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1. Communication Tasks

In the past we discussed various communication problems: computing a function f : X ×Y → Z
with no error

Pr[f(x, y) 6= π(x, y)] = 0 ∀(x, y) ∈ X × Y;

computing a function with at most ε error on every input

Pr[f(x, y) 6= π(x, y)] ≤ ε ∀(x, y) ∈ X × Y;

computing a function with expected error on ε measure of all inputs

PrXY∼µ[π(X,Y ) 6= f(X,Y )] ≤ ε.
We can think of these as communication tasks. Note that all the above definitions require something
about the distribution of (X,Y, π(X,Y )). In the following definition we attempt to formally define a
communication task. This is going to be useful when we discuss the direct sum theorems. However,
the formalism of Definition 1 is not very essential for our purpose and the natural intuition that
what a communication task will suffice.

Definition 1. A communication task is a tuple (X ,Y,Z,Ψ, µ) where Ψ is a set of probability
distributions on X ×Y×Z, and µ is a probability measure on X ×Y. We say that a communication
protocol π performs this task if the distribution of (X,Y, π(X,Y )) belongs to Ψ if (X,Y ) is sampled
according to µ.

Consider f : X ×Y → Z, and let Ψ contain only the probability distribution that is the uniform
distributed on {(x, y, f(x, y)) : (x, y) ∈ X × Y}. Let µ be the uniform measure on X × Y. Then a
protocol π performs this task if it computes f with zero error. We denote this communication task
by [f ].

Similarly, by letting µ be the uniform measure on X × Y, we can define Ψ so that performing
the task (Ψ, µ) would correspond to satisfying

Pr[π(x, y) 6= f(x, y)] ≤ ε ∀(x, y) ∈ X × Y.
We will denote this task by [f, ε].

Consider f : X ×Y → Z, and let µ be a probability distribution on X ×Y. Then we can define
Ψ so that performing the task (Ψ, µ) correspond to satisfying

PrXY∼µ[π(X,Y ) 6= f(X,Y )] ≤ ε.
This task is denoted by [f, µ, ε].

Consider two tasks T1 = (X1,Y1,Z1,Ψ1, µ1) and T2 = (X2,Y2,Z2,Ψ2, µ2). Then T1 × T2 corre-
sponds to performing these two tasks at the same time. In other words a protocol

πr,rA,rB : (X1 ×X2)× (Y1 × Y2)→ Z1 ×Z2

performs T1 × T2 if when X = (X1, X2) and Y = (Y1, Y2) are sampled such that X1Y1 ∼ µ1
and X2Y2 ∼ µ2 are independent, then the distribution of (X1, Y1, (π(X,Y ))1) belongs to Ψ1 and
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the distribution of (X2, Y2, (π(X,Y ))2) belongs to Ψ2, where (π(X,Y ))1 and (π(X,Y ))2 denote
respectively the first and the second coordinate of the output. In other words π is performing T1
on the first coordinate and T2 on the second coordinate.

It is a very interesting problem to study the asymptotics of the communication complexity of
the task Tn = T × . . . × T as n goes to infinity. The related results are often categorized as
direct product and direct sum theorems, and as we shall see information complexity has been very
successful in answering some of the related questions.

1.1. Communication complexity and Information complexity of a function. The commu-
nication complexity of a task T with respect to a measure µ is defined as

CCµ(T ) = min
π

CCµ(π),

where the minimum is over all protocols π that perform T .
The information complexity of a task T with respect to a measure µ is defined as

ICµ(T ) = inf
π

ICµ(π),

where the infimum is over all protocols π that perform T . As we will see later it is essential that
we use infimum rather than minimum. In other words, there are communication tasks for which
there is no protocol that achieves ICµ(T ) while there is a sequence of protocols whose information
cost converges to ICµ(T ).

Recalling the tasks [f ], [f, ε] and [f, ν, ε] we use the shorten notation

ICµ(f) = ICµ([f ])

ICµ(f, ε) = ICµ([f, ε])

ICµ(f, ν, ε) = ICµ([f, ν, ε]).

Although the notation ICµ(f, ν, ε) permits us to measure the error with respect to ν while measuring
the information cost with respect to a different measure µ, we will never use this freedom, and in
all the examples that we will see ν = µ.

2. More basics about Information complexity

We start by making some basic observations about information complexity.

2.1. Continuity of information complexity. The information complexities ICµ(f, ε) and ICµ(f, ε)
are both continuous with respect to ε. The following theorem proves the continuity for ε ∈ (0, 1].
The continuity at 0 is more complicated and we shall prove it later in the course.

Theorem 2. For each f : X × Y → Z, ε > 0 and µ on X × Y, we have

lim
α→ε

ICµ(f, α) = ICµ(f, ε),

and
lim
α→ε

ICµ(f, µ, α) = ICµ(f, µ, ε),

Proof. Suppose f : X × Y → Z, and and consider a protocol π with information cost I, and error
ε > 0 (either worst case, or average error with respect to µ). Let τ be the following protocol

• With probability 1− δ run π.
• With probability δ Alice and Bob exchange their inputs and compute f(x, y).

The theorem follows as the new protocol has error (1 − δ)ε and information cost at most I + δK
where K = dlog |X |e+ dlog |Y|e.
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2.2. Public randomness is unnecessary. Note that when we are interested only in the infor-
mation complexity we can assume that there is no public randomness. Indeed for example Alice
can use some part of her private randomness to generate the public random string R and then send
it to Bob, so that they will have a common random string. While this can be very costly in terms
of communication, it has zero information cost, as the string R does not reveal any information
about Alice’s input. This observation is useful in the analysis of the information cost of generic
protocols as it allows us to assume that the protocol does not use public randomness. Nevertheless
we will still use public randomness in the description of the various protocols that we shall see in
the sequel, as it is more natural to have a public random string from the beginning than having
Alice generating it and sending it to Bob.

2.3. The protocol tree and the probability of reaching a leaf . Consider a protocol π, and
fix the input (x, y), and let us also fix the public randomness to a fixed string R = r (or alternatively
we can assume that there is no public randomness). Consider an internal node u in the protocol
tree at level k, and let us assume that Alice is the owner of u. Note that once we fix R, every
internal node corresponds to a partial transcript, and every leaf corresponds to a full transcript.
For example u corresponds to a partial transcript Π≤k−1.

Alice will use her private randomness to choose one of her possible messages (equivalently one of
the children of u) randomly at this stage of the protocol, and this induces a probability distribution
on the children of u. More precisely, for every child w of u, we have 1

pxu(w) = PrRA
[au(x,RA, r) = w|u] = PrRA

[Πk(x,RA, r) = w|R = r,Π≤k−1 = u].

Similarly every internal node v at level k owned by Bob induces a probability distribution on the
children of v.

pyv(w) = PrRB
[bv(y,RB, r) = w|v] = PrRB

[Πk(y,RB, r) = w|R = r,Π≤k−1 = v].

Consider a full transcript t compatible with xyr (equivalently a leaf of the tree). What is
the probability that t will be the transcript of the protocol for a given pair of inputs x, y? Let
(v1, v2, . . . , v`(= t)) denote the unique path from the root to the leaf t, and let Πxy be the random
transcript generated on (x, y) (with fixed the public randomness r). Then we have

PrRA,RB
[Πxy = t] =

 ∏
i∈[`−1]

Alice owns vi

pxvi(vi+1)

×
 ∏

i∈[`−1]
Bob owns vi

pyvi(vi+1)

 = pxA(t)pyB(t),

for two functions pxA(·) and pyB(·) known to Alice and Bob respectively. This product structure is
very useful, and for example it implies the following rectangle property

Pr[Πx1y1 = t]Pr[Πx2y2 = t] = Pr[Πx1y2 = t]Pr[Πx2y1 = t].

Note that it also shows that given a particular t, Alice knows the probability pxA(t) and Bob knows
the probability pyB(t), and for example Alice can send her number to Bob and then Bob can compute
the probability of reaching the leaf t. We will use similar ideas frequently in the design of protocols
that simulate a given protocol and whose communication cost depend on the information cost of
the original protocol (compression).

1To be more precise we must write pxru (w), pyrv (w), pxrA (t), pyrB (t). However since we have fixed r, to simplify the
notation, we drop it from the superscripts.
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3. The equality function

In this section we show that under every distribution µ there is a protocol that solves the equality
function with 0 error, and has information cost O(1). On the other hand, we will show that there is
a distribution µ such that every protocol that solves the equality function with 0 error has external
information cost at least n. This shows that for the 0 error regime there can be a huge gap between
the information complexity and the external information complexity of a function. Consider the
following protocol for the equality function EQ : {0, 1}n × {0, 1}n → {0, 1}.

• Alice and Bob publicly choose linearly independent r1, . . . , rn ∈ Fn2 uniformly at random.
• For i = 1 to n do:
• Alice and Bob send 〈X, ri〉F2 , and 〈Y, ri〉F2 .
• If they are not equal they declare “x 6= y”, and terminate.
• If they did not terminate above, they declare “x = y”.

This protocol is very close to our usual randomized protocol for EQ except that now we are
choosing r1, . . . , rn conditioned on being linearly independent. This is because the protocol is
supposed to be error-free, and thus we have to be able to conclude X = Y if 〈X, ri〉 = 〈Y, ri〉 for
all i = 1, . . . , n.

It is very interesting to see that in the case of X = Y how much information Alice and Bob
reveal to each other in the above protocol. Note that in this case, all the information that Alice
is sending to Bob (i.e. the n bits 〈X, r1〉, . . . , 〈X, rn〉) worth 1 bit of information. For example, if
instead someone sends 1 bit to Bob in the beginning indicating that X = Y , then Bob could recover
all these n bits from that 1 bit. On the other hand if X 6= Y , then every new bit that Bob sends to
Alice can worth almost 1 bit of new information about X for Bob. However, fortunately if X 6= Y ,
the expected number of rounds that it takes for the protocol to find out that X 6= Y and terminate
is O(1). Hence, the protocol terminates before Alice and Bob reveal too much information about
their inputs. Let us state this formally as a theorem.

Theorem 3. The above protocol solves equality with no error, and

ICµ(π) = O(1),

for every distribution µ.

Proof. Note that if x 6= y, then since at round j, there will be at most 2 bits of communication,
the expected number of communicated bits is

n∑
j=1

2Prr1,...,rj−1 [〈x, ri〉 = 〈y, ri〉 ∀i = 1, . . . , j − 1] = 2
n∑
j=1

2n−j+1 − 1

2n − 1
≤ 2

n∑
j=1

2n−j+1

2n
≤ 4.

Here 2n−j+1−1
2n−1 is the probability that a nonzero z ∈ Fn2 (corresponding to x − y) belongs to the

kernel of the matrix with rows r1, . . . , rj−1. By symmetry this kernel is uniformly distributed over
all (n− j + 1)-dimensional subspaces of Fn2 .

Let us analyze the information complexity. Consider the random variable B = 1[X=Y ]. Then

I(X; Π|Y ) = I(XB; Π|Y ) ≤ 1 + I(X; Π|Y B) = 1 + Eb∼BI(X; Π|Y, (B = b))

≤ 1 + I(X; Π|Y, (X = Y )) + I(X; Π|Y, (X 6= Y )) = 1 + I(X; Π|Y, (X 6= Y ))

≤ 1 + CCµ|X 6=Y
(π) ≤ 5.

Hence IC(π, µ) ≤ 10.
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What is the external communication complexity of the above protocol? Note that in the case
where X = Y , the external observer learns a lot about X and Y . Since unlike Bob, the external
observer does not know the value of Y , each new bit 〈X, ri〉 can provide almost a new bit of
information about X (for example if µ is uniformly distributed on {(x, x) : x ∈ {0, 1}n}. Indeed as
we shall see below every protocol that solves EQ with zero error on every input must have external
information complexity at least n with respect to this measure. This also provides a lower bound
for communication cost as it is always greater or equal to the external information cost.

Theorem 4. Let π be a protocol that computes EQ with no error on all inputs (x, y) ∈ {0, 1}n ×
{0, 1}n, and let µ be the measure on on this set that is uniformly distributed on its support {(x, x) :
x ∈ {0, 1}n}. Then

ICext
µ (π) = n.

Proof. As we discussed above, we can assume that π does not use public randomness. First note
that for every transcript t, there is at most one a ∈ {0, 1}n such that Pr[Πaa = t] 6= 0. Otherwise
there would be x 6= y with Pr[Πxx = t] = P xA(t)P xB(t) > 0 and Pr[Πyy = t] = P yA(t)P yB(t) > 0, and
this would imply that Pr[Πxy = t] = P xA(t)P yB(t) > 0. But this contradicts the assumption that π
solves EQ with no error on all inputs, as then t cannot happen with nonzero probability for both
xx and xy.

Consequently H(XY |Π) = 0 as µ is supported on {(x, x) : x ∈ {0, 1}n}, and by the above
observation, the value of x is uniquely determined from the transcript Π. Hence

ICext
µ (π) = I(XY,Π) = H(XY )−H(XY |Π) = H(XY ) = n.
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