COMP760, SUMMARY OF LECTURE 13.

HAMED HATAMI

1. Mutual information

Let's start from a simple example. Let B_{1}, \ldots, B_{6} be independent random bits, i.e. independent Bernoulli random variables with parameter $\frac{1}{2}$. Let $X=\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$, and $Y=$ $\left(B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right)$. Then obviously

$$
H(X)=4 \quad \text { and } \quad H(Y)=5
$$

On the other hand

$$
H(X Y)=6,
$$

as $X Y$ is determined by the six random variables B_{1}, \ldots, B_{6}.

- $H(X \mid Y)=H(X Y)-H(Y)=1$, so the amount of information left in X after we know Y is 1 . We just need to know B_{1} and Y to fully recover X.
- $H(Y \mid X)=H(X Y)-H(X)=2$, so the amount of information left in Y after we know X is 2 . We just need to know B_{6}, B_{6} and X to fully recover Y.
Note that by knowing either X or Y we can learn the value of the three independent bits $\left(B_{2}, B_{3}, B_{4}\right)$. In other words, we can think of these two bits as the shared information between X and Y. The mutual information $I(X ; Y)$ between X and Y is the amount of information that one can learn about X knowing Y, and it turns out this is equal to the amount of the information that one can learn about Y knowing X. This corresponds to the amount of shared information between X and Y. This is demonstrated in Figure 1.

Figure 1. A Venn diagram showing the mutual information between two variables.

Now let us formally define the notion of mutual information.
Definition 1 (Mutual information). The mutual information between two variables X and Y is defined as

$$
\begin{aligned}
I(X ; Y)=I(Y ; X) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X Y)
\end{aligned}
$$

By subadditivity of entropy, $I(X ; Y) \geq 0$.

Example 2. Let B_{1}, \ldots, B_{5} be independent random bits, and let $X=\left(B_{1}, B_{2}, B_{3}\right)$ and $Y=$ $\left(B_{1} \oplus B_{2}, B_{2} \oplus B_{4}, B_{3} \oplus B_{4}, B_{5}\right)$. Note that the distribution of Y is uniform on $\{0,1\}^{4}$ as it can be easily seen that its coordinates are mutually independent. Hence obviously

$$
H(X)=3 \quad \text { and } \quad H(Y)=4
$$

On the other hand

$$
H(X Y)=5
$$

as $X Y$ is determined by the five random variables B_{1}, \ldots, B_{5}.

- $H(X \mid Y)=H(X Y)-H(Y)=1$, so the amount of information left in X after we know Y is 1. For example we just need to know B_{1} and Y to fully recover X.
- $H(Y \mid X)=H(X Y)-H(X)=2$, so the amount of information left in Y after we know X is 2. For example we just need to know B_{4}, B_{5} and X to fully recover Y.
We have $I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X Y)=2$. Note that by knowing either X or Y we can learn the value of the two (independent) bits $\left(B_{1} \oplus B_{2}, B_{2} \oplus\right.$ B_{3}). In other words, we can think of these two bits as the shared information between X and Y.

Remark 3. Note that the Venn diagram of Figure 1 has its limitations. For example if X, Y, Z are random bits conditioned on $X \oplus Y \oplus Z=0$, then they are pairwise independent while for example $I(X Y ; Z)=1$. Note that we cannot use a Venn diagram to ilustrate this.

We can similarly define the conditional mutual information
Definition 4 (Mutual information). The mutual information between two variables X and Y conditioned on Z is defined as

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{z} I(X ; Y \mid Z=z) \\
& =H(X \mid Z)-H(X Y \mid Z)=H(Y \mid Z)-H(Y \mid X Z) \\
& =H(X \mid Z)+H(Y \mid Z)-H(X Y \mid Z) \geq 0
\end{aligned}
$$

Recall that X and Y are independent if and only if $H(X)=H(X \mid Y)$. This leads to the following remark.

Remark 5. Note that X and Y are independent if and only if $I(X ; Y)=0$, and similarly X and Y are independent conditioned on Z if and only if $I(X, Y \mid Z)=0$.

Example 6. Note that conditioning can increase the mutual information. For example if X, Y, Z are random uniform bits conditioned on $X \oplus Y \oplus Z=0$, then $I(X ; Y)=0$ while $I(X ; Y \mid Z)=1$ as after knowing Z the value of Y is determined by the value of X.

Theorem 7 (Chain Rule). We have

$$
I(X Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)
$$

Proof.
$I(X Y ; Z)=H(Z)-H(Z \mid X Y)=H(Z)-H(Z \mid X)+H(Z \mid X)-H(Z \mid X Y)=I(X ; Z)+I(Y ; Z \mid X)$.

The chain rule says that the amount of information that Z shares with $X Y$ equals to the amount of information that Z shares with X plus the amount of information that Z shares with Y once one knows X.

Remark 8. The non-negativity of the mutual information is very useful. For example to prove the intuitively obvious fact $I(X ; Y) \leq I(X ; Y Z)$, one notes that $I(X ; Y Z)=I(X ; Y)+I(X ; Z \mid Y) \geq$ $I(X ; Y)$.
Example 9. Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then since $I(X ; Z \mid Y)=0$, we have

$$
I(X ; Z) \leq I(X ; Y Z)=I(X ; Y)+I(X ; Z \mid Y)=I(X ; Y),
$$

as it is expected.
Consider random variables X, Y with joint probability distribution $p(x, y)$. We can write $p(x, y)=$ $p(x) p(y \mid x)$, where $p(x)=\operatorname{Pr}[X=x]$ and $p(y \mid x)=\operatorname{Pr}[Y=y \mid X=x]$.

Theorem 10. Consider random variables X, Y with joint distribution $p(x, y)$. Suppose $p(x)=\alpha(x)$ and $p(y \mid x)=\beta(x, y)$. Then $I(X ; Y)$ is concave in α and convex in β.

Proof. Convexity with respect to α : Suppose $\left(X_{1}, Y_{1}\right) \sim\left(\alpha_{1}, \beta\right)$ and $\left(X_{2}, Y_{2}\right) \sim\left(\alpha_{2}, \beta\right)$, and $(X, Y) \sim\left(\lambda \alpha_{1}+(1-\lambda) \alpha_{2}, \beta\right)$. To sample (X, Y) we use a Bernoulli random variable B with parameter λ : If $B=1$, then we sample (X, Y) using $\left(\alpha_{1}, \beta\right)$ and otherwise we use $\left(\alpha_{2}, \beta\right)$. Note that conditioned on $X=x, Y$ is sampled according to the function β regardless of the value of B. In other words, conditioned on X, the random variables B and Y are independent: $I(B ; Y \mid X)=0$. Hence

$$
I(B X ; Y)=I(X ; Y)+I(B ; Y \mid X)=I(X ; Y)
$$

On the other hand

$$
I(B X ; Y)=I(B ; Y)+I(X ; Y \mid B) \geq I(X ; Y \mid B)=\lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{1} ; Y_{1}\right)
$$

This shows

$$
I(X ; Y) \geq \lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{1} ; Y_{1}\right)
$$

as desired.
Concavity with respect to β : Suppose $\left(X_{1}, Y_{1}\right) \sim\left(\alpha, \beta_{1}\right)$ and $\left(X_{2}, Y_{2}\right) \sim\left(\alpha, \beta_{2}\right)$, and $(X, Y) \sim$ $\left(\alpha, \lambda \beta_{1}+(1-\lambda) \beta_{2}\right)$. To sample (X, Y) we use a Bernoulli random variable B with parameter λ : If $B=1$, then we sample (X, Y) using (α, β_{1}) and otherwise we use $\left(\alpha, \beta_{2}\right)$. Now X and B are independent: $I(X, B)=0$. Hence

$$
I(Y, X) \leq I(B Y, X)=I(B, X)+I(Y, X \mid B)=\lambda I\left(X_{1} ; Y_{1}\right)+(1-\lambda) I\left(X_{1} ; Y_{1}\right)
$$

1.1. Some useful inequalities. The following inequalities concern the case where A and C are independent, and the case where A and C are independent conditioned on B. Note that using

$$
I(A B ; C)=I(A ; C)+I(A ; B \mid C)=I(A ; B)+I(A ; C \mid B)
$$

we obtain

$$
I(A ; B)=I(A ; B \mid C)+I(A ; C)-I(A ; C \mid B) .
$$

This shows

$$
\begin{aligned}
I(A ; C)=0 & \Longrightarrow I(A ; B) \leq I(A ; B \mid C) \\
I(A ; C \mid B)=0 & \Longrightarrow I(A ; B) \geq I(A ; B \mid C) \\
I(A ; C)=I(A ; C \mid B)=0 & \Longrightarrow I(A ; B)=I(A ; B \mid C) .
\end{aligned}
$$

Remark 11. As we saw earlier if A, B, C are uniform random bits conditioned on $A \oplus B \oplus C=0$, then $I(A ; C)=0$ and $0=I(A ; B)<I(A ; B \mid C)=1$. So the first inequality can be strict.

Also A, B, C are random variables that satisfy $B=C$, then $I(A ; C \mid B)=0$ and also $I(A ; B \mid C)=$ 0 . So in this case, the second inequality becomes strict if $I(A ; B)>0$.

Further note that the condition $I(A ; C)=I(A ; C \mid B)=0$ is weaker than $I(A B ; C)=0$. Obviously if C is independent from $A B$, then the chain rule implies that $I(A ; C)=I(A ; C \mid B)=0$.

We can also obviously condition all those inequalities on a fourth random variable Z. Let us summarize this as the following theorem which we shall use frequently.

Theorem 12. Let A, B, C, Z be random variables. Then

$$
I(A ; B \mid Z)=I(A, B \mid Z C)+I(A ; C \mid Z)-I(A, C \mid Z B)
$$

which shows

$$
\begin{aligned}
I(A ; C \mid Z)=0 & \Longrightarrow I(A ; B \mid Z) \leq I(A ; B \mid C Z) \\
I(A ; C \mid B Z)=0 & \Longrightarrow I(A ; B \mid Z) \geq I(A ; B \mid C Z) \\
I(A ; C \mid Z)=I(A ; C \mid B Z)=0 & \Longrightarrow I(A ; B \mid Z)=I(A ; B \mid C Z) .
\end{aligned}
$$

1.2. Information processing inequality. Suppose that X, Y, Z are random variables, and f is a function. Then

$$
I(f(X) ; Y \mid Z) \leq I(X ; Y \mid Z)
$$

Indeed

$$
I(f(X) ; Y \mid Z) \leq I(X f(X) ; Y \mid Z)=I(X ; Y \mid Z)
$$

as $X f(X)$ has the same underlying distribution as X.

2. Informational Divergence

The informational divergence or Kullback-Liebler divergence between two probability distributions $p(x)$ and $q(x)$ on the same universe Ω is a measure of distance between them. It is formally defined as

$$
\mathbf{D}(p \| q)=\sum_{\substack{x \in \Omega \\ p(x) \neq 0}} p(x) \log \frac{p(x)}{q(x)}=\mathbb{E}_{x \sim p}\left[\log \frac{p(x)}{q(x)}\right]
$$

Note that if there is any point x with $q(x)=0$ and $p(x)>0$, then $\mathbf{D}(p \| q)=\infty$. So this notion is most useful when $\operatorname{supp}(p) \subseteq \operatorname{supp}(q)$. It can be thought of as a measure of how well p approximates q. Note that a particular case that guarantees $\operatorname{supp}(p) \subseteq \operatorname{supp}(q)$ is when $p(x)$ is the law of a random variable X, and $q(x)$ is the law of the random variable obtained from X by conditioning on an event E.

Let us list some facts about the divergence.

- We have $\mathbf{D}(p \| p)=0$.
- Unlike mutual information, $\mathbf{D}(p \| q)$ is not symmetric.
- Suppose that p and q are respectively uniform distributions on sets $P \subseteq Q$. Then

$$
\mathbf{D}(p \| q)=\log \frac{|Q|}{|P|}
$$

- More generally if p is obtained from q by conditioning on the event that x belongs to a set $E \subseteq \operatorname{supp}(q)$, then

$$
\mathbf{D}(p \| q)=\log \frac{1}{q(E)}=\log \frac{1}{\operatorname{Pr}_{x \sim q}[x \in E]}
$$

- Always $\mathbf{D}(p \| q) \geq 0$. Indeed by convexity of $-\log (x)$, we have

$$
\mathbf{D}(p \| q)=-\mathbb{E}_{x \sim p}\left[\log \frac{q(x)}{p(x)}\right] \geq-\log \mathbb{E}_{x \sim p}\left[\frac{q(x)}{p(x)}\right]=-\log 1=0
$$

2.1. Divergence and Entropy. Let X be a random variable with the law $p(x)$ supported on a set χ. Intuitively the entropy of X is related to how much $p(x)$ diverges from the uniform distribution ν on χ. The more $p(x)$ diverges the lesser its entropy is, and vice versa. Indeed it is straightforward to verify that

$$
H(X)=\log |\chi|-\mathbf{D}(p \| \nu) .
$$

2.2. Divergence and Mutual information. Mutual information $I(X ; Y)$ can also be expressed as a divergence, of the product $p(x) \times p(y)$ of the marginal distributions of the two random variables X and Y, from $p(x, y)$ the random variables' joint distribution:

$$
I(X ; Y)=\mathbf{D}(p(x, y) \| p(x) p(y))
$$

Indeed

$$
\begin{aligned}
\mathbf{D}(p(x, y) \| p(x) p(y)) & =\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\sum_{x, y} p(x, y)\left(\log \frac{1}{p(x)}+\log \frac{1}{p(y)}-\log \frac{1}{p(x, y)}\right) \\
& =H(X)+H(Y)-H(X Y)=I(X ; Y) .
\end{aligned}
$$

Note further that

$$
\begin{aligned}
I(X ; Y) & =\mathbf{D}(p(x, y) \| p(x) p(y))=\sum_{x, y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
& =\sum_{y} p(y) \sum_{x} p(x \mid y) \log \frac{p(x \mid y)}{p(x)}=\sum_{y} p(y) \mathbf{D}(p(x \mid y) \| p(x)) \\
& =\mathbb{E}_{y} \mathbf{D}(p(x \mid y) \| p(x))=\mathbb{E}_{y \sim Y} \mathbf{D}\left(\left.X\right|_{Y=y} \| Y\right)
\end{aligned}
$$

If X and Y are random variables on the same probability space with distributions $p(x)$ and $q(x)$, we might also write $\mathbf{D}(X \| Y)$ to denote $\mathbf{D}(p \| q)$. We summarize as the following theorem.

Theorem 13. Let A, B be random variables in the same probability space. Then

$$
I(A ; B)=\mathbb{E}_{a \sim A} \mathbf{D}\left(\left.B\right|_{A=a} \| B\right),
$$

and more generally if C is also a random variable in the same probability space:

$$
I(A ; B \mid C)=\underset{\substack{a \sim A \\ c \sim C}}{\mathbb{E}_{\sim}} \mathbf{D}\left(\left.B\right|_{A=a, C=c} \|\left. B\right|_{C=c}\right) .
$$

3. Things to ADD

Pinsker's inequality, Divergenec as a measure of surprise with emperical experiments, Normal distribution as highest entropy with fixed expected value and variance, super additivity of divergence,

Theorem 14. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be independent random variables, and let $E=E(X)$ be an event with $\operatorname{Pr}[E] \geq 2^{-\epsilon n}$. Then for most coordinates $D\left(p_{x_{i} \mid E} \| p_{x_{i}}\right)$ is small.

References

School of Computer Science, McGill University, Montréal, Canada
E-mail address: hatami@cs.mcgill.ca

