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1. Direct product and direct sum theorems

One class of the most interesting and fundamental questions of theoretical computer science are
the closely related direct product and direct sum questions. A direct product theorem in a particular
computational model asserts that the probability of success of performing n independent copies of
a computational task decreases in n. For example, a direct product theorem might say that if f
is computable with a given amount of resources (e.g. computational, communicational, space, etc)
with success probability at least 1−ε (e.g. on every input, or on a random input, etc), then given the
same amount of resources, one can only compute the function fn : (x1, . . . , xn) 7→ (f(x1), . . . , f(xn))
with success probability at most δn where δn is much smaller than 1− ε. Note that this is harder
than performing n copies of the original task as here we want all the coordinates to be correct
at the same time. Two fundamental results in computer science, Yao’s XOR Lemma [Yao82] and
Raz’s Parallel Repetition Theorem [Raz98] are examples of direct product theorems.

Sometimes to stay at the Boolean regime, instead of fn, one considers the Boolean function
f⊕n : (x1, . . . , xn) 7→ f(x1) ⊕ . . . ⊕ f(xn). It is in general expected that this function is almost
as difficult as fn. Indeed to have a good estimate for the parity f(x1) ⊕ . . . ⊕ f(xn) one has to
have good estimates for all the values f(x1), . . . , f(xn) as changing any one of them will completely
change the value of the parity. However one has to be slightly careful as every Boolean function
can be computed with success probability 1/2 in an obvious manner by just flipping a random coin
for each input. Hence in this context, if the original function f can be computed with success rate
1
2 + ε with the given resources, a direct product theorem would state that f⊕n can be computed

with the same amount of resources only with success probability at most 1
2 + εn where εn is much

smaller than ε.
On the other hand the direct sum question fixes the success probability, and asks how much

resources one does need to solve fn compared to the amount of resources needed to solve f (with
the same success probability). In other words, a direct sum theorem asserts that the amount of
resources needed to perform n independent copies of the same task grows with n. While the direct
sum question for general models such as Boolean circuits has a long history, no general results are
known, and indeed they cannot be achieved by the standard reductions used in complexity theory.
Indeed if we start by assuming that there is a circuit C that performs n independent copies of
the task, then it is impossible to use this C as a blackbox to show that there is a much smaller
circuit C ′ that solves one copy of the task. Including C as a blackbox will already make the size
of the new circuit larger. Indeed it is known that at least the most straightforward and optimistic
formulation of a direct sum theorem for Boolean circuits is false. The example comes from fast
matrix multiplication. By a counting argument, there exists an n×n matrix A over GF(2) such that
the map x 7→ Ax requires a circuit of Ω(n2/ log n) size. But the map (x1, . . . , xn) 7→ (Ax1, . . . , Axn)
is just the product of the two matrices A and X (whose columns are x1, . . . , xn) and hence can be
carried out by a circuit of sizeO(n2.38)� n2/ log n. Unlike in circuit complexity and communication
complexity, in information complexity one can use a protocol as a blackbox and still be able to
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obtain a protocol with a much smaller information cost. We will this in the proof of Theorem 1
below. Indeed this great advantage will be used in many applications of information complexity to
communication complexity.

In the context of communication complexity, the direct sum question was first raised by Karch-
mer, Raz, and Wigderson [KRW95] who conjectured a certain direct sum statement for a certain
deterministic communication problem. They showed that this conjectured direct sum statement
would separate the two complexity classes NC1 and NC2, and in particular show that NC1 6= P.
Recall that NCi is the class of problems that can be solved by a uniform family of Boolean cir-
cuits, with polynomial size, depth O(logi(n)), and fan-in 2. This would be an incredible result
as log(n) seems to be a serious barrier to almost all known techniques for proving general circuit
lower-bounds. We will discuss this problem later in the course when we talk about the applications
of communication complexity to circuit complexity.

Feder, Kushilevitz, Naor, and Nisan [FKNN95] gave a direct sum theorem for non-deterministic
communication complexity, and deduced from it a somewhat weaker result for deterministic com-
munication complexity: if a single copy of a function f requires C bits of communications, then n
copies require Ω(

√
Cn) bits. In other words,

lim
n→∞

D(fn)

n
= Ω(

√
D(f)).

Feder et al also considered the direct sum question for randomized communication complexity and
showed that the dependence of the communication on the error of the protocol for many copies can
be better than what can be obtained from the naive protocol for many copies. Shaltiel [Sha03] gave
a direct sum/product theorem for the discrepancy of a function, which shows a direct sum/product
theorem for the randomized communication complexity of the function if discrepancy lower-bound
matches the communication complexity of the function. More precisely he showed that disc(f⊕n) =

disc(f)Ω(n). This shows that if a function f is proved to be hard on average for c-bit communication
protocols via the “discrepancy method”, then f⊕n is exponentially harder on average for Ω(nc)-bit
communication protocols. There are subsequent works on the direct sum question for randomized
communication complexity and the distributional communication complexity. Many of these works
are based on studying the external information cost. Barak, Braverman, Chen, and Rao [BBCR10]
defined the internal information cost, and used it to prove a strong lower-bound on the direct
sum problem for the distributional communication complexity. First let us see how information
complexity behaves with respect to performing multiple copies of the same task.

Theorem 1 (Additivity of information cost). For every communication task T , we have

ICµn(Tn) = nICµ(T ).

Proof. It is obvious that ICµn(Tn) ≤ nICµ(T ). Indeed given any protocol π for T , we can define
a protocol for Tn by running π on each coordinate. Obviously the information cost of this new
protocol is nICµ(T ) and it performs Tn.

The opposite directions is more interesting. Consider a protocol π for Tn how can we use π as

a blackbox to obtain a protocol that performs T but has information cost
ICµ(π)
n ? We define the

protocol τ in the following manner.

• On input (x,y), Alice and Bob
• Publicly choose

– i ∈ {1, . . . , n} uniformly at random, and set Xi = x and Yi = y individually.
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– X1, . . . , Xi−1 independently, each according to µx.
– Yi+1, . . . , Yn independently, each according to µy.

• Alice privately chooses Xi+1, . . . , Xn according to µ conditioned on the values of
Yi+1, . . . , Yn.
• Bob privately chooses Y1, . . . , Yi−1 according to µ conditioned on the values of
X1, . . . , Xi−1.
• They run the protocol π on (X,Y ) with X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn), and

output the i-th coordinate.

So the above protocol chooses X and Y in the following manner so that the input (x,y) is embed-
ded in the i-th coordinate and furthermore each (Xi, Yi) is chosen independently with distribution
µ:

X = (X1, . . . , Xi−1︸ ︷︷ ︸
pub

,x, Xi+1, . . . , Xn︸ ︷︷ ︸
private

) and Y = (Y1, . . . , Yi−1︸ ︷︷ ︸
private

,y, Xi+1, . . . , Xn︸ ︷︷ ︸
public

).

This protocol τ obviously performs the task T , as it was assumed that π performs Tn. It remains
to show that the information cost of τ equals ICµn(π)/n.

I(y; Πτ |x) = I(y; Ππ|i,X, Yi+1, . . . , Yn) (conditioning on what Alice knows)

=
1

n

n∑
j=1

I(Yi; Ππ|X,Yi+1, . . . , Yn, [i = j]) (expanding the conditioning on i)

=
1

n

n∑
j=1

I(Yj ; Ππ|X,Yj+1, . . . , Yn)

=
1

n
I(Y ; Ππ|X) (chain rule)

Note that sinceXi+1, . . . , Xn are determined by Alice’s private randomness and i andX1, . . . , Xi−1,
and Yi+1, . . . , Yn are determined by public randomness, the first equality basically corresponds to
the general identity I(Y ; Π|X) = I(Y ; Π|X,RA, R) which follows from what we saw on lecture 14.

It follows that

ICµ(τ) = ICµn(π)/n.

�

Note that although τ uses π as a blockbox, it nevertheless has smaller information cost. Contrast
this with communication protocols, or circuits.

In the first glance the way that the chain rule worked out in the above proof might look rather
magical, but indeed the way we constructed X and Y are based on “reversed engineering” of the
chain rule

n∑
j=1

I(Yj ; Ππ|X,Yj+1, . . . , Yn) = I(Y ; Ππ|X).
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2. Compression

Given a task T and a protocol π for Tn, Theorem 1 allows one to obtain a protocol for T with
the much smaller information cost of ICµ(π)/n. Note however that this protocol’s communication
complexity equals to that of π and thus can be very large. Hence it is desirable to use the small
information cost to compress this protocol to a new protocol with small communication cost.
Indeed compression is one of the key concepts that allows one to apply information complexity
to communication complexity. The following table summarizes the current known results about
compression.

Table 1. Compression results: I = ICµ(π), Iext = ICext
µ (π), C = CC(π), and k is

the number of rounds.

reference worst case CC of the compressed protocol in O(·) in Oε(·)
[BBCR10]

√
IC log(C/ε)/ε

√
IC log(C)

[BR14] 1
ε × (I + k log(k) +

√
kI) I + k log(k) +

√
kI

[Bra12] 220I/ε 220I/ε

[BBCR10] Iext × poly log(C/ε) Iext × poly log(C)

We will prove the first three of these results in this course. But before delving into the proofs
let us mention some beautiful consequences of these compression results.

2.1. Information equals amortized communication. In Table 1 we mentioned that Braverman
and Rao [BR14] proved that one can compress a protocol π with k rounds to a protocol τ with

worst case communication complexity Oε(I + k log(k) +
√
kI) such that the simulation fails with

probability at most ε. In fact what they prove is stronger. Let us assume for a moment that it is
possible to do compression with

(1) I +O(k log(k/ε) +
√
kI)

bits of communication. While this is not true, it is also not far off from the truth. Assuming this,
we will give a “pseudo-proof” for the following theorem, and then we will remark how one can turn
that into an actual proof using what is actually true.

Theorem 2 (Information equals amortized communication). Let f : X × Y → Z, and let µ be a
probability distribution on X × Y. For every ε > 0, we have

ICµ(f, µ, ε) = lim
n→∞

CC([f, µ, ε]n)

n
.

Semi-proof. One direction is obvious from Theorem 1. Indeed

CC([f, µ, ε]n) ≥ ICµ([f, µ, ε]n) = nICµ(f, µ, ε).

For the other direction, consider a protocol π that performs [f, µ, ε]. We shall apply compression,
and since compression adds error, we have to first decrease the error in π. Indeed by continuity of
information there is a protocol π′ with information cost ICµ(π′) ≤ ICµ(π) + oδ→0(1) that performs
[f, µ, ε − δ]. Let k denote the number of rounds of π, and let τ be the protocol that performs
[f, µ, ε− δ]n by running π′ on each coordinate separately. Then

ICµn(τ) = nICµ(π′),
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while the number of rounds of τ still equals to the number of rounds of π′. Indeed although we
are running π on each coordinate separately, we can still bundle all the messages at each round
together and send them as one long message.

The rest of this “semi-proof” has a bit of cheating. Using the (not quit right) assumption of (1),
we can compress τ to another protocol τ ′ with

CC(τ ′) = nICµ(π′) +O(k log(k/δ) +
√
knICµ(π′)),

by adding at most δ error. Hence the compressed protocol will perform [f, µ, ε]n, and thus

lim
n→∞

CC([f, µ, ε]n)

n
≤ lim

δ→0
lim
n→∞

nICµ(π′) +O(k log(k/δ) +
√
knICµ(π′))

n
= lim

δ→0
ICµ(π′) = ICµ(π).

Taking the infimum on the right hand side will prove the result. �

Remark 3. The reason that the above proof is not an actual proof is that one cannot in gen-
eral compress a protocol to (1) many bits and add only an error of ε. However Braverman and
Rao [BR14] showed that there is a compression such that if things go right (call it the event E),
then the compression perfectly simulates the original protocol, and furthermore will have expected
communication I+O(k log(k/ε)+

√
kI), and furthermore E happens (simulation makes no mistake)

with probability at least 1 − ε. Now in the above semi-proof, since this compression is applied to
many copies, it is possible to apply an argument based on the central limit theorem to show that
indeed the expected communication will be highly concentrated around its expected value, and thus
we can truncate the protocol by terminating it after I+O(k log(k/ε)+

√
kI) bits of communication

to obtain a compressed protocol with the worst case communication I +O(k log(k/ε) +
√
kI), and

this will fix the above proof.

2.2. The direct sum theorem. Note that CC(f, µ, ε) = 0 for f : X ×Y → Z if and only if there
exists z ∈ Z such that µ(f−1(z)) ≥ 1− ε.

Theorem 4 (A direct sum theorem). Let f : X × Y → Z, and let µ be a probability distribution
on X × Y. For every ε > 0, if CC(f, µ, ε) > 0, then for sufficiently large n,

CC([f, µ, ε]n) ≥
√
n

log2(n)
,

and in particular

Dµn

ε (fn) ≥
√
n

log2(n)
.

Proof. Since CC(f, µ, ε) > 0, there exists δ > 0 such that CC(f, µ, ε + δ) > 0 too. Let π be the
protocol that performs the task [f, µ, ε]n with the smallest communication cost. Obviously

CC(π) ≤ nCC(f, µ, ε).

Theorem 1 shows that one can use π to obtain a protocol τ for the task [f, µ, ε] with information
cost

ICµ(τ) =
ICµ(π)

n
≤ CCµ(π)

n
,

and communication cost

CC(τ) = CC(π) ≤ nCC(f, µ, ε).
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Now τ has a very small information cost, and we can use the compression of [BBCR10] to compress
it to a protocol τ ′ with communication cost

CC(τ ′) = O

(√
CC(τ)× ICµ(τ)× log(CC(τ)/δ)

δ

)
=

CC(π)√
n
×O

(
log CC(π)/δ)

δ

)
=

CC(π)

δ
√
n
×O(log n),

and error ε+ δ. Hence

0 < CC(f, µ, ε+ δ) ≤ CC(π)

δ
√
n
×O(log n),

which shows

CC(π) = Ω

(√
nδ × CC(f, µ, ε+ δ)

log n

)
≥
√
n

log2 n
,

for sufficiently large n. �

In the above theorem, the term 1/ log2(n) must be ignored as a minor logarithmic fact. Thus we
can write √

n . CC([f, µ, ε]n) ≤ nCC(f, µ, ε),

where the upper-bound is obvious. How far can one push the lower-bound? It is known that it
cannot be pushed all the way up to Ω(nCC(f, µ, ε)). Indeed if Ω(n)CC(f, µ, ε) ≤ CC([f, µ, ε]n),
then by dividing both sides by n, and taking the limit, we would get (using information equals
amortized communication) that

Ω(CC(f, µ, ε)) ≤ ICµ(f, µ, ε),

and this is not true in general as recently Ganor, Kol, and Raz [GKR14] have shown that CC(f, µ, ε)
can be exponentially larger than ICµ(f, µ, ε). However their result does not even overrule the
possibility that (log CC(f, µ, ε))n ≤ CC([f, µ, ε]n).

Problem 5 (Open problem). Is it possible to improve the
√
n lower-bound in

√
n . CC([f, µ, ε]n) ≤ nCC(f, µ, ε)?

When µ is a product measure, the information cost and the external information cost are equal
and hence the compression of [BBCR10] with respect to the external information cost provides a
much stronger direct sum theorem.

Theorem 6. Let f : X × Y → Z, and let µ be a product probability distribution on X × Y. For
every ε > 0, if CC(f, µ, ε) > 0, then for sufficiently large n,

n

logΩ(1)(n)
≤ CC([f, µ, ε]n).

In particular
n

logΩ(1)(n)
≤ Dµn

ε (fn).
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