount of information that Z shares with Y once
one knows X.
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Remark 8. The non-negativity of the mutual information is very useful. For example to prove the
intuitively obvious fact I(X;Y) < I(X;Y Z), one notes that I(X;YZ) = I(X;Y)+ I(X; Z]Y) >
I(X;Y). [

Example 9. Let X — Y — Z be a Markov chain. Then since I(X; Z|Y) = 0, we have
I(X;2)<I(X;YZ)=I(X;Y)+ I(X; Z]Y) = I(X;Y),
as it is expected. ]

Consider random variables X, Y with joint probability distribution p(z,y). We can write p(x,y) =
p(z)p(ylz), where p(z) = Pr[X = z] and p(y|z) = Pr[Y = y|X = z].

Theorem 10. Consider random variables X, Y with joint distribution p(x,y). Suppose p(x) = a(z)
and p(y|z) = B(z,y). Then [(X;Y) is concave in o and convex in (3.

Proof. Convexity with respect to a: Suppose (X1,Y1) ~ (a1,8) and (X2,Y2) ~ (a2,5), and
(X,Y) ~ (Aag + (1 — Nag, ). To sample (X,Y) we use a Bernoulli random variable B with
parameter A: If B = 1, then we sample (X,Y’) using (a1,3) and otherwise we use (a2, 3). Note
that conditioned on X = z, Y is sampled according to the function g regardless of the value of B.
In other words, conditioned on X, the random variables B and Y are independent: I(B;Y|X) = 0.
Hence

I(BX;Y)=I(X;Y)+I(B;)Y|X)=I1(X;Y).
On the other hand
I(BX;Y) = I(B;Y) + I(X; Y|B) > I(X; Y|B) = M[(X1;Y) + (1 - NI(X1; ).
This shows
I(X5Y) 2 M(X1; Y1) + (1= NI(X1; ),

as desired.

Concavity with respect to 3: Suppose (X1,Y1) ~ («, 1) and (X2,Y2) ~ (o, B2), and (X,Y) ~
(a, AB1 + (1 — A\)B2). To sample (X,Y) we use a Bernoulli random variable B with parameter \:
If B = 1, then we sample (X,Y") using («,$1) and otherwise we use («,S2). Now X and B are
independent: (X, B) = 0. Hence

I(Y,X)<IBY,X)=I(B,X)+ I(Y,X|B) =X (X1;Y7) + (1 = M) I(X1;Y7).

O

1.1. Some useful inequalities. The following inequalities concern the case where A and C are
independent, and the case where A and C are independent conditioned on B. Note that using

I(AB;C) =I1(A;C)+1(A; B|IC) =I(A;B) + 1(A;C|B)
we obtain
I(A;B) = I(A; B|C) + I1(A;C) — I(A; C|B).
This shows
I(A;C)=0 = I(A;B)<I(A;B|C)
I(A;C|B)=0 = I(A;B)>I1(A;B|C)
I(A;C)=I1(A;C|B)=0 = I(A;B)=1(A;B|C).
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Remark 11. As we saw earlier if A, B, C are uniform random bits conditioned on A@ B& C = 0,
then I(A;C) =0 and 0 = I(A; B) < I(A; B|C) = 1. So the first inequality can be strict.

Also A, B, C are random variables that satisfy B = C, then I(A; C|B) = 0 and also I(A4; B|C) =
0. So in this case, the second inequality becomes strict if I(A; B) > 0.

Further note that the condition I(A4;C) = I(A4;C|B) = 0 is weaker than I(AB;C) = 0. Ob-
viously if C' is independent from AB, then the chain rule implies that I(A;C) = I(4;C|B) = 0.
|

We can also obviously condition all those inequalities on a fourth random variable Z. Let us
summarize this as the following theorem which we shall use frequently.

Theorem 12. Let A, B,C,Z be random variables. Then
I(A;B|Z) =1(A,B|ZC) + I(A;C\Z) — I(A,C|ZB).
which shows
I1(A;C1Z) =0 = I(A;B|Z) <I(A;B|CZ)
I(A;C|BZ)=0 = I(A;B|Z)>1(A;B|ICZ)
I(A;C|Z)=1(A;C|BZ)=0 = I(A;B|Z)=1(A;B|CZ).

<
>

1.2. Information processing inequality. Suppose that X, Y, Z are random variables, and f is
a function. Then
I(f(X);Y|Z) < I(X;Y|2).
Indeed
I(f(X);Y]2) < I(Xf(X);Y[Z) = [(X;Y]Z),
as X f(X) has the same underlying distribution as X.

2. INFORMATIONAL DIVERGENCE

The informational divergence or Kullback-Liebler divergence between two probability distribu-
tions p(z) and ¢(x) on the same universe € is a measure of distance between them. It is formally

defined as (@) (@)
D(plq) = )1og 2 g, [lo N]
(plla) xze;z p(a)log s = Eany |log o
p(x)#0

Note that if there is any point x with ¢(x) = 0 and p(x) > 0, then D(p||¢) = oco. So this notion is
most useful when supp(p) C supp(q). It can be thought of as a measure of how well p approximates
q. Note that a particular case that guarantees supp(p) C supp(q) is when p(z) is the law of a
random variable X, and ¢(z) is the law of the random variable obtained from X by conditioning
on an event F.

Let us list some facts about the divergence.

e We have D(p||p) = 0.
e Unlike mutual information, D(p||q) is not symmetric.

e Suppose that p and ¢ are respectively uniform distributions on sets P C ). Then

D(pllq) = log ﬂ~
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e More generally if p is obtained from ¢ by conditioning on the event that z belongs to a set
E C supp(q), then

L 1
q(E) 5 Pryqlz € E]

D(p||q) = log

e Always D(p|lg) > 0. Indeed by convexity of —log(z), we have

D(plle) = ~Ere [10g X2 > ~ g, [ 22

2.1. Divergence and Entropy. Let X be a random variable with the law p(x) supported on a set
X Intuitively the entropy of X is related to how much p(z) diverges from the uniform distribution
v on x. The more p(z) diverges the lesser its entropy is, and vice versa. Indeed it is straightforward
to verify that

] =—logl=0.

H(X) =log|x| — D(plv).

2.2. Divergence and Mutual information. Mutual information I(X;Y") can also be expressed
as a divergence, of the product p(z) x p(y) of the marginal distributions of the two random variables
X and Y, from p(x,y) the random variables’ joint distribution:

I(X;Y) = D(p(z,y)|lp(x)p(y))

Indeed
D(p(z,y)llp(x)p(y)) = Zp” 1°gpzza(ca>j§f<2>
1 1 1
= mZy:p(%y) <Iogp(m) + Iog@ — log M)
= H(X)+H(Y)-HXY)=I(X;Y).
Note further that
. — €T z 0 ( 7 )
I(X;Y) = D(p(x,y)|p(x ZP W18 )
— o S rteln o <'y> S p(y)D(p(ly)p(x))

= EyD(p(iUIy) | p(z)) = Eyey D(X]y—y | Y)

If X and Y are random variables on the same probability space with distributions p(x) and ¢(z),
we might also write D(X||Y) to denote D(p||q). We summarize as the following theorem.

Theorem 13. Let A, B be random variables in the same probability space. Then
I(A; B) = EquaD (Bla=, || B),
and more generally if C is also a random variable in the same probability space:

I(4; BIC) = EaraD (Bla=a.o=c || Blo=)-
c~
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3. THINGS TO ADD

Pinsker’s inequality, Divergenec as a measure of surprise with emperical experiments, Normal
distribution as highest entropy with fixed expected value and variance, super additivity of diver-
gence,

Theorem 14. Let X = (X1,...,X,) be independent random variables, and let E = E(X) be an
event with Pr[E] > 27", Then for most coordinates D(py,|, ||pz,;) is small.
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