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1. Mutual information

Let’s start from a simple example. Let B1, . . . , B6 be independent random bits, i.e. inde-
pendent Bernoulli random variables with parameter 1

2 . Let X = (B1, B2, B3, B4), and Y =
(B2, B3, B4, B5, B6). Then obviously

H(X) = 4 and H(Y ) = 5.

On the other hand
H(XY ) = 6,

as XY is determined by the six random variables B1, . . . , B6.

• H(X|Y ) = H(XY ) −H(Y ) = 1, so the amount of information left in X after we know Y
is 1. We just need to know B1 and Y to fully recover X.
• H(Y |X) = H(XY ) −H(X) = 2, so the amount of information left in Y after we know X

is 2. We just need to know B6, B6 and X to fully recover Y .

Note that by knowing either X or Y we can learn the value of the three independent bits
(B2, B3, B4). In other words, we can think of these two bits as the shared information between X
and Y . The mutual information I(X;Y ) between X and Y is the amount of information that one
can learn about X knowing Y , and it turns out this is equal to the amount of the information that
one can learn about Y knowing X. This corresponds to the amount of shared information between
X and Y . This is demonstrated in Figure 1.

Figure 1. A Venn diagram showing the mutual information between two variables.

B1 B2B3B4 B5B6

X = B1B2B3B4 Y = B2B3B4B5B6

H(X|Y ) = 1 I(X;Y ) = 3 H(Y |X) = 2

Now let us formally define the notion of mutual information.

Definition 1 (Mutual information). The mutual information between two variables X and Y is
defined as

I(X;Y ) = I(Y ;X) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(XY ).

By subadditivity of entropy, I(X;Y ) ≥ 0.
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Example 2. Let B1, . . . , B5 be independent random bits, and let X = (B1, B2, B3) and Y =
(B1 ⊕B2, B2 ⊕B4, B3 ⊕B4, B5). Note that the distribution of Y is uniform on {0, 1}4 as it can be
easily seen that its coordinates are mutually independent. Hence obviously

H(X) = 3 and H(Y ) = 4.

On the other hand

H(XY ) = 5,

as XY is determined by the five random variables B1, . . . , B5.

• H(X|Y ) = H(XY ) −H(Y ) = 1, so the amount of information left in X after we know Y
is 1. For example we just need to know B1 and Y to fully recover X.
• H(Y |X) = H(XY ) −H(X) = 2, so the amount of information left in Y after we know X

is 2. For example we just need to know B4, B5 and X to fully recover Y .

We have I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(XY ) = 2. Note
that by knowing either X or Y we can learn the value of the two (independent) bits (B1⊕B2, B2⊕
B3). In other words, we can think of these two bits as the shared information between X and Y .

Remark 3. Note that the Venn diagram of Figure 1 has its limitations. For example if X,Y, Z are
random bits conditioned on X ⊕ Y ⊕Z = 0, then they are pairwise independent while for example
I(XY ;Z) = 1. Note that we cannot use a Venn diagram to ilustrate this.

We can similarly define the conditional mutual information

Definition 4 (Mutual information). The mutual information between two variables X and Y
conditioned on Z is defined as

I(X;Y |Z) = EzI(X;Y |Z = z)

= H(X|Z)−H(XY |Z) = H(Y |Z)−H(Y |XZ)

= H(X|Z) +H(Y |Z)−H(XY |Z) ≥ 0.

Recall that X and Y are independent if and only if H(X) = H(X|Y ). This leads to the following
remark.

Remark 5. Note that X and Y are independent if and only if I(X;Y ) = 0, and similarly X and
Y are independent conditioned on Z if and only if I(X,Y |Z) = 0.

Example 6. Note that conditioning can increase the mutual information. For example if X,Y, Z
are random uniform bits conditioned on X ⊕ Y ⊕Z = 0, then I(X;Y ) = 0 while I(X;Y |Z) = 1 as
after knowing Z the value of Y is determined by the value of X.

Theorem 7 (Chain Rule). We have

I(XY ;Z) = I(X;Z) + I(Y ;Z|X).

Proof.

I(XY ;Z) = H(Z)−H(Z|XY ) = H(Z)−H(Z|X) +H(Z|X)−H(Z|XY ) = I(X;Z) + I(Y ;Z|X).

�

The chain rule says that the amount of information that Z shares with XY equals to the amount
of information that Z shares with X plus the amount of information that Z shares with Y once
one knows X.
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Remark 8. The non-negativity of the mutual information is very useful. For example to prove the
intuitively obvious fact I(X;Y ) ≤ I(X;Y Z), one notes that I(X;Y Z) = I(X;Y ) + I(X;Z|Y ) ≥
I(X;Y ).

Example 9. Let X → Y → Z be a Markov chain. Then since I(X;Z|Y ) = 0, we have

I(X;Z) ≤ I(X;Y Z) = I(X;Y ) + I(X;Z|Y ) = I(X;Y ),

as it is expected.

Consider random variablesX,Y with joint probability distribution p(x, y). We can write p(x, y) =
p(x)p(y|x), where p(x) = Pr[X = x] and p(y|x) = Pr[Y = y|X = x].

Theorem 10. Consider random variables X,Y with joint distribution p(x, y). Suppose p(x) = α(x)
and p(y|x) = β(x, y). Then I(X;Y ) is concave in α and convex in β.

Proof. Convexity with respect to α: Suppose (X1, Y1) ∼ (α1, β) and (X2, Y2) ∼ (α2, β), and
(X,Y ) ∼ (λα1 + (1 − λ)α2, β). To sample (X,Y ) we use a Bernoulli random variable B with
parameter λ: If B = 1, then we sample (X,Y ) using (α1, β) and otherwise we use (α2, β). Note
that conditioned on X = x, Y is sampled according to the function β regardless of the value of B.
In other words, conditioned on X, the random variables B and Y are independent: I(B;Y |X) = 0.
Hence

I(BX;Y ) = I(X;Y ) + I(B;Y |X) = I(X;Y ).

On the other hand

I(BX;Y ) = I(B;Y ) + I(X;Y |B) ≥ I(X;Y |B) = λI(X1;Y1) + (1− λ)I(X1;Y1).

This shows

I(X;Y ) ≥ λI(X1;Y1) + (1− λ)I(X1;Y1),

as desired.

Concavity with respect to β: Suppose (X1, Y1) ∼ (α, β1) and (X2, Y2) ∼ (α, β2), and (X,Y ) ∼
(α, λβ1 + (1 − λ)β2). To sample (X,Y ) we use a Bernoulli random variable B with parameter λ:
If B = 1, then we sample (X,Y ) using (α, β1) and otherwise we use (α, β2). Now X and B are
independent: I(X,B) = 0. Hence

I(Y,X) ≤ I(BY,X) = I(B,X) + I(Y,X|B) = λI(X1;Y1) + (1− λ)I(X1;Y1).

�

1.1. Some useful inequalities. The following inequalities concern the case where A and C are
independent, and the case where A and C are independent conditioned on B. Note that using

I(AB;C) = I(A;C) + I(A;B|C) = I(A;B) + I(A;C|B)

we obtain

I(A;B) = I(A;B|C) + I(A;C)− I(A;C|B).

This shows

I(A;C) = 0 =⇒ I(A;B) ≤ I(A;B|C)

I(A;C|B) = 0 =⇒ I(A;B) ≥ I(A;B|C)

I(A;C) = I(A;C|B) = 0 =⇒ I(A;B) = I(A;B|C).
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Remark 11. As we saw earlier if A,B,C are uniform random bits conditioned on A⊕B⊕C = 0,
then I(A;C) = 0 and 0 = I(A;B) < I(A;B|C) = 1. So the first inequality can be strict.

Also A,B,C are random variables that satisfy B = C, then I(A;C|B) = 0 and also I(A;B|C) =
0. So in this case, the second inequality becomes strict if I(A;B) > 0.

Further note that the condition I(A;C) = I(A;C|B) = 0 is weaker than I(AB;C) = 0. Ob-
viously if C is independent from AB, then the chain rule implies that I(A;C) = I(A;C|B) = 0.

We can also obviously condition all those inequalities on a fourth random variable Z. Let us
summarize this as the following theorem which we shall use frequently.

Theorem 12. Let A,B,C,Z be random variables. Then

I(A;B|Z) = I(A,B|ZC) + I(A;C|Z)− I(A,C|ZB).

which shows

I(A;C|Z) = 0 =⇒ I(A;B|Z) ≤ I(A;B|CZ)

I(A;C|BZ) = 0 =⇒ I(A;B|Z) ≥ I(A;B|CZ)

I(A;C|Z) = I(A;C|BZ) = 0 =⇒ I(A;B|Z) = I(A;B|CZ).

1.2. Information processing inequality. Suppose that X,Y, Z are random variables, and f is
a function. Then

I(f(X);Y |Z) ≤ I(X;Y |Z).

Indeed

I(f(X);Y |Z) ≤ I(Xf(X);Y |Z) = I(X;Y |Z),

as Xf(X) has the same underlying distribution as X.

2. Informational Divergence

The informational divergence or Kullback-Liebler divergence between two probability distribu-
tions p(x) and q(x) on the same universe Ω is a measure of distance between them. It is formally
defined as

D(p‖q) =
∑
x∈Ω
p(x)6=0

p(x) log
p(x)

q(x)
= Ex∼p

[
log

p(x)

q(x)

]
.

Note that if there is any point x with q(x) = 0 and p(x) > 0, then D(p‖q) =∞. So this notion is
most useful when supp(p) ⊆ supp(q). It can be thought of as a measure of how well p approximates
q. Note that a particular case that guarantees supp(p) ⊆ supp(q) is when p(x) is the law of a
random variable X, and q(x) is the law of the random variable obtained from X by conditioning
on an event E.

Let us list some facts about the divergence.

• We have D(p‖p) = 0.

• Unlike mutual information, D(p‖q) is not symmetric.

• Suppose that p and q are respectively uniform distributions on sets P ⊆ Q. Then

D(p‖q) = log
|Q|
|P | .
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• More generally if p is obtained from q by conditioning on the event that x belongs to a set
E ⊆ supp(q), then

D(p‖q) = log
1

q(E)
= log

1

Prx∼q[x ∈ E]
.

• Always D(p‖q) ≥ 0. Indeed by convexity of − log(x), we have

D(p‖q) = −Ex∼p
[
log

q(x)

p(x)

]
≥ − logEx∼p

[
q(x)

p(x)

]
= − log 1 = 0.

2.1. Divergence and Entropy. Let X be a random variable with the law p(x) supported on a set
χ. Intuitively the entropy of X is related to how much p(x) diverges from the uniform distribution
ν on χ. The more p(x) diverges the lesser its entropy is, and vice versa. Indeed it is straightforward
to verify that

H(X) = log |χ| −D(p‖ν).

2.2. Divergence and Mutual information. Mutual information I(X;Y ) can also be expressed
as a divergence, of the product p(x)×p(y) of the marginal distributions of the two random variables
X and Y , from p(x, y) the random variables’ joint distribution:

I(X;Y ) = D(p(x, y)‖p(x)p(y))

Indeed

D(p(x, y)‖p(x)p(y)) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y)

(
log

1

p(x)
+ log

1

p(y)
− log

1

p(x, y)

)
= H(X) +H(Y )−H(XY ) = I(X;Y ).

Note further that

I(X;Y ) = D(p(x, y)‖p(x)p(y)) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
y

p(y)
∑
x

p(x|y) log
p(x|y)

p(x)
=
∑
y

p(y)D(p(x|y)‖p(x))

= EyD(p(x|y) ‖ p(x)) = Ey∼Y D(X|Y=y ‖ Y )

If X and Y are random variables on the same probability space with distributions p(x) and q(x),
we might also write D(X‖Y ) to denote D(p‖q). We summarize as the following theorem.

Theorem 13. Let A,B be random variables in the same probability space. Then

I(A;B) = Ea∼AD (B|A=a ‖ B) ,

and more generally if C is also a random variable in the same probability space:

I(A;B|C) = Ea∼A
c∼C

D (B|A=a,C=c ‖ B|C=c) .
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3. Things to add

Pinsker’s inequality, Divergenec as a measure of surprise with emperical experiments, Normal
distribution as highest entropy with fixed expected value and variance, super additivity of diver-
gence,

Theorem 14. Let X = (X1, . . . , Xn) be independent random variables, and let E = E(X) be an
event with Pr[E] ≥ 2−εn. Then for most coordinates D(pxi|E‖pxi) is small.
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