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HAMED HATAMI

1. Reductions

• Reductions: Given families fn, gn : {0, 1}n × {0, 1}n → {0, 1}, we say {fn} ≤cc {gn}
if for every n, there exists h1, h2 : {0, 1}n → {0, 1}m for log(m) ≤ logO(1)(n) such that
fn(x, y) = gm(h1(x), h2(y)). Note that for all the communication complexity classes C that
we defined in the previous lecture, if {gn} ∈ C and {fn} ≤cc {gn}, then {fn} ∈ C.

• Completeness: A problem {gn} is C-complete for a communication complexity class C if
and only if
(i) {gn} ∈ C.
(ii) {fn} ≤cc {gn} for every {fn} ∈ C.

• One can think of C-complete problems as the hardness problems in the class C. The next
proposition shows that DISJ is the hardness problem in the class CoNP.

Proposition 1. The disjointness problem DISJ is CoNP-complete.

Proof. First note that DISJ ∈ CoNP as if S∩T 6= ∅ then the oracle can send an i ∈ S∩T and
Alice and Bob can both verify this. To show the completeness, consider {fn} ∈ CoNP. Then
by definition of CoNP we have m := C0(fn) ≤ 2logc n. Consider the following reduction:
h1(x) is the list of the rectangles in the cover that contain x, and h2(y) is the rectangles in
the cover that contain y. Obviously

f(x, y)⇔ h1(x) ∩ h2(y) 6= ∅.
�

2. Matrix norms

• Let A ∈ Rm×. The singular values σ1 ≥ . . . ≥ σmin(m,n) ≥ 0 of A are the square roots of

the eigenvalues of AAT . The singular decomposition theorem says

A = UΣV T ,

for unitary matrices Um×m and Vn×n, where Σm×n is a diagonal matrix with σ1, . . . , σmin(m,n)

on the diagonal.

• Matrix inner product: For A,B ∈ Rm×n, we have 〈A,B〉 := tr(ABT ) =
∑

i,j AijBij .

• Spectral Norm: ‖A‖ = max‖x‖=1 ‖Ax‖ = σ1 = ‖~σ‖∞.

• Trace Norm: ‖A‖Σ =
∑
σi = ‖~σ‖1.
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• Frobenius Norm: ‖A‖F =
√∑

σ2
i = ‖~σ‖2 =

√∑
i,j A

2
ij =

√
〈A,A〉.

• Some of the classical inequalities about the Lp spaces easily extend to the matrix norms:

Exercise 2. Show that
(1)

√
rank(A) ≥ ‖A‖Σ/‖A‖F .

(2) 〈A,B〉 ≤ ‖A‖F ‖B‖F .

(3) 〈A,B〉 ≤ ‖A‖‖B‖Σ.

3. Forster’s theorem

The goal of this section is to prove Forster’s theorem that the inner product function IPn has
large sign-rank. We start from the following technical lemma whose proof is not very easy.

Lemma 3 (Forster [For02]). Let U ⊆ Rr be a finite set of vectors in general positions1, and suppose
|U | ≥ r. There exists a non-singular A ∈ Rr×r such that∑

u∈U

1

‖Au‖2
(Au)(Au)T =

|U |
r
Ir.

Proof. See Forster’s paper [For02] or David Stuerer’s exposition on this theorem http://www.cs.

princeton.edu/courses/archive/spr08/cos598D/forster.pdf. �

Proposition 4. Let M ∈ RX×Y . There exists a matrix R that sign-represents M , rank(R =
rank±(M), ‖R‖∞ ≤ 1, and

(1) ‖R‖F =

√
|X||Y |

rank±(M)
.

Proof. Obviously there exists a matrix Q that sign-represents M and rank(Q) = rank±(M) =: r.
We can decompose Q and obtain vectors {ux}x∈X , {vy}y∈Y ⊆ Rr such that

Q = [〈ux, vy〉]x∈X,y∈Y .

We can assume that {ux}x∈X are in the general position (Otherwise we could perturb them a little

bit, and obtain another matrix Q̃ with the same rank sign-represents M). Since rank±(M) ≤
rank(M), we know |X| ≥ r, and thus we can apply Lemma 3 to obtain a non-singular A ∈ Rr×r
with ∑

x∈X

1

‖Aux‖2
(Aux)(Aux)T =

|X|
r
Ir.

Define

R =

[
〈Aux, (A−1)T vy〉
‖Aux‖‖(A−1)T vy‖

]
x∈X,y∈Y

=

[
〈ux, vy〉

‖Aux‖‖(A−1)T vy‖

]
x∈X,y∈Y

.

1General position means that any set of at most r points in U are linearly independent

http://www.cs.princeton.edu/courses/archive/spr08/cos598D/forster.pdf
http://www.cs.princeton.edu/courses/archive/spr08/cos598D/forster.pdf
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Obviously rank(R) = r, R sign-represents M and also by Cauchy-Schwarz ‖R‖∞ ≤ 1. It remains
to verify (1). For a fixed y, we have∑

x∈X
R2
xy =

∑
x∈X

〈Aux, (A−1)T vy〉2

‖Aux‖2‖(A−1)T vy‖2

=
∑
x∈X

(vTy A
−1)(Aux)(Aux)T ((A−1)T vy)

‖Aux‖2‖(A−1)T vy‖2

=
(vTy A

−1)( |X|r Ir)((A
−1)T vy)

‖(A−1)T vy‖2
= |X|/r 〈A

−1)T vy, A
−1)T vy〉

‖(A−1)T vy‖2

= |X|/r.
Hence

‖R‖2F =
∑
x,y

R2
x,y =

|Y ||X|
r

,

and this verifies (1). �

Theorem 5 (Forster [For02]). For M be a sign-matrix. Then

rank±(M) ≥
√
|X||Y |
‖M‖

.

Proof. Let R be as in Proposition 4 with r := rank(R) = rank±M . Since M is a sign-matrix, and
R sign-represents M and satisfies ‖R‖∞ ≤ 1, we have

‖R‖2F ≤
∑
|Rx,y| ≤ 〈M,R〉 ≤ ‖M‖‖R‖Σ ≤ ‖M‖‖R‖F

√
r,

where the last two inequalities are from Exercise 2. Replacing ‖R‖F =

√
|X||Y |
r by (1), this simplifies

to r ≥
√
|X||Y |
‖M‖ . �

Recall that all the eigenvalues of MIPn are of the form ±2n/2. Thus ‖MIPn‖ = 2n/2. Replacing
this in the above theorem proves Forster’s theorem that

rank±(IPn) ≥
√

2n × 2n

2n/2
= 2n/2,

which in particular shows that U(IPn) ≥ n
2 . Hence inner product does not belong to the class

UPPcc.
Finally let us mention an extension of Theorem 5 that we will need later in the course.

Theorem 6 (Razborov-Sherstov [RS10]). Let M ∈ RX×Y and γ ≥ 0 we have

rank±(M) ≥ γs

‖M‖
√
s+ γh

,

where s = |X||Y | and h = |{(x, y) : |M(x, y)| < γ}|.

Proof. Let R be as in Proposition 4 with r := rank(R) = rank±M . On the one hand we have

〈M,R〉 =
∑

MxyRxy ≥
∑

x,y:|Mxy |≥γ

MxyRxy ≥ γ

(∑
x,y

Rx,y − h

)
≥ γ

(∑
x,y

R2
x,y − h

)
= γ‖R‖2F − γh.
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On the other hand
〈M,R〉 ≤ ‖M‖‖R‖Σ ≤ ‖M‖‖R‖F

√
r.

Hence
‖M‖‖R‖F

√
r ≥ γ‖R‖2F − γh,

which using ‖R‖F =

√
|X||Y |
r from (1) simplifies to the desired result. �
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E-mail address: hatami@cs.mcgill.ca


	1. Reductions
	2. Matrix norms
	3. Forster's theorem
	References

