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We start the study of an important tool in harmonic analysis. Namely, the hypercontractivity
of the noise operator. The ideas and results were developed by different people (Bonami, Beckner,
Ornstein-Uhlenbeck, Gross, Nelson) in different contexts.

1. The noise operator

We begin by formally introducing the noise operator. Let µp denote the Bernoulli distribu-
tion with success probability p (that is µp({1}) = p and µp({0}) = 1 − p). Let µnp denote the
corresponding product probability measure on {0, 1}n. In other words for y ∈ {0, 1}n, we have

µnp (y) = p
∑
yi(1− p)n−

∑
yi .

Definition 1.1. Let 0 ≤ ρ ≤ 1 and set p = 1
2(1 − ρ). For a function f : Zn2 → C, define

Tρf : Zn2 → C by
Tρf(x) = Ey∼µnp f(x+ y).

Remark 1.2. There are several equivalent ways to define the noise operator. First observe that
for every x ∈ Zn2 , we have

Ey∼µnp [f(x+ y)] = 2nEy
[
f(x+ y)µnp (y)

]
= 2nf ∗ µnp (x),

where in the second expected value y ∈ Zn2 is chosen according to the uniform distribution. We can
also write Tρf(x) = Ez [f(z)], where

(1) zi =

{
xi with probability 1− p,
1− xi with probability p,

independently for each i. In other words z is a noisy copy of x (each coordinate is flipped with
probability p).

Remark 1.3. It is easy to check that Tρ is a linear operator:

Tρ(f + λg) = Tρf + λTρg.

Note that Tρ has a smoothing property. When ρ = 1, we have Tρf = f , but as one decreases
ρ, the function Tρf “converges” to the constant E[f ] and indeed, for ρ = 0, we have Tρf = E[f ].
Note Tρf(x) takes the average of f evaluated at points sampled according to z. When ρ = 1, the
random variable z is concentrated on point x, and thus the average is just over x so we obtain the
original function f . As ρ decreases, the variable z becomes more spread out. Finally ρ = 0, we
lose the information about x and z is distributed uniformly over all points in Zn2 . Therefore in this
case we get the constant function E[f ]. Recall from Lecture 3, when introducing the concept of
convolution, we saw that if S is the Hamming ball of radius r around 0 in Zn2 , then f ∗ 1S(x) is the
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average of f over the Hamming ball of radius r around x. The noise operator, which is basically
a convolution itself, has a smoother definition and the Hamming ball is replaced by a distribution
centered at x.

Let us now see the effect of the noise operator on the Fourier spectrum.

Lemma 1.4. If f : Zn2 → C, then

Tρf =
∑
S⊆[n]

ρ|S|f̂(S)χS .

Proof. Since Tρ is linear it suffices to show that for every S ⊆ [n], we have

TρχS = ρ|S|χS .

Indeed we have

TρχS(x) = Ey∼µnpχS(x+ y) = χS(x)Ey∼µnpχS(y) = χS(x)Eyi∼µp
∏
i∈S

(−1)yi

= χS(x)
∏
i∈S

Eyi∼µp(−1)yi = χS(x)ρ|S|.

�

In other words, the noise operator dampens the high frequency Fourier coefficients, and the
dampening effect increases exponentially with the frequency.

In the above proof, we utilized the fact that the noise operator acts on each coordinate indepen-
dently. In fact, in many results regarding the noise operator we can employ the same trick: analyze
the effect of the noise in one coordinate and then use the direct product structure to obtain the
desired result.

Given the smoothing property of the noise operator, it is not surprising that Tρ is contractive:

Theorem 1.5 (Contractivity). For 1 ≤ p ≤ ∞, the operator Tρ is a contractive operator from Lp
to Lp. That is,

‖Tρf‖p ≤ ‖f‖p.

Proof. A simple application of Minkowski’s Inequality (Lecture 1, Theorem 3.2) gives the result.

‖Tρf‖p =
(
Ex
∣∣∣Ey∼µnp f(x+ y)

∣∣∣p)1/p

≤ Ey∼µnp (Ex|f(x+ y)|p)1/p

= ‖f‖p.

�

The main theorem we are going to prove in this lecture says that not only Tρ is contractive, but
it is also hypercontractive. Before stating this theorem and presenting its proof, we introduce some
notation.

As stated before, the direct product structure of Zn2 is very useful and is often exploited in proofs.
For this reason we introduce some notation for product probability spaces. For a distribution µ
over X and a distribution ν over Y , consider the product probability distribution µ× ν. Consider
f : (X × Y, µ × ν) → C. We define ‖f‖Lp(ν) to be the function x 7→ ‖fx‖Lp(ν), where fx = f(x, ·).
Similarly, define ‖f‖Lp(µ) to be the function y 7→ ‖fy‖Lp(µ), where fy = f(·, y).
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Given a subset S ⊂ [n], we can view a function f : Zn2 → C as a function f : ZS2 ×ZS̄2 → C. Then
it is straightforward to verify,

(2) ‖f‖q =
∥∥∥‖f‖Lq(ZS2 )

∥∥∥
Lq(ZS̄2 )

.

It can be instructive to see how
∥∥∥‖f‖Lp(ZS2 )

∥∥∥
Lq(ZS̄2 )

expands out:

(3)
∥∥∥‖f‖Lp(ZS2 )

∥∥∥
Lq(ZS̄2 )

=
(
Ey∈ZS̄2

∣∣∣‖fy‖Lp(ZS2 )

∣∣∣q)1/q
=

(
Ey∈ZS̄2

∣∣∣∣(Ex∈ZS2 |fy(x)|p
)1/p

∣∣∣∣q)1/q

.

Equation (2) follows immediately as fy(x) = f(x, y).
As in the proof of Theorem 1.5, a simple application of Minkowski’s Inequality gives∥∥‖f‖L1(µ)

∥∥
Lp(ν)

≤
∥∥‖f‖Lp(ν)

∥∥
L1(µ)

.

Indeed, ∥∥‖f‖L1(µ)

∥∥
Lp(ν)

= ‖Ex∼µ|f(x, ·)|‖Lp(ν) ≤ Ex∼µ ‖ |f(x, ·)| ‖Lp(ν) =
∥∥‖f‖Lp(ν)

∥∥
L1(µ)

.

This is in fact a special case of a more general inequality:

Theorem 1.6 (Generalized Minkowski’s Inequality). For 1 ≤ p ≤ q ≤ ∞, we have∥∥‖f‖Lp(ν)

∥∥
Lq(µ)

≤
∥∥‖f‖Lq(µ)

∥∥
Lp(ν)

.

Now we have all the tools we need to prove the Bonami-Beckner inequality. Recall that Lp
norms are increasing on probability space. That is for 1 ≤ p ≤ q ≤ ∞ we have ‖f‖p ≤ ‖f‖q. The
Bonami-Beckner inequality says that if we sufficiently smooth f by applying the operator Tρ, we
can reverse the direction of this inequality.

Theorem 1.7 (Hypercontractivity - Bonami 1970, Beckner 1975, Nelson 1973, Gross 1975).

Let 1 < p ≤ q <∞. Then for 0 ≤ ρ ≤
√

p−1
q−1 ,

‖Tρf‖q ≤ ‖f‖p.

Proof. The proof is by induction on n. First we prove the inequality for n = 1 and then exploit the
direct product structure to prove it for all n.

Consider f : Zn2 → C and set α = 1
2(1− ρ). Then

‖Tρf‖q = (Ex |Ey∼µαf(x+ y)|q)1/q

=

(
1

2

(
(1− α)|f(0)|+ α|f(1)|

)q
+

1

2

(
α|f(0)|+ (1− α)|f(1)|

)q)1/q

≤
(

1

2
|f(0)|p +

1

2
|f(1)|p

)1/p

= ‖f‖p.

Above, the inequality can be derived using some standard methods from calculus.
We move on to the induction step. For S ⊆ [n], let TSρ denote the noise operator applied to the

coordinates in S. That is, it is an operator on the function f(·, xS̄), where xS̄ denotes the variables
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xi for i 6∈ S. Let S = {1}. In light of Equation (3), we have

‖Tρf‖q = ‖TSρ T S̄ρ f‖q

=
∥∥∥‖TSρ T S̄ρ f‖Lq(ZS2 )

∥∥∥
Lq(ZS̄2 )

(Equation (2))

≤
∥∥∥‖T S̄ρ f‖Lp(ZS2 )

∥∥∥
Lq(ZS̄2 )

(Induction Hypothesis)

≤
∥∥∥‖T S̄ρ f‖Lq(ZS̄2 )

∥∥∥
Lp(ZS2 )

(Generalized Minkowski)

≤
∥∥∥‖f‖Lp(ZS̄2 )

∥∥∥
Lp(ZS2 )

(Induction Hypothesis)

= ‖f‖p (Equation (2)).

�

Lecture 10

We start with a very useful corollary of the Bonami-Beckner inequality.

Corollary 1.8. Let f : Zn2 → C be a function and k > 0 be an integer. Then for 1 < p ≤ 2

‖f≤k‖2 ≤
(

1√
p− 1

)k
‖f‖p,

and for 2 ≤ q <∞,

‖f≤k‖q ≤
(√

q − 1
)k
‖f‖2.

Proof. In the case of 1 < p ≤ 2, we can apply the Bonami-Beckner inequality with ρ =
√
p− 1 and

get

‖Tρf‖2 ≤ ‖f‖p.
Observe that

‖Tρf‖22 =
∑
S

ρ2|S||f̂(S)|2 ≥ ρ2k
∑

S:|S|≤k

|f̂(S)|2 = ρ2k‖f≤k‖22.

Therefore

‖f≤k‖2 ≤
1

ρk
‖f‖p =

(
1√
p− 1

)k
‖f‖p.

Case q ≥ 2 follows by duality. Let p satisfy 1
p + 1

q = 1. Note that 1 < p ≤ 2 so we can apply the first

part using the Lp norm. Since Lp and Lq are dual norms we have (see question 2 of assignment 1):

‖f≤k‖q = sup
g 6=0

〈f≤k, g〉
‖g‖p

≤ sup
g 6=0

〈f≤k, g〉
(
√
p− 1)k‖g≤k‖2

= (
√
q − 1)k sup

g 6=0

〈f≤k, g≤k〉
‖g≤k‖2

.
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Since the dual of the L2 norm is the L2 norm itself,

(
√
q − 1)k sup

g 6=0

〈f≤k, g≤k〉
‖g≤k‖2

= (
√
q − 1)k‖f≤k‖2 ≤ (

√
q − 1)k‖f‖2.

�

Exercise 1.9. Prove the q ≥ 2 case of Corollary 1.8 by applying the Bonami-Beckner inequality

to g =
∑

S ρ
−|S|f̂(S)χS .

Recall that the Lp norms are increasing, that is, ‖f‖p ≤ ‖f‖q when 1 ≤ p ≤ q ≤ ∞. An
immediate consequence of Corollary 1.8 is that if deg(f) ≤ k, then for 1 < p ≤ 2,

‖f‖p ≤ ‖f‖2 ≤
(

1√
p− 1

)k
‖f‖p,

and for 2 ≤ q <∞,

‖f‖2 ≤ ‖f‖q ≤
(√

q − 1
)k
‖f‖2.

Remark 1.10. The above inequalities show that the function is “flat”. If there are large fluctua-
tions in f , then we cannot hope to have such strong equivalences between the different norms. In
this sense, one can think of the Bonami-Beckner inequality as a concentration inequality. Indeed,
viewing f as a random variable, by bounding the q-norms in terms of the 2-norm, we are essentially
bounding the moments of f in terms of the standard deviation of f .

Remark 1.11. The case of deg(f) = 1 is known as Khintchine inequality: for a1, a2, . . . , an ∈ C,

√
p− 1

(∑
i

|ai|2
)1/2

≤

(
E

∣∣∣∣∣∑
i

εiai

∣∣∣∣∣
p)1/p

≤

(∑
i

|ai|2
)1/2

,

where the expectation is over {εi} which are±1 valued i.i.d. random variables with Pr[εi = 1] = 1/2.
By setting f =

∑
i aiχ{i}, we see the correspondence immediately.

2. Influence and Friedgut’s Theorem

The Bonami-Beckner inequality is a powerful tool in the analysis of Boolean functions. We will
see some important applications, but first, we introduce the notion of influence.

Definition 2.1 (Influence). Let f : Zn2 → {0, 1}. The influence of the ith variable on f is the
probability that resampling the ith coordinate changes the the value of f . That is,

Ii(f) = Pr[f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . , yi, . . . , xn)],

where x1, x2, . . . , xn and yi are independently sampled. Equivalently1,

Ii(f) =
1

2
Pr[f(x) 6= f(x+ ei)].

The total influence of f is

If =
n∑
i=1

Ii(f).

Note that with our definition, 0 ≤ Ii(f) ≤ 1/2 and 0 ≤ If ≤ n/2.

1In the literature the influence is sometimes defined as Ii(f) = Pr[f(x) 6= f(x + ei)].
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Remark 2.2. Considering the support of f , Supp(f) = {x : f(x) 6= 0}, as a subset of the hypercube
Qn, If corresponds to the edge boundary of Supp(f). For a subset S of the hypercube, the edge
boundary of S, denoted ∂S, is the set of edges of Qn with one end point in S and the other endpoint
outside of S. It follows by definition that

If =
|∂Supp(f)|

2n
.

When studying influences, it is natural to consider f(i) : Zn2 → {−1, 0, 1} (sometimes referred to
as the ith derivative of f), which is defined as

f(i)(x) = f(x)− f(x+ ei).

Indeed, since |f(i)(x)| = |f(i)(x)|2, we have

Ii(f) =
1

2
Ex|f(i)(x)| = 1

2
Ex|f(i)(x)|2 =

1

2
‖f(i)‖22.

The Fourier expansion of f(i) is

f(i)(x) =
∑
S

f̂(S)χS(x)− f̂(S)χS(x+ ei) = 2
∑
S:i∈S

f̂(S)χS(x),

and therefore

Ii(f) = 2
∑
S:i∈S

|f̂(S)|2.

We can also get a nice expression for the total influence of f (and hence for the edge boundary of
Supp(f)) in terms of its Fourier coefficients:

If =
∑
i

2
∑
S:i∈S

|f̂(S)|2 = 2
∑
S

|S||f̂(S)|2.

With this, we can get a simple lower bound for the total influence in terms of the variance of f .

Note that Var(f) = E[f2]− (E[f ])2 =
∑

S:S 6=∅ |f̂(S)|2 and therefore

(4) If ≥ 2Var(f).

This bound in general can be quite weak. A stronger bound can be obtained by a discrete isoperi-
metric inequality.

Theorem 2.3 (Edge Isoperimetric Inequality). For S a subset of the vertices of the hypercube Qn
we have

|∂S| ≥ −|S| log2

|S|
2n
.

Equality is achieved when S is a subcube.

Proof. The proof is quite straightforward using induction on n. The base case, n = 1, is easily
verified so we directly move to the induction step. Partition Qn into two disjoint subcubes Q1

n−1

and Q2
n−1 of dimension n − 1 each. Similarly partition S into two sets S1 = S ∩ V (Q1

n−1) and

S2 = S ∩ V (Q2
n−1). Without loss of generality assume |S1| = |S2|+ t. Now the boundary of S will
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have edges from the boundary of S1 in Q1
n−1, edges from the boundary of S2 in Q2

n−1, and also at
least t edges that must go between the two subcubes. Using the induction hypothesis, we have

|∂S| ≥ |S1|(n− 1− log |S1|) + |S2|(n− 1− log |S2|) + t

= |S1|n− |S1| − |S1| log |S1|+ |S2|n− |S2| − |S2| log |S2|+ t

= |S1|n− |S1| log |S1|+ |S2|n− |S2| log |S2| − 2|S2|.

Note that |S|(n− log |S|) = |S1|n+ |S2|n− (|S1|+ |S2|) log(|S1|+ |S2|), so we are done provided

|S1| log |S1|+ |S2| log |S2|+ 2|S2| ≤ (|S1|+ |S2|) log(|S1|+ |S2|).
This inequality is easily derived using simple manipulations. �

Defining f such that Supp(f) = S, we can rewrite the Edge Isoperimetric Inequality in terms of
the total influence:

(5) If ≥ −E[f ] log2 E[f ].

Consider a balanced function f : Zn2 → {0, 1}, i.e. E[f ] = 1/2. Both lower bounds (4) and (5)
on If imply that If ≥ 1/2, which shows

max
i
Ii(f) ≥ 1

2n
.

Note that the lower bound If ≥ 1/2 is tight for half-cubes, i.e. for f(x) = xi or f(x) = −xi for
some i. Two questions naturally arise:

(1) (Ben-Or Linial) How small can maxi Ii(f) be for balanced functions?
(2) What are the functions with small total influence?

We first give an answer to the second question. For this we need to define a junta.

Definition 2.4. A Boolean function f : {0, 1}n → {0, 1} is called a k-junta if there exists J ⊆ [n]
of size at most k and g : {0, 1}J → {0, 1} such that f(x) = g(xJ). In other words, f is a k-junta if
its output only depends on at most k input coordinates.

Observe that if f is a k-junta then If ≤ k/2. This is because every variable that f does not
depend on has influence 0, and every other variable has influence at most 1/2. Friedgut’s Theorem
gives a partial converse to this observation and states that a Boolean function with small total
influence is well approximated by a k-junta with a small k.

Theorem 2.5 (Friedgut). Let f : {0, 1}n → {0, 1} be a Boolean function. Then there exists a

2O(If/ε)-junta g : {0, 1}n → {0, 1} such that

Pr[f(x) 6= g(x)] ≤ ε.

Proof. First note that the probabilistic approximation can be interpreted in terms of the L2 differ-
ence:

‖f − g‖22 = Pr[f(x) 6= g(x)].

Let J be the set of most influential variables of f , that is, J = {i ∈ [n] | Ii(f) ≥ δ} for some
parameter δ to be determined later. It is natural to try to find a g that depends only on the
variables in J . Define h to be

h =
∑
S⊆J

f̂(S)χS .

Clearly h depends only on the variables in J , but it is not necessarily a Boolean function. Neverthe-
less we can round h to make it Boolean. Let g(x) = 1 if h(x) > 1/2 and let g(x) = 0 if h(x) ≤ 1/2.
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By rounding we haven’t lost much in the following sense. If ‖f −h‖22 ≤ ε, then ‖f − g‖22 ≤ 4ε. This
is easy to see since for any x with f(x) 6= g(x), |f(x)− h(x)|2 ≥ 1/4.

Thus our task reduces to showing that

‖f − h‖22 ≤
ε

4
.

By Parseval we have

‖f − h‖22 =
∑
S

(f̂(S)− ĥ(S))2 =
∑
S 6⊆J

f̂(S)2.

So we want to upper bound the `2 mass of f on sets S with S 6⊆ J . To do this we will divide
the above sum into two parts, the low degree part and the high degree part, and deal with them
separately.

Intuitively, a function with small total influence should not have large `2 mass on high degree
characters as high degree characters, viewed as 0/1 valued functions, have large total influence.
This intuition is easy to formalize. Set k = 4If/ε. Then

If = 2
∑
S

|S||f̂(S)|2 ≥ 2k
∑
|S|≥k

|f̂(S)|2,

which implies ∑
S:|S|≥k

|f̂(S)|2 ≤
If
2k
≤ ε

8
.

Thus,

‖f − h‖22 ≤
ε

8
+

∑
S:|S|<k
S 6⊆J

f̂(S)2.

Now to bound the low degree part we will use Bonami-Beckner inequality (the form given in
Corollary 1.8). First observe that

(6)
∑

S:|S|<k
S 6⊆J

f̂(S)2 =
∑
i 6∈J

∑
S:|S|<k
i∈S

f̂(S)2.

We want to bound the inside sum on the RHS above. Recall that

f(i)(x) = f(x)− f(x+ ei) = 2
∑
i∈S

f̂(S)χS(x),

So the quantity we want to bound is ‖f<k(i) ‖
2
2. We apply Corollary 1.8 with p = 4/3 to get

‖f<k(i) ‖2 ≤ 3k/2‖f(i)‖4/3,

and so

‖f<k(i) ‖
2
2 ≤ 3k

(
Ex|f(i)(x)|4/3

)3/2
= 3k

(
Ex|f(i)(x)|2

)3/2
.

Recall that Ii(f) = 1
2‖f(i)‖22. Also, since i 6∈ J , Ii(f) < δ. Thus,

‖f<k(i) ‖
2
2 ≤ 3k23/2Ii(f)3/2 ≤ 3k23/2δ1/2Ii(f).

Equivalently,

4
∑

S:|S|<k
i∈S

f̂(S)2 ≤ 3k23/2δ1/2Ii(f).
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Going back to (6), we have∑
i 6∈J

∑
S:|S|<k
i∈S

f̂(S)2 ≤
∑
i 6∈J

3kδ1/2Ii(f) ≤ 3kδ1/2If .

Putting things together

‖f − h‖22 ≤
ε

8
+ 3kδ1/2If ≤

ε

8
+
ε

8
=
ε

4
,

when δ is set to be sufficiently small. Recall that we set k = 4If/ε, i.e. If = kε/4. Now a simple
calculation shows that we can pick any δ with

δ ≤ 1

432kk2
.

For instance we can set δ = 1/33k+2. With this δ, we have

|J | ≤
If
δ
≤ 2O(If/ε),

as required.
�

Lecture 11

3. Kahn-Kalai-Linial Theorem

In this lecture we are going to prove the Kahn-Kalai-Linial (KKL) Theorem that says that every

balanced function has an influential variable, that is, there is some i ∈ [n] such that Ii(f) = Ω( logn
n ).

The proof is essentially the same as Friedgut’s Theorem2. We separate the Fourier spectrum
of f into high degree and low degree parts. The high degree part is easy to handle and for
the low degree part we apply the Bonami-Beckner inequality. The reason why Bonami-Beckner
inequality is effective can be seen as follows. For 1 ≤ p < 2, when g is a Boolean function, we

have E[|g|] = E[|g|p] = E[|g|2], which implies that ‖g‖p = ‖g‖2/p2 . Now if ‖g‖2 =: δ is small, then

‖g‖p = δ · δ(2/p−1) is very small. So applying Corollary 1.8 to g, we get a good bound on ‖g<k‖2
and gain a factor of δ2/p−1.

Theorem 3.1 (Kahn-Kalai-Linial). Let f : Zn2 → {0, 1} be such that E[f ] = α. If δ = maxi Ii(f),
then

If ≥ Ω (α(1− α) log 1/δ)

In particular

δ ≥ Ω

(
α(1− α)

log n

n

)
.

2Historically the KKL Theorem came before Friedgut’s Theorem.
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Proof. Recall that Var(f) = E[f2]− (E[f ])2 = α− α2 = α(1− α). Also since E[f ]2 = f̂(∅)2,

Var(f) =
∑

S:|S|≥1

|f̂(S)|2.

In Lecture 10 we observed that Var(f) ≤ 1
2If and that this leads to the bound δ ≥ 1

2n for balanced
functions. Our goal now is to obtain a better upper bound on the variance, which will lead to a
better lower bound on δ. In particular we are aiming for the upper bound

Var(f) =
∑

S:|S|≥1

|f̂(S)|2 .
If

log 1/δ
.

Our strategy will be as in the proof of Friedgut’s Theorem. We divide the sum into the low degree
and high degree parts, and upper bound each part separately.

Recall that
If = 2

∑
S

|S||f̂(S)|2 ≥ 2k
∑
|S|>k

|f̂(S)|2.

This implies ∑
|S|>k

|f̂(S)|2 ≤
If
2k
.

Setting k ≈ log 1/δ, the upper bound above is what we want for Var(f). So with this choice of k,
we would like to show an upper bound on the low degree part that is negligible compared to If/2k.

To handle the low degree part, we will apply Bonami-Beckner inequality to ‖f(i)‖2 with p = 3/2:∑
1≤|S|≤k

|f̂(S)|2 ≤
n∑
i=1

∑
i∈S
|S|≤k

|f̂(S)|2 =
1

4

n∑
i=1

‖f≤k(i) ‖
2
2 ≤

1

4

n∑
i=1

2k‖f(i)‖23/2.

Using the fact that |f(i)(x)| ∈ {0, 1}, we have

1

4

n∑
i=1

2k‖f(i)‖23/2 =
1

4
2k

n∑
i=1

‖f(i)‖
8/3
2 =

1

4
2k

n∑
i=1

(2Ii(f))4/3 ≤ 2kδ1/3
n∑
i=1

Ii(f) = 2kδ1/3If .

Putting things together we get

α(1− α) =
∑

S:|S|≥1

|f̂(S)|2 ≤
If
2k

+ 2kδ1/3If .

Setting k = 1
10 log 1/δ shows

1

10
α(1− α) log 1/δ ≤ If .

We also know that If ≤ δn. These upper and lower bounds on If imply by a straightforward
calculation that

δ ≥ Ω

(
α(1− α)

log n

n

)
.

�

The KKL Theorem is tight, which can be seen by considering the tribes function. Let

f(x) =
m∨
i=1

k∧
j=1

xij ,
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where k = log n− log lnn and m = n/k. Without loss of generality consider the first variable. For
x1 to be able to change the output, all other variables in the first clause must be set to 1, and all
other clauses must be evaluating to 0. Thus,

I1(f) =
1

2
Pr[f(x) 6= f(x+ ei)] =

1

2
(1− 2−k)m−1 · 2−k+1

= 2−k(1− 2−k)m−1 =
lnn

n
(1− lnn

n
)m−1 =

lnn

n
(1− o(1)).

Now we will see some corollaries to KKL Theorem and some related conjectures.

Corollary 3.2. If a balanced function f : Zn2 → {0, 1} satisfies I1(f) = I2(f) = · · · = In(f) (e.g.
f is invariant under certain symmetries), then If & log n.

Bourgain and Kalai show that under strong symmetry assumptions, the above bound can be
improved significantly. For instance if f is a symmetric function, i.e. f ’s output only depends on
the Hamming weight of the input, then If &

√
n.

A Boolean function f : {0, 1}n → {0, 1} is called increasing (or monotone) if f(x) ≤ f(y)
whenever xi ≤ yi for all i.

Corollary 3.3. Let f : {0, 1}n → {0, 1} increasing balanced function. Then there is a set J ⊆ [n]
of size Oε(

n
logn) such that

E
[
f(x)|xJ = ~1

]
≥ 1− ε.

Proof Sketch. Let i ∈ [n] have the highest influence. Then setting xi = 1 will increase the average

of f by at least Ω( logn
n ). Repeat with the new function. �

Conjecture 3.4 (Freidgut). Let f : [0, 1]n → {0, 1} be an increasing function. Then there exists a
subset J ⊆ [n] with |J | = oε(n) such that

E
[
f(x)|xJ = ~0

]
≤ ε or E

[
f(x)|xJ = ~1

]
≥ 1− ε.

Conjecture 3.5 (Freidgut). Suppose f : {0, 1}n → {0, 1} is increasing and maxi Ii(f) ≤ c logn
n , for

some constant c. Then there is J ⊆ [n] of size Oε,c(log n) such that

E
[
f(x)|xJ = ~0

]
≤ ε or E

[
f(x)|xJ = ~1

]
≥ 1− ε.

We can make a similar conjecture for non-monotone functions.

Conjecture 3.6. Suppose f : {0, 1}n → {0, 1} satisfies maxi Ii(f) ≤ c logn
n , for some constant c.

Then there is J ⊆ [n] of size Oε,c(log n) and y ∈ {0, 1}J such that

E [f(x)|xJ = y] ≤ ε or E [f(x)|xJ = y] ≥ 1− ε.

The influences of increasing Boolean functions have a very special and useful characterization in
terms of f ’s Fourier coefficients. It is not hard to verify that

Ii(f) =
1

2
Pr[f(x) 6= f(x+ ei)] = −1

2
Ef(x)χ{i}(x) = −1

2
f̂({i}).

Using this and the Cauchy-Schwarz inequality, it is easy to get an upper bound on the total influence
of increasing functions:

If =
1

2

∑
i

|f̂({i})| ≤ 1

2

√
n
∑
i

(
|f̂({i})|2

)1/2
≤
√
n

2
.
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Note that for non-monotone functions we can have If = n/2 (e.g. f = parity). The above bound
is tight since Imaj = Θ(

√
n), where maj denotes the majority function:

maj(x) :=

{
1 if

∑
i xi ≥ n/2,

0 otherwise.

4. Chang’s Lemma

We move on to a very useful structure result for the large Fourier coefficients of a bounded
function. This result has many applications, especially in additive combinatorics. We’ll see a proof
of this result that uses the Bonami-Beckner inequality.

Consider f : {0, 1}n → [0, 1] and let α = E[f ]. Note that for any a ∈ {0, 1}n, we have

f̂(a) = Exf(x)χa(x) ≤ Ex|f(x)||χa(x)| = α.

Let A be the set of large coefficients, that is, A = {a : |f̂(a)| ≥ ρα} for a fixed 0 < ρ ≤ 1. It is easy

to bound the size of A using Parseval. Note that
∑

S |f̂(a)|2 = Ef(x)2 ≤ α. Each coefficient in A
contributes at least ρ2α2 to this sum so we must have

|A| ≤ 1

αρ2
.

Chang’s Lemma says that the elements of A, viewed as vectors, must live in a small subspace.

Lemma 4.1 (Chang). Let f : {0, 1}n → [0, 1] be such that E[f ] = α. Let A be defined as above.
Then

dim(span A) ≤ O
(

ln(1/α)

ρ2

)
.

Proof. Let r1, r2, . . . , rd be independent vectors in A. We want to show that

d ≤ O
(

ln(1/α)

ρ2

)
.

By a change of coordinates we can assume that ri = ei for 1 ≤ i ≤ d. That is, without loss of

generality, we can assume that the Fourier coefficients corresponding to ri are f̂({i}). Now define

g =
d∑
i=1

f̂({i})χ{i}.

We will bound 〈f, g〉 from below and above, and this will result in the desired upper bound on d.
First, by Parseval, we have

E[fg] =

d∑
i=1

|f̂({i})|2 ≥ dρ2α2.

For the upper bound, we first use Hölder’s inequality, and then apply Bonami-Beckner inequality.
Let p and q be conjugate exponents with 1 < p ≤ 2. Then,

E[fg] ≤ ‖f‖p‖g‖q ≤ ‖f‖p
√
q − 1‖g‖2 ≤ (E[|f |])1/p

√
q − 1‖g‖2 = α1/p

√
q − 1‖g‖2.

Since E[fg] = ‖g‖22, we get

‖g‖22 ≤ α2/p(q − 1).

Now combining the upper and lower bound on E[fg] we have

dα2ρ2 ≤ α2/p(q − 1).
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Setting q = ln 1
α , we conclude

d ≤ O
(

ln(1/α)

ρ2

)
.

�

Remark 4.2. Alternatively, Chang’s Lemma can be proved in a more probabilistic language.

Define g =
∑d

i=1 χri . Again, we want to upper and lower bound E[fg]. By Parseval the lower bound
is ραd. For the upper bound, first note that the linear independence of r1, r2, . . . , rd translates into
probabilistic independence for the corresponding characters. That is, g is the sum of d ±1 valued
i.i.d. random variables when x is chosen uniformly at random. With this view, it is straightforward
to upper bound E[fg] using the concentration of g.
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