
COMP760, LECTURES 2,3: FOURIER ANALYSIS OF FINITE ABELIAN

GROUPS

HAMED HATAMI

In this lecture we develop the basic Fourier analysis of finite Abelian groups. Recall that the
cyclic group ZN is the Abelian group with elements {0, 1, . . . , N − 1}, where the group product is
defined as a+ b := a+ b (mod N). Finite Abelian groups can be characterized as the products of
cyclic groups:

Theorem 0.1. Every finite Abelian group G is isomorphic to the group ZN1 × . . .× ZNk for some
positive integers N1, . . . , Nk.

In this course, we will be mostly interested in the group Zn2 as it can be identified with the set
{0, 1}n. Hence boolean functions f : {0, 1}n → {0, 1} can be identified with functions f : Zn2 →
{0, 1}, and this shall allow us to use Fourier analysis of Zn2 to study boolean functions.

1. Basic Fourier Theory

Let G be a finite Abelian group. A function χ : G → C \ {0} mapping the group to the
non-zero complex numbers is called a character of G if it is a group homomorphism. That is,
χ(a + b) = χ(a)χ(b) for all a, b ∈ G, and χ(0) = 1, where 0 is the identity of G. The constant
function 1 is called the principal character of G.

Let χ be a character of G, and consider an element a ∈ G. Since G is a finite group, a is of some
finite order n (that is na = 0). Hence 1 = χ(0) = χ(na) = χ(a)n which shows that χ(a) is an n-th

root of unity. In particular, every character χ ∈ Ĝ satisfies

(1) χ : G→ T,

where T is the unit complex circle.

Theorem 1.1. If G is a finite Abelian group, then the characters of G together with the usual

pointwise product of complex valued functions form a group Ĝ.

Proof. The principal character 1 is the identity of Ĝ. Note that if χ and ξ are characters of G,
then χξ is also a character. Indeed χ(ab)ξ(ab) = χ(a)ξ(a)χ(b)ξ(b), and χ(0)ξ(0) = 1 × 1 = 1. To
check the existence of the inverse element, note that if χ is a character, then χ−1 = 1

χ = χ is also

a character. �

The group Ĝ is called the Pontryagin dual of G. Fourier analysis is based on expressing functions
f : G → C as linear combinations of characters. It will be convenient to treat the set of these
functions as a Hilbert space: Let L2(G) denote the set of functions f : G → C, where here G is
endowed with the uniform probability measure. Recall (see Lecture 1, Section 3.1) that L2(G) is a
Hilbert space with the inner product

〈f, g〉 = Ex∈Gf(x)g(x) =
1

|G|
∑
x∈G

f(x)g(x).
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In the sequel we will usually consider G as a probability space, and Ex∈G shall always mean that
x is a random variable that takes values in G uniformly at random. To simplify the notation we
usually abbreviate Ex∈G to simply E. Hence for a function f : G → C, the notation E[f ] means
Ex∈G[f(x)] (which is equal to 1

|G|
∑

x∈G f(x)).

Our next goal will be to prove that the characters form an orthonormal basis for this space. First
let us prove a simple lemma.

Lemma 1.2. Let G be a finite Abelian group, and χ be a non-principal character of G. Then∑
x∈G χ(x) = 0.

Proof. Suppose to the contrary that
∑

x∈G χ(x) 6= 0. Consider an arbitrary y ∈ G. Then We have

χ(y)
∑
x∈G

χ(x) =
∑
x∈G

χ(y + x) =
∑
x∈G

χ(x)

which shows that χ(y) = 1. Since y was arbitrary, we conclude that χ must be the principal
character which is a contradiction. �

Now we can prove the orthogonality properties of the characters.

Lemma 1.3. The characters of a finite Abelian group G are orthonormal functions in L2(G).

Proof. It follows from (1) that every χ ∈ Ĝ satisfies

‖χ‖22 = E
[
|χ(x)|2

]
= E[1] = 1.

So characters are unit vectors in L2(G). It remains to verify the orthogonality. Let χ 6= ξ be two
different characters. Then χξ = χξ−1 is a non-principal character of G. Hence by Lemma 1.2, we
have

〈χ, ξ〉 = E
[
χ(x)ξ(x)

]
= E

[
χξ(x)

]
= 0.

�

So far we have discussed the Pontryagin dual of G in an abstract manner. Since finite Abelian
groups have simple structures (Theorem 0.1), it is quite easy to describe the characters of G. We
start with the basic case of G = ZN . For every a ∈ ZN , define χa ∈ L2(G) as

χa : x 7→ e
2πi
N
ax.

Let us verify that χa is actually a character. Indeed χa(0) = e
2πi
N

0 = e0 = 1, and since e2πi = 1, we
have

χa(x)χa(y) = e
2πi
N
axe

2πi
N
ay = e

2πi
N
a(x+y (mod N)) = χa(x+ y).

Note that L2(G) is |G|-dimensional, and hence by Lemma 1.3, G has at most |G| characters. It
follows that {χa : a ∈ G} are all the characters of G. The principal character is χ0 = 1. Also

χaχb = χa+b which shows that the dual group Ĝ is isomorphic to G. As we shall see below this is
in general true for all finite Abelian groups.

Now let us consider the general case of G = ZN1 × . . .ZNk for some positive integers N1, . . . , Nk.
For every a = (a1, . . . , ak) ∈ G, define χa ∈ L2(G) as

χa : x 7→
k∏
i=1

e
2πi
Ni

aixi .

As in the case of ZN , it is straightforward to verify that χa is a character by showing that χa(0) = 1,
and χa(x + y) = χa(x)χa(y). Again Lemma 1.3 shows that {χa : a ∈ G} are all the characters of
G. We also have the identify χaχb = χa+b which proves Theorem 1.4.
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Theorem 1.4. If G is a finite Abelian group, then the characters of G form an orthonormal basis

for L2(G). Furthermore we have Ĝ ∼= G.

Before continuing further, let us look at the characters of our favorite group Zn2 . Consider an
element a ∈ Zn2 . Then

χa(x) = e
2πi
2

∑n
i=1 aixi = (−1)

∑n
i=1 aixi .

Note that in this case the characters are actually real valued (they only take values 1 and −1).
Since the coordinates of a are 0 or 1, we will sometimes identify a with the set S = {j ∈ {1, . . . , n} :
aj = 1}, and denote the characters as χS for S ⊆ {1, . . . , n}. This notation is sometimes more
intuitive as

χa(x) = e
2πi
2

∑n
i=1 aixi = (−1)

∑n
i=1 aixi = (−1)

∑
i∈S xi .

Later when we take a probabilistic approach to decomposing functions, this notation becomes more
natural as it extends to general product spaces (where there is no group structure).

Definition 1.5. The Fourier transform of a function f : G→ C is the unique function f̂ : Ĝ→ C
defined as

f̂(χ) = 〈f, χ〉 = Ef(x)χ(x).

Theorem 1.4 shows that G is isomorphic to its dual Ĝ, and so it shall be convenient to identify
the two groups in the sequel. Let us restate Definition 1.5 in this new notation.

Definition 1.6 (Definition 1.5 Restated). The Fourier transform of a function f : G → C is the

unique function f̂ : G→ C defined as

f̂(a) = 〈f, χa〉 = Ef(x)χa(x).

Let us state a simple example of the Fourier transform of a function on Zn2 .

Example 1.7. Let f : Zn2 → C be the parity function f : x 7→
∑n

i=1 xi(mod 2). Then

f̂(0) = Ef(x)χ0 = Ef(x) =
1

2
.

We also have

f̂(1, . . . , 1) = Ef(x)(−1)
∑n
j=1 xj = −1

2
,

as f(x) = 1 if and only if
∑n

j=1 xj = 1(mod 2). Next consider a ∈ Zn2 with a 6= (1, . . . , 1) and

a 6= 0. Let j0, j1 be such that aj0 = 0 and aj1 = 1. We have (why?)

f̂(a) = Ef(x)χa(x) =
1

2
E [f(x)χa(x) + f(x+ ej0 + ej1)χa(x+ ej0 + ej1)] ,

where ej denotes the vector in Zn2 which has 1 at its jth coordinate and 0 everywhere else. Note

that f(x) = f(x+ej0 +ej1) and furthermore χa(x) = −χa(x+ej0 +ej1). We conclude that f̂(a) = 0
for every a ∈ Zn2 satisfying a 6= (1, . . . , 1) and a 6= 0.
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Lecture 3

The Fourier transform is a linear operator: λ̂f + g = λf̂ + ĝ, and we have the following easy
observation.

Lemma 1.8. The Fourier transform considered as an operator from L1(G) to L∞(Ĝ) is norm
decreasing:

‖f̂‖∞ ≤ ‖f‖1.

Proof. By (1) for every a ∈ G, we have

|f̂(a)| =
∣∣∣Ef(x)χa(x)

∣∣∣ ≤ E|f(x)||χa(x)| = E|f(x)| = ‖f‖1.

�

The Fourier coefficient f̂(0) is of particular importance as

f̂(0) = E[f(x)].

So if 1S is the indicator function of a subset 1S ⊆ G, then 1̂S(0) = |S|
|G| corresponds to the density

of S.
It follows from the fact that the characters from an orthonormal basis for L2(G) that

f =
∑
a∈G

f̂(a)χa,

and that this expansion of f as a linear combination of characters is unique. This formula is called
the Fourier inversion formula as it shows how the functions f can be reconstructed from its Fourier
transform.

If S ⊆ G, then the orthogonal complement of S is defined as

S⊥ = {a ∈ G : χa(x) = 1 ∀x ∈ S}.
It follows from the identities χ0 = 1 and χaχb = χa+b that S⊥ is a subgroup of G. The Fourier
transform of the indicator function of a subgroup of G has a simple form:

Lemma 1.9. If H is a subgroup of G, then for every a ∈ G, we have

1̂H(a) =

{
|H|/|G| a ∈ H⊥
0 a 6∈ H⊥

Proof. If a ∈ H⊥, then

1̂H(a) = 〈1H , χa〉 = E1H(x)χa(x) = E1H(x) = |H|/|G|.
On the other hand if a 6∈ H⊥, then there exists y ∈ H such that χa(y) 6= 1. Then∑

z∈H
χa(z) = χa(y)

∑
z∈H

χa(z − y) = χa(y)
∑
z∈H

χa(z),

which shows that
∑

z∈H χa(z) = 0. Hence

1̂H(a) = E1H(x)χa(x) =
1

|G|
∑
z∈H

E1H(z) = 0.

�
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Remark 1.10. It follows from Lemma 1.9 that if S = y + H is a coset of H in G (i.e. H is a
subgroup of G and y ∈ G), then for every a ∈ G,

1̂S(a) = E1S(x)χa(x) = E1H(x− y)χa(x) = E1H(x)χa(x+ y) = χ(y)1̂H(a)

=

{
χ(y)|H|/|G| a ∈ H⊥
0 a 6∈ H⊥

Example 1.11. Let us revisit Example 1.7 in light of Remark 1.10. Note that H = {x ∈ Zn2 :∑n
i=1 xi = 0 (mod 2)} is a subgroup of Zn2 . Now the function f defined in Example 1.7 is the

indicator function of S = e1 +H. Note that

H⊥ = {a : (−1)
∑n
i=1 xiai = 1 ∀x ∈ H} = {(0, . . . , 0), (1, . . . , 1)}.

Hence

f̂(a) = 1̂S(a) =

{
χa(e1)|H|/|G| a ∈ H⊥
0 a 6∈ H⊥

We conclude that f̂(0) = 1/2 and f̂(1, . . . , 1) = −1/2, and f̂(a) = 0 for every a ∈ Zn2 satisfying
a 6= (1, . . . , 1) and a 6= 0.

Theorem 1.12 (Parseval). For every f ∈ L2(G),

‖f‖22 =
∑
a∈G
|f̂(a)|2.

Proof. We have

‖f‖22 = 〈f, f〉 =

〈∑
a∈G

f̂(a)χa,
∑
b∈G

f̂(b)χb

〉
=
∑
a,b∈G

f̂(a)f̂(b)〈χa, χb〉.

The identify now follows from orthonormality of characters:

〈χa, χb〉 =

{
0 a 6= b;
1 a = b.

�

The proof of the Parseval identity, when applied to two different functions f, g ∈ L2(G), implies
the Plancherel theorem:

〈f, g〉 =
∑
a∈G

f̂(a)ĝ(a).

As the first example of an application of the Parseval identity, let us show that for every subgroup
H of G, we have

(2) |H||H⊥| = |G|.

Indeed by Lemma 1.9, we have

|H|
|G|

= E1H = E12H = 〈1H , 1H〉 = ‖1H‖22 =
∑
a∈G
|1̂H(a)|2 =

∑
a∈H⊥

(|H|/|G|)2 =
|H|2|H⊥|
|G|2

which simplifies to (2).
Next we introduce the important notion of convolution.
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Definition 1.13. Let G be a finite Abelian group. For two functions f, g : G→ C, we define their
convolution f ∗ g : G→ C as

f ∗ g(x) = Ey∈G[f(x− y)g(y)].

Note that f ∗ g(x) is the average of f(a)f(b) over all pairs a, b with a + b = x. This gives a
combinatorial nature to convolution which makes it very useful in dealing with certain discrete
problems. Consider a set S ⊆ G. Then f ∗ 1S(x) is the average of f over the set x− S := {x− y :
y ∈ S}. For example if S is the Hamming ball1 of radius r around 0 in Zn2 , then f ∗ 1S(x) is
the average of f over the Hamming ball of radius r around x. These types of averaging operators
usually “smooth” f , and makes it more similar to a constant functions. This smoothing property
of the convolution is one of the main tools in harmonic analysis and this course.

Next let us list some basic facts about the convolution. We define the support of f : G → C,
denoted by Supp(f), to be the set of the points x ∈ G with f(x) 6= 0.

Lemma 1.14. Consider three functions f, g, h : G→ C.

(a) We have
f ∗ g = g ∗ f.

(b) We have
(f ∗ g) ∗ h = f ∗ (g ∗ h).

(c) We have
f ∗ (λh+ g) = λf ∗ h+ f ∗ g.

(d) We have
Supp(f + g) ⊆ Supp(f) + Supp(g).

(e) We have
‖f ∗ g‖∞ ≤ ‖f‖1‖g‖∞.

(f) More generally, if p and q are conjugate exponents, then

‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q.
(g) We have

‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.
Proof. (a) For every x ∈ G, we have

f ∗ g(x) = Ey[f(x− y)g(y)] = Ey[f(x− y)g(x− (x− y))] = Ez[f(z)g(x− z)] = g ∗ f(x).

(b) By Part (a),

(f ∗ g) ∗ h(x) = (g ∗ f) ∗ h(x) = EzEy[g(x− z − y)f(y)]h(z) =

= Ey,zg(x− z − y)f(y)h(z) = (h ∗ g) ∗ f(x) = f ∗ (g ∗ h)(x).

(c) is trivial.
(d) follows from the fact that f(x) is the average of f(a)g(b) over all pairs of points a, b ∈ G

with a+ b = x.
(e) is a special case of (f).
(f) Note that for every x ∈ G, by Hölder’s inequality we have

|f ∗ g(x)| ≤ Ey∈G|f(x− y)||g(y)| ≤ (E|f(x− y)|p)1/p (E|g(y)|q)1/q = (E|f(y)|p)1/p ‖g‖q = ‖f‖p‖g‖q.
(g) We have

‖f ∗ g‖1 = Ex |f ∗ g(x)| ≤ Ex,y|f(x− y)||g(y)| = Ez,y|f(z)||g(y)| = Ez|f(z)|Ey|g(y)| = ‖f‖1‖g‖1.
1The Hamming ball of radius r around 0 is defined as {x ∈ Zn2 :

∑n
i=1 xi ≤ r} ⊆ Zn2 .
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�

The relevance of the Fourier transform to convolution lies in the following lemma.

Lemma 1.15. If f, g : G→ C, then

f̂ ∗ g = f̂ · ĝ.

Proof. We have

f̂ ∗ g(a) = Exf ∗ g(x)χa(x) = Ex (Eyf(x− y)g(y))χa(x) = Ex,yf(x− y)g(y)χa(x− y)χa(y)

= Ez,yf(z)g(y)χa(z)χa(y) = Ezf(z)χa(z)Eyg(y)χa(y) = f̂(a) · ĝ(a).

�

Note that Lemma 1.15 in particular shows that

Ef(x)Eg(x) = f̂(0)ĝ(0) = f̂ ∗ g(0) = Ef ∗ g(x).

We also have the dual version of Lemma 1.15,

(3) f̂ · g(x) =
∑
y∈G

f̂(x− y)ĝ(y),

which converts pointwise product back to convolution.

Exercise 1.16. Prove the Identity (3).

For a function h : G → C, define h̃ : G → C as h : x 7→ h(−x). Note that h̃ =
∑

a∈G ĥ(a)χa.
Hence it follows from the Parseval identity and Lemma 1.15 that for f, g, h : G→ C, we have

〈f ∗ h, g〉 = 〈f, g ∗ h̃〉 =
∑
a∈G

f̂(a)ĥ(a)ĝ(a).
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