
COMP760, LECTURE 1: BASIC FUNCTIONAL ANALYSIS

HAMED HATAMI

The aim of this lecture is to introduce the necessary definitions, notations, and basic results from
measure theory, and functional analysis for this course.

1. Some basic inequalities

One of the most basic inequalities in analysis concerns the arithmetic mean and the geometric
mean. It is sometimes called the AM-GM inequality.

Theorem 1.1. The geometric mean of n non-negative reals is less than or equal to their arithmetic
mean: If a1, . . . , an are non-negative reals, then

(a1 . . . an)1/n ≤ a1 + . . .+ an
n

.

In 1906 Jensen founded the theory of convex functions. This enabled him to prove a considerable
extension of the AM-GM inequality. Recall that a subset D of a real vector space is called convex
if every convex linear combination of a pair of points of D is in D. Equivalently, if x, y ∈ D, then
tx+ (1− t)y ∈ D for every t ∈ [0, 1]. Given a convex set D, a function f : D → R is called convex
if for every t ≤ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

If the inequality is strict for every t ∈ (0, 1), then the function is called strictly convex.
Trivially f is convex if and only if {(x, y) ∈ D×R : y ≥ f(x)} is convex. Also note that f : D → R

is convex if and only if fxy : [x, y]→ R defined as fxy : tx+ (1− t)y 7→ tf(x) + (1− t)f(y) is convex.
By Rolle’s theorem if fxy is twice differentiable, then this is equivalent to f ′′xy ≥ 0.

A function f : D → R is concave if −f is convex. The following important inequality is often
called Jensen’s inequality.

Theorem 1.2. If f : D → R is a concave function, then for every x1, . . . , xn ∈ D and t1, . . . , tn ≥ 0
with

∑n
i=1 ti = 1 we have

t1f(x1) + . . .+ tnf(xn) ≤ f(t1x1 + . . .+ tnxn).

Furthermore if f is strictly concave, then the equality holds if and only if all xi are equal.

The most frequently used inequalities in functional analysis are the Cauchy-Schwarz inequality,
Hölder’s inequality, and Minkowski’s inequality.

Theorem 1.3 (Cauchy-Schwarz). If x1, . . . , xn and y1, . . . , yn are complex numbers, then∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|2
)1/2( n∑

i=1

|yi|2
)1/2

.

Hölder’s inequality is an important generalization of the Cauchy-Schwarz inequality.

1



2 HAMED HATAMI

Theorem 1.4 (Hölder’s inequality). Let x1, . . . , xn and y1, . . . , yn be complex numbers, and p, q > 1
be such that 1

p + 1
q = 1. Then∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

The numbers p and q appearing in Theorem 1.4 are called conjugate exponents. In fact 1 and ∞
are also called conjugate exponents, and Hölder’s inequality in this case becomes:∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|

)(
n

max
i=1
|yi|
)
.

The next theorem is called Minkowski’s inequality.

Theorem 1.5 (Minkowski’s inequality). If p > 1 is a real number, and x1, . . . , xn are complex
numbers, then (

n∑
i=1

|xi + yi|p
)1/p

≤

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

The case of p =∞ of Minkowski’s inequality is the following:

n
max
i=1
|xi + yi| ≤

(
n

max
i=1
|xi|
)

+

(
n

max
i=1
|yi|
)
.

Exercise 1.6. Let x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 be complex vectors. By studying the
derivative of 〈x+ ty, y〉 with respect to t, prove Theorem 1.3.

Exercise 1.7. Deduce Theorem 1.5 from Hölder’s inequality.

2. Measure spaces

A σ-algebra (sometimes sigma-algebra) over a set Ω is a collection F of subsets of Ω with satisfies
the following three properties:

• It includes ∅. That is, we have ∅ ∈ F .
• It is closed under complementation. That is, if A ∈ F , then the complement of A also

belongs to F .
• It is closed under countable unions of its members. That is, if A1, A2, . . . belong to F , then
∪∞i=1Ai ∈ F .

Example 2.1. Let Ω be an arbitrary set. Then the family consisting only of the empty set and
the set Ω is called the minimal or trivial σ-algebra over Ω. The power set of Ω, denoted by P(Ω),
is the maximal σ-algebra over Ω.

There is a natural partial order between σ-algebras over Ω. For two σ-algebras F1 and F2 over
Ω, if F1 ⊆ F2 then we say that F1 is finer than F2, or that F2 is coarser than F1. Note that
the trivial σ-algebra is the coarsest σ-algebra over Ω, whilst the maximal σ-algebra is the finest
σ-algebra over Ω.

Definition 2.2. A measure space is a triple (Ω,F , µ) where F is a σ-algebra over Ω and the
measure µ : F → R+ ∪ {+∞} satisfies the following axioms:

• Null empty set: µ(∅) = 0.
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• Countable additivity: if {Ei}i∈I is a countable set of pairwise disjoint sets in F , then

µ(∪i∈IEi) =
∑
i∈I

µ(Ei).

The function µ is called a measure, and the elements of F are called measurable sets. If furthermore
µ : F → [0, 1] and µ(Ω) = 1, then (Ω,F , µ) is called a probability measure.

Example 2.3. The counting measure on Ω is defined in the following way. The measure of a subset
is taken to be the number of elements in the subset, if the subset is finite, and ∞ if the subset is
infinite.

A measure space M = (Ω,F , µ) is called σ-finite, if Ω is the countable union of measurable sets
of finite measure.

Every measure space in this this course is assumed to be σ-finite.

For many natural measure spaces M = (Ω,F , µ), it is difficult to specify the elements of the
σ-algebra F . Instead one specifies an “algebra” of elements of Ω which generates F .

Definition 2.4. For a set Ω, a collection A of subsets of Ω is called an algebra if

• ∅ ∈ A.
• A,B ∈ A, then A ∪B ∈ A.
• A,B ∈ A, then A \B ∈ A.

The minimal σ-algebra containing A is called the σ-algebra generated by A.

Example 2.5. Let A be the set of all finite unions of (open, closed, or half-open) intervals in R.
Then A is an algebra over R.

Before proceeding, let us mention that µ : A → R+ ∪ {+∞} is called a measure over A if for
every finite set of E1, . . . , Fm ∈ A, we have

µ(∪mi=1Ei) =

m∑
i=1

µ(Ei).

The following theorem, due to Carathéodory, is one of the basic theorems in measure theory. It
says that if the measure µ is defined on the algebra, then we can automatically extend it to the
σ-algebra generated by A.

Theorem 2.6 (Carathéodory’s extension theorem). Let A be an algebra of subsets of a given set
Ω. One can always extend every σ-finite measure defined on A to the σ-algebra generated by A;
moreover, the extension is unique.

Example 2.7. Let A be the algebra on R, defined in Example 2.5. Let µ be the measure on A,
defined by setting the measure of an interval to its length. By Carathéodory’s extension theorem,
µ extends uniquely to the σ-algebra generated by A. The resulting measure is called the Borel
measure on R.

Consider two measure spacesM := (Ω,F , µ) and N := (Σ,G, ν). The product measure µ× ν on
Ω×Σ is defined in the following way: For F ∈ F and G ∈ G, define µ× ν(F ×G) = µ(F )× ν(G).
So far we defined the measure µ× ν on A := {F ×G : F ∈ F , G ∈ G}. Note that A is an algebra
in that ∅ ∈ A, and A is closed under complementation and finite unions of its members. However,
A is not necessarily a σ-algebra, as it is possible that A is not closed under countable unions of
its members. Let F × G be the σ-algebra generated by A, i.e. it is obtained by closing A under
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complementation and countable unions. It should be noted that F ×G is not the cartesian product
of the two sets F and G, and instead it is the σ-algebra generated by the cartesian product of F
and G. Theorem 2.6 shows that µ× ν extends uniquely from A to a measure over all of F ×G. We
denote the corresponding measure space byM×N which is called the product measure ofM and
N .

Consider two measure spaces M = (Ω,F , µ) and N = (Σ,G, ν). A function f : Ω→ Σ is called
measurable if the preimage of every set in G belongs to F .

We finish this section by stating the Borel-Cantelli theorem.

Theorem 2.8 (Borel-Cantelli). Let (En) be a sequence of events in some probability space. If the
sum of the probabilities of the En is finite, then the probability that infinitely many of them occur
is 0, that is,

∞∑
n=1

Pr[En] <∞⇒ Pr[lim sup
n→∞

En] = 0,

where

lim sup
n→∞

En :=
∞⋂
n=1

n⋃
k=1

Ek.

3. Normed spaces

A metric space is an ordered pair (M,d) where M is a set and d is a metric on M , that is, a
function d : M ×M → R+ such that

• Non-degeneracy: d(x, y) = 0 if and only if x = y.
• Symmetry: d(x, y) = d(y, x), for every x, y ∈M .
• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z), for every x, y, z ∈M .

A sequence {xi}∞i=1 of elements of a metric space (M,d) is called a Cauchy sequence if for every
ε > 0, there exist an integer Nε, such that for every m,n ≥ Nε, we have d(xm, xn) ≤ ε. A metric
space (M,d) is called complete if every Cauchy sequence has a limit in M . A metric space is
compact if and only if every sequence in the space has a convergent subsequence.

Now that we have defined the measure spaces in Section 2, let us state the Hoölder’s and
Minkowski’s inequalities in a more general form.

Theorem 3.1 (Hölder’s inequality). Consider a measure space M = (Ω,F , µ), and two reals
1 < p, q <∞ with 1

p + 1
q = 1. IF the two measurable functions f, g : Ω→ C are such that both |f |p

and |g|q are integrable, then∣∣∣∣∫ f(x)g(x)dµ(x)

∣∣∣∣ ≤ (∫ |f(x)|pdµ(x)

)1/p(∫
|g(x)|qdµ(x)

)1/q

.

Theorem 3.2 (Minkowski’s inequality). Consider a measure space M = (Ω,F , µ), a real p ≥ 1,
and two measurable functions f, g : Ω→ C such that |f |p and |g|p are both integrable. Then(∫

|f(x) + g(x)|pdµ(x)

)1/p

≤
(∫
|f(x)|pdµ(x)

)1/p

+

(∫
|g(x)|pdµ(x)

)1/p

.

Next we define concept of a normed space which is central to function analysis.

Definition 3.3. A normed space is a pair (V, ‖ · ‖), where V is a vector space over R or C, and
‖ · ‖ is a function from V to nonnegative reals satisfying

• (non-degeneracy): ‖x‖ = 0 if and only if x = 0.
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• (homogeneity): For every scalar λ, and every x ∈ V , ‖λx‖ = |λ|‖x‖.
• (triangle inequality): For x, y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We call ‖x‖, the norm of x. A semi-norm is a function similar to a norm except that it might not
satisfy the non-degeneracy condition.

The spaces (C, | · |) and (R, | · |) are respectively examples of 1-dimensional complex and real
normed spaces.

Every normed space (V, ‖ · ‖) has a metric space structure where the distance of two vectors x
and y is ‖x− y‖.

Consider two normed spaces X and Y . A bounded operator from X to Y , is a linear function
T : X → Y , such that

(1) ‖T‖ := sup
x6=0

‖Tx‖Y
‖x‖X

<∞.

The set of all bounded operators from X to Y is denoted by B(X,Y ). Note that the operator norm
defined in (1) makes B(X,Y ) a normed space.

A functional on a normed space X over C (or R) is a bounded linear map f from X to C
(respectively R), where bounded means that

‖f‖ := sup
x 6=0

|f(x)|
‖x‖

<∞.

The set of all bounded functionals on X endowed with the operator norm, is called the dual of
X and is denoted by X∗. So for a normed space X over complex numbers, X∗ = B(X,C), and
similarly for a normed space X over real numbers, X∗ = B(X,R).

For a normed space X, the set BX := {x : ‖x‖ ≤ 1} is called the unit ball of X. Note that by
the triangle inequality, BX is a convex set, and also by homogeneity it is symmetric around the
origin, in the sense that ‖λx‖ = ‖x‖ for every scalar λ with |λ| = 1. The non-degeneracy condition
implies that BX has non-empty interior.

Every compact symmetric convex subset of Rn with non-empty interior is called a convex body.
Convex bodies are in one-to-one correspondence with norms on Rn. A convex body K corresponds
to the norm ‖ · ‖K on Rn, where

‖x‖K := sup{λ ∈ R+ : λx ∈ K}.
Note that K is the unit ball of ‖ · ‖K . For a set K ⊆ Rn, define its polar conjugate as

(2) K◦ = {x ∈ Rn :
∑

xiyi ≤ 1, ∀y ∈ K}.

The polar conjugate of a convex body K is a convex body, and furthermore (K◦)◦ = K.
Consider a normed space X on Rn. For x ∈ Rn define Tx : Rn → R as Tx(y) :=

∑n
i=1 xiyi. It

is easy to see that Tx is a functional on X, and furthermore every functional on X is of the form
Tx for some x ∈ Rn. For x ∈ Rn define ‖x‖∗ := ‖Tx‖. This shows that we can identify X∗ with
(Rn, ‖ · ‖∗). Let K be the unit ball of ‖ · ‖. It is easy to see that K◦, the polar conjugate of K, is
the unit ball of ‖ · ‖∗.

3.1. Hilbert Spaces. Consider a vector space V over K, where K = R or K = C. Recall that an
inner product 〈·, ·〉 on V , is a function from V × V to K that satisfies the following axioms.

• Conjugate symmetry: 〈x, y〉 = 〈y, x〉.
• Linearity in the first argument: 〈ax+ z, y〉 = a〈x, y〉+ 〈z, y〉 for a ∈ K and x, y ∈ V .
• Positive-definiteness: 〈x, x〉 > 0 if and only if x 6= 0, and 〈0, 0〉 = 0.
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A vector space together with an inner product is called an inner product space.

Example 3.4. Consider a measure space M = (Ω,F , µ), and let H be the space of measurable
functions f : Ω→ C such that

∫
|f(x)|2dµ(x) <∞. For two functions f, g ∈ H define

〈f, g〉 :=

∫
f(x)g(x)dµ(x).

It is not difficult to verify that the above mentioned function is indeed an inner product.

An inner product can be used to define a norm on V . For a vector x ∈ V , define ‖x‖ =
√
〈x, x〉.

Lemma 3.5. For an inner product space V , the function ‖ · ‖ : x 7→
√
〈x, x〉 is a norm.

Proof. The non-degeneracy and homogeneity conditions are trivially satisfied. It remains to verify
the triangle inequality. Consider two vectors x, y ∈ V and note that by the axioms of an inner
product:

0 ≤ 〈x+ λy, x+ λy〉 = 〈x, x〉+ |λ|2〈y, y〉+ λ〈x, y〉+ λ〈x, y〉.

Now taking λ :=
√
〈x,x〉
〈y,y〉 ×

〈x,y〉
|〈x,y〉| will show that

0 ≤ 2〈x, x〉〈y, y〉 − 2
√
〈x, x〉〈y, y〉|〈x, y〉|,

which leads to the triangle inequality. �

A complete inner-product space is called a Hilbert space.

3.2. The Lp spaces. Consider a measure spaceM = (Ω,F , µ). For 1 ≤ p <∞, the space Lp(M)
is the space of all functions f : Ω→ C such that

‖f‖p :=

(∫
|f(x)|pdµ(x)

)1/p

<∞.

Strictly speaking the elements of Lp(M) are equivalent classes. Two functions f1 and f2 are
equivalent and are considered identical, if they agree almost everywhere or equivalently ‖f1−f2‖p =
0.

Proposition 3.6. For every measure space M = (Ω,F , µ), Lp(M) is a normed space.

Proof. Non-degeneracy and homogeneity are trivial. It remains to verify the triangle inequality (or
equivalently prove Minkowski’s inequality). By applying Hölder’s inequality:

‖f + g‖pp =

∫
|f(x) + g(x)|pdµ(x) =

∫
|f(x) + g(x)|p−1|f(x) + g(x)|dµ(x)

≤
∫
|f(x) + g(x)|p−1|f(x)|dµ(x) +

∫
|f(x) + g(x)|p−1|g(x)|dµ(x)

≤
(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

‖f‖p +

(∫
|f(x) + g(x)|pdµ(x)

) p−1
p

‖g‖p

= ‖f + g‖p−1p (‖f‖p + ‖g‖p),

which simplifies to the triangle inequality �

Another useful fact about the Lp norms is that when they are defined on a probability space,
they are increasing.
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Theorem 3.7. Let M = (Ω,F , µ) be a probability space, 1 ≤ p ≤ q ≤ ∞ be real numbers, and
f ∈ Lq(M). Then

‖f‖p ≤ ‖f‖q.

Proof. The case q =∞ is trivial. For the case q <∞, by Hölder’s inequality (applied with conjugate
exponents q

p and q
q−p), we have

‖f‖pp =

∫
|f(x)|p × 1dµ(x) ≤

(∫
|f(x)|qdµ(x)

)p/q (∫
1

q
q−pdµ(x)

) q−p
q

= ‖f‖pq .

�

Note that Theorem 3.7 does not hold when M is not a probability space. For example consider
the set of natural numbers N with the counting measure. We shall use the notation `p := Lp(N).
In this case the `p norms are actually decreasing.

Exercise 3.8. Let 1 ≤ p ≤ q ≤ ∞. Show that for every f ∈ `p, we have ‖f‖q ≤ ‖f‖p.

4. Basic Probabilistic Inequalities

Markov’s inequality gives an upper bound for the probability that a non-negative function of a
random variable is greater than or equal to some positive constant. The application’s of Markov’s
inequality sometimes referred to as the first moment method.

Theorem 4.1 (Markov’s inequality). If X is a complex valued random variable and a > 0, then

Pr[|X| > a] ≤ E[|X|]
a

.

Proof. It is trivial. It follows from the definition of the expected value that

E[|X|] ≥ aPr[|X| > a].

�

In the second moment method, Chebyshev’s inequality is applied to bound the probability that
a random variable deviates far from the mean by its variance. Recall that the variance of a random
variable is defined as

Var[X] = E
[
|X − E[X]|2

]
= E[|X|2]− |E[X]|2 .

Theorem 4.2 (Chebyshev’s inequality). If X is a complex valued random variable and a > 0, then

Pr[|X − E[X]| > a] ≤ Var[X]

a2
.

Proof. The theorem follows from Markov’s inequality applied to the random variable |X − E[X]|2.
�

It is possible to use Chebyshev’s inequality to show that sums of independent random variables
are concentrated around their expected value.

Lemma 4.3. Let X1, . . . , Xn be independent complex valued random variables satisfying |Xi| ≤ 1
for all i = 1, . . . , N . Then

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > t

]
≤ n

t2
.
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Proof. Denote A = X1 + . . .+Xn. Then by independence of Xi’s we have

Var[A] =
n∑

i,j=1

E[XiXj ]− E[Xi]E[Xj ] =
n∑
i=1

E[|Xi|2]− |E[Xi]|2 =
n∑
i=1

Var[Xi] ≤ n.

Then Chebyshev’s inequality implies the result. �

However in these situations, there are different inequalities that provide much stronger bounds
compared to Chebyshev’s inequality. We state two of them:

Lemma 4.4 (Chernoff Bound). Suppose that X1, . . . , Xn are independent Bernoulli variables each
occurring with probability p. Then for any 0 < t ≤ np,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − np

∣∣∣∣∣ > t

]
< 2e

−t2

3np .

Lemma 4.5 (Hoeffding’s Inequality). Suppose that X1, . . . , Xn are independent random variables
with |Xi| ≤ 1 for each 1 ≤ i ≤ n. Then for any t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

∣∣∣∣∣ > t

]
< 2e

−t2

2n .
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