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1. Introduction to information theory

In 1948, Shannon in his seminal paper [Sha48] introduced information theory as a tool for
studying the communication cost of transmission tasks. In this setting, Alice receives a random
input X ∼ (Ω, p) and wants to transmit it to Bob. Shannon’s source coding theorem (Theorem 2
below) concerns the case where Alice is sending many copies of X. More precisely, she receives
(X1, . . . , Xn) where X1, . . . , Xn are i.i.d. copies of X, and she wants to send a coded version of
this f(X1, . . . , Xn) ∈ {0, 1}N to Bob, so that Bob, with probability at least 1− ε, can successfully
decode it using his function g:

Pr[g(f(X1, . . . , Xn))) 6= (X1, . . . , Xn)] ≤ ε,

where ε > 0 is a fixed small number. Here Alice wants to optimize the number of bits that she
is sending max |f(x1, . . . , xn)|, where |f(x1, . . . , xn)| denotes the length of the string. Let Cn(X, ε)
denote this number. Note that

Pr[(X1, . . . , Xn) = (a1, . . . , an)] = p(a1) . . . p(an) = 2log p(a1)+...+log p(an).

Let us investigate the power. What is its expected value when a1, . . . , an are the values of
X1, . . . , Xn?

E[log p(a1) + . . .+ log p(an)] = nE[log p(a1)] = −n
∑
a∈Ω
p(a)6=0

p(a) log
1

p(a)
= −nH(X),

where H(X) is called the entropy of X.

Definition 1 (Entropy). The entropy of a random variable X ∼ (Ω, p) is defined as

H(X) :=
∑
a∈Ω
p(a)6=0

p(a) log
1

p(X(a))
= E log

1

p(X)
.

It follows from Law of Large Numbers that for a random (X1, . . . , Xn) the value of

log Pr[(X1, . . . , Xn) = (a1, ..., an)]

is highly concentrated around its expected value −nH(X). This shows that if we define

Aεn = {(a1, . . . , an) : |log Pr[(a1, . . . , an)] + nH(X)| ≤ εn} ,

then Aεn is almost of full measure, or in other words

Pr[(X1, . . . , Xn) ∈ Aεn] ≥ 1− ε.

Note that Aεn is precisely the set of all points (a1, . . . , an) ∈ Ωn with

2−nH(X)−εn ≤ Pr[(a1, . . . , an)] ≤ 2−nH(X)+εn.
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Here intuitively you can think that these points are almost uniformly distributed on Aεn (ignoring

the multiplicative factors 2O(±εn)). Hence we roughly know the size of Aεn,

2nH(X)−εn−1 ≤ (1− ε)2nH(X)−εn ≤ |Aεn| ≤ 2nH(X)+εn.

It follows from the upper-bound that one can assign a unique binary string f(a1, . . . , an) of length
at most nH(X) + εn to each point (a1, . . . , an) ∈ Aεn. Hence the following protocol satisfies our
requirement and shows that Cn(X, ε) ≤ nH(X) + εn.

• Alice checks to see if (X1, . . . , Xn) ∈ Aεn:
– If YES she sends f(X1, . . . , Xn) to Bob
– If NO she sends “FAILED” to Bob.

On the other hand note that since 2nH(X)−εn−1 ≤ |Aεn| any protocol that uses less than say

nH(X)− 2εn bits can get at most 2nH(X)−2εn points of Aεn right, and that has probability mass at
most

2nH(X)−2εn × 2−nH(X)+εn ≤ 2εn ≤ ε,
where we used the bound Pr[(a1, . . . , an)] ≤ 2−nH(X)+εn on the points (a1, . . . , an) ∈ Aεn. So
such a protocol at the best case can get the points out of Aεn plus this ≥ ε measure points in
Aεn correct. Hence the probability of error is going to be at least 1 − 2ε > ε, and this shows
Cn(X, ε) ≥ nH(X)− 2εn. Summarizing this we proved

nH(X)− 2εn ≤ Cn(X, ε) ≤ nH(X) + εn,

which shows

lim
ε→0

lim
n→∞

Cn(X, ε)

n
= H(X).

This is known as the Shannon’s source coding theorem which intuitively says that n copies of X
contains roughly nH(X) bits of information.

Theorem 2 (Shannon’s source coding theorem). The n i.i.d. copies X1, . . . , Xn of X can be
compressed into nH(X) + o(n) bits with information loss o(1), and conversely every compressing
that uses nH(X)− Ω(n) bits has significant information loss 1− o(1).

Another important theorem that shows that H(X) is the “right” measure of information is
Huffman’s coding theorem. Assume now that Alice wants to send just one copy of X, and she
wants to minimize the expected number of sent bits: E|f(X)|. Let us denote the optimal value of
this quantity with C(X). This time no information loss is allowed. Thus g(f(x)) = x for all x ∈ Ω
with p(x) > 0. You can also think that she is sending many copies of X, one at a time, and in
long run wants to optimize the number of bits that she is sending (this is going to be concentrated
around nE[|f(X)|] after n rounds.)

Huffman’s coding theorem says that for optimal f we have

H(X) ≤ E[|f(X)|] ≤ H(X) + 1.

To prove the upper-bound one can construct a tree by starting first from leaves, labeled with points
a ∈ Ω with weight p(a) > 0. All these nodes are active in the begging. Then at every step one
takes two active nodes with the smallest weights and create an active parent for them with the
weight that is sum of the weights of the two children. The two children become deactivated. We
continue this process until we end up with one node which will be the root of a binary tree. The
paths from the root to leaves will correspond to 0, 1-strings (say 0 every time one goes to a left
child and 1 every time one goes to a right child), and it is not difficult to see that if we sample a
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leaf according to the probability p(·), then the expected height of that leaf is at most H(X) + 1.
We will not give a detailed proof of this theorem as it is not directly related to the topic of the
course. However, the interested reader can refer to [CT06] for a proof. Now not that if we define
Cn(X) := C(X1, . . . , Xn) where X1, . . . , Xn are independent copies of X, then by Huffman’s coding
theorem, we have

H(X1, . . . , Xn) ≤ Cn(X) ≤ H(X1, . . . , Xn) + 1.

As we shall see below, since X1, . . . , Xn are indepdendent H(X1, . . . , Xn) = nH(X), and thus

lim
Cn(X)

n
= H(X).

Thus Shannon’s source coding theorem and Huffman’s coding theorem show that H(X) is the right
notion for capturing the amount of information that a random variable X contains.

Let us mention some notation and some basic properties of the entropy function.

• H(X) ≥ 0 always and H(X) = 0 iff Pr[X = a] = 1 for some x ∈ Ω.

• For 0 ≤ α ≤ 1 let H(α) = α log 1
α + (1 − α) log 1

1−α ∈ [0, 1] denote the entropy of the

Bernoulli random variable B with Pr[B = 1] = α and Pr[B = 0] = 1− α.

• Note that H(α) = 1 if and only if α = 1
2 .

• H(α) = H(1− α) and H(0) = H(1) = 0.

• Using Taylor expansion for log(1− ε), for small ε > 0 we have

ε log
1

ε
≤ H(ε) ≤ (1 + o(1))ε log

1

ε
.

• if X is uniformly supported on a set S, then

H(X) =
∑
a∈S

1

|S|
log |S| = log |S|.

Example 3. Suppose X,Y, Z are uniform random bits conditioned on X ⊕ Y ⊕ Z = 0. Note
that they are pairwise independent but obviously not mutually independent as the value of Z is
determined by the values of X and Y . Then XY Z (as it is the convention in information theory,
this denotes the vector (X,Y, Z) and not the product of X,Y and Z), is uniformly distributed on
4 points, and hence

H(XY Z) = log 4 = 2.

This demonstrates that XY Z contains only two bits of information as the value of Z is already
determined by the value of X and Y . However note that H(Z) = 1 as Z by itself contains some
information. Also the identity

H(XY Z) = H(XY ) = 2

shows that XY Z does not contain any extra information than XY .

1.1. Conditional Entropy. Let’s go back to Shannon’s source coding theorem where Alice wants
to transmit (X1, . . . , Xn) to Bob, but now suppose that Bob has a random variable (Y1, . . . , Yn)
where Y1, . . . , Yn are i.i.d copies of a random variable Y . Alice sees Y1, . . . , Yn and wants to use
this to save in her transmission cost. Obviously if Y and X are independent then this will not
be of any use, but if X and Y are correlated, then this already provides some information about
X1, . . . , Xn to Bob and thus Alice might get away with sending less information. Note that in the
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extreme case that Y and X are completely correlated Y := X, then Alice does not need to send
any information to Bob as Bob already knows (X1, . . . , Xn) = (Y1, . . . , Yn). Using our notation
from the source coding theorem let us denote by Cn(X|Y ) the number of bits that Alice needs to
send under these conditions to have the probability of information loss ≥ ε.

We showed that in the case Y = X we have Cn(X|Y ) = 0. Let us look at another example.
Suppose X = (B,B′) where B and B′ are two independent random bits, and Y = B ⊕ B′. Then
obviously to send (X1, . . . , Xn) = (B1B

′
1, . . . , BnB

′
n) to Bob, Alice only needs to send (B1, . . . , Bn),

as Bob can use this together with the information Y = (B1 ⊕ B′1, . . . , Bn ⊕ B′n) to recover all of
(X1, . . . , Xn). Hence Cn(X|Y ) = n in this case, while Cn(X) = nH(X) = 2n. It turns out that

lim
ε→0

lim
n→∞

Cn(X|Y, ε)

converges to the so called conditional entropy.

Definition 4 (Conditional Entropy). Let X and Y be two random variables with a joint distribution
p(x, y), then

H(X|Y ) = Eb∼p [H(X|Y = b)] = H(XY )−H(Y ).

Note that H(X|Y = b) is just the usual entropy of a random variable (the random variable that
is obtained from X by conditioning on the event Y = b).

The condition entropy H(X|Y ) captures the amount of information of X left once you know Y ,
and the identity H(X|Y ) = H(XY )−H(Y ) says that it is equal to the amount of information that
is in X and Y together minus the amount of information that Y contains.

The following chain rule is immediate from the definition of the conditional entropy:

Theorem 5 (Chain Rule). We have

H(XY ) = H(X) +H(Y |X),

and more generally

H(X1 . . . Xn) = H(X1) +H(X1|X2) +H(X2|X1X2) + . . .+H(Xn|X1 . . . Xn−1).

Let us recall Jansen’s inequality from basic real analysis.

Theorem 6 (Jansen’s inequality). If f : C → R is a convex real valued function over a convex set
C ⊂ Rd for some d, and X is a random variable that takes values in C, then

f(E[X]) ≤ E [f(X)] ,

and equality holds if and only if X is constant almost everywhere.

We will use this theorem to prove the sub-additivity of entropy. Before doing so let us make a
conventional notation to be used in the subsequent part of this course: Let X and Y be random
variables with joint distribution p(x, y). Then with a serious abuse of notation we shall denote
the marginal distribution of X and Y respectively by p(x) and p(y). That is if (X,Y ) is sampled
according to p(x, y) then

p(x) = Pr[X = x] and p(y) = Pr[Y = y].

Obviously a more precise notation would be to use p1(x) and p2(y) to denote these two different
functions, but to avoid writing the subscripts we will use this notation.

Corollary 7 (Subadditivity of Entropy). We have

H(XY ) ≤ H(X) +H(Y ),
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and

H(X|Y ) ≤ H(X),

with equalities if and only if X and Y are independent.

Proof. The two statements are equivalent as H(X|Y ) = H(XY ) − H(Y ). To prove the first
statement we have

H(XY )−H(X)−H(Y ) =
∑
x,y

p(x, y)
1

log p(x, y)
−
∑
x

p(x)
1

log p(x)
−
∑
y

p(y)
1

log p(y)

=
∑
x,y

p(x, y)

[
1

log p(x, y)
− 1

log p(x)
− 1

log p(y)

]
=

∑
x,y

p(x, y) log

(
p(x)p(y)

p(x, y)

)

≤ log

(∑
x,y

p(x, y)
p(x)p(y)

p(x, y)

)
= log 1 = 0,

where the inequality above is an application of Jansen’s inequality to the function f(z) = z log z.

By the equality case of Theorem 6, equality holds if and only if p(x)p(y)
p(x,y) is a constant, and since

Ep(x)p(y)
p(x,y) = 1, we have that p(x, y) = p(x)p(y) for every x and y. �

Remark 8. [Warning] Note that it is not true that always H(X|Y = b) ≤ H(X). For example
let Y be a Bernoulli random variable with Pr[Y = 1] = ε where ε is very small. Then if Y = 1 we
sample X uniformly at random from {0, 1} and if Y = 0, then we deterministically set X = 0. In
this case

H(X) = H(ε/2) ≈ ε

2
log(2/ε),

while

H(X|Y = 0) = H(1/2) = 1 > H(X).

Note that however, as it is expected

H(X|Y ) = εH(1/2) + (1− ε)H(0) = ε < H(X).

1.2. Some examples. We will finish this lecture by some examples:

• Let g be a function, then H(g(X)) ≤ H(X) and H(Y |X) ≤ H(Y |g(X)).

proof: By subadditivity we have

H(g(X)) ≤ H(Xg(X)) = H(X),

where equality is because X and Xg(X) have exactly the same distribution. Similarly, as
conditioning decreases the entropy:

H(Y |g(X)) ≥ H(Y |g(X)X) = H(Y |X).

�
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• Consider a bin filled with n balls of various colors. In one experiment for k ≤ n times we
take a random ball out of the bin, record its color and put it back in the bin. In the second
experiment, we do not put the balls back in the bin. If (X1, . . . , Xk) and (Y1, . . . , Yk) are
random variables for the recorded colors in the two experiments. How do the entropy of
these two random variables compare?

Solution: Matching what intuition suggests, the first one has higher entropy. In the first
experiment the colors are independent and identically distributed, and hence

H(X1, . . . , Xk) = H(X1) + . . .+H(Xn) = nH(X1)

For the second experiment, Y1, . . . , Yn are dependent, but yet each one individually has the
same distribution as X1. Thus by subadditivity (Corollary 7)

H(Y1, . . . , Yk) < H(Y1) + . . .+H(Yn) = nH(X1)

• Let X and Y be random variables distributed according to distributions µ and ν. Let Z be
a third random variable distributed according to λµ+ (1− λ)ν where λ ∈ [0, 1]. How does
the entropy of Z compare to the entropies of X and Y ?

Solution: How can we sample Z? Let B be a Bernoulli variable with parameter λ. If
B = 1 we set Z := X and if B = 0, then we set Z := Y . Note

H(Z) ≥ H(Z|B) = λH(Z|B = 1) + (1− λ)H(Z|B = 0) = λH(X) + (1− λ)H(Y ).

On the other hand

H(Z) ≤ H(BZ) = H(B) +H(Z|B)

= H(λ) + λH(X) + (1− λ)H(Y ) ≤ 1 + λH(X) + (1− λ)H(Y ).

So
λH(X) + (1− λ)H(Y ) ≤ H(Z) ≤ λH(X) + (1− λ)H(Y ) +H(λ).

• Alice receives t1, . . . , tn ∈ {1, 2, . . . , 5}n which are selected uniformly and independently, and
Bob has s1, . . . , sn ∈ {1, 2, . . . , 5}n, visible to Alice, which are also uniform and independent
but conditioned on si 6= ti for each i. What is the transmission cost of (t1, . . . , tn) to Bob?

Solution: It is nH(t1|s1) = n log2 4 = 2n. Once si is given, then there are only 4 choices
left for ti and Alice only needs to send log2 4 bits to uniquely determine this value.
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