Harmonic Analysis of Boolean Functions

- Lectures: MW 10:05-11:25 in MC 103
- Office Hours: MC 328, by appointment (hatami@cs.mcgill.ca).
- Evaluation:
 - Assignments: 60 %
 - Presenting a paper at the end of the term: 20 %

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Scribing two lectures: 15 %
- Attending lectures: 5 %

Tentative plan

• Overview:

- Basic functional analysis.
- Basic Fourier analysis of discrete Abelian groups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tentative plan

• Overview:

- Basic functional analysis.
- Basic Fourier analysis of discrete Abelian groups.
- Mathematical theory:
 - Influences, Noise operator; Discrete Log-Sobolov inequalities, Hyper-contractivity, Threshold Phenomena, Noise sensitivity, etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tentative plan

• Overview:

- Basic functional analysis.
- Basic Fourier analysis of discrete Abelian groups.
- Mathematical theory:
 - Influences, Noise operator; Discrete Log-Sobolov inequalities, Hyper-contractivity, Threshold Phenomena, Noise sensitivity, etc.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Applications to computer science:
 - Property testing.
 - Machine Learning.
 - Circuit Complexity.
 - Communication complexity.

What are we going to study?

Boolean Functions

$$f: \{0,1\}^n \to \{0,1\}.$$

What is Harmonic Analysis of Boolean Functions?

Harmonic Analysis

Focuses on the quantitative properties of functions, and how these quantitative properties change when apply various (often quite explicit) operators.

・ コット (雪) (小田) (コット 日)

What is Harmonic Analysis of Boolean Functions?

Harmonic Analysis

Focuses on the quantitative properties of functions, and how these quantitative properties change when apply various (often quite explicit) operators.

Fourier analysis

Studies functions by decomposing them into a linear combination of "symmetric" functions. These symmetric functions are usually explicit, and are often associated with physical concepts such as frequency or energy.

Examples I: Circuit Complexity

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Circuit complexity

Question

What can one say about the Fourier expansion of functions computable with small circuits (with gates \land, \lor, \neg)?

・ コット (雪) (小田) (コット 日)

Circuit complexity

Question

What can one say about the Fourier expansion of functions computable with small circuits (with gates \land, \lor, \neg)?

Theorem (Linial, Mansour, Nisan 1993)

The Fourier expansion of every such functions is always concentrated on low frequencies.

・ロト ・個ト ・ヨト ・ヨト 三日

Circuit complexity

Question

What can one say about the Fourier expansion of functions computable with small circuits (with gates \land, \lor, \neg)?

Theorem (Linial, Mansour, Nisan 1993)

The Fourier expansion of every such functions is always concentrated on low frequencies.

• Corollary: Parity cannot be computed with a small circuit.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Examples II: Influences

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• Think of them as voting systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

• Think of them as voting systems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Two candidates 0 and 1.

• Think of them as voting systems.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Two candidates 0 and 1.
- Everybody votes 0 or 1.

• Think of them as voting systems.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Two candidates 0 and 1.
- Everybody votes 0 or 1.
- f determines the winner.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• How important is the vote of the *i*-th person?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• How important is the vote of the *i*-th person?

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• How important is the vote of the *i*-th person?

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• How important is the vote of the *i*-th person?

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• How important is the vote of the *i*-th person?

Definition (In Probabilistic Language:)

• Consider $f : \{0, 1\}^n \rightarrow \{0, 1\}$, and the *i*-th person.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition (In Probabilistic Language:)

• Consider $f : \{0, 1\}^n \rightarrow \{0, 1\}$, and the *i*-th person.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Everybody else votes uniformly at random.

Definition (In Probabilistic Language:)

• Consider $f : \{0, 1\}^n \rightarrow \{0, 1\}$, and the *i*-th person.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Everybody else votes uniformly at random.
- $I_i = \Pr[i \text{-th voter can change the outcome}].$

Question

$f: \{0,1\}^n \rightarrow \{0,1\}$ with minimum total influence?

Question

 $f: \{0,1\}^n \rightarrow \{0,1\}$ with minimum total influence?

Answer

The constant function f = 0 or f = 1. The total influence is 0.

Question

 $f: \{0,1\}^n \rightarrow \{0,1\}$ with minimum total influence?

Answer

The constant function f = 0 or f = 1. The total influence is 0.

Question

Balanced $f : \{0, 1\}^n \rightarrow \{0, 1\}$ with minimum total influence?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example (Dictatorship)

Example (Dictatorship)

▲□▶▲@▶▲臣▶▲臣▶ 臣 のへで

Example (Dictatorship)

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

More examples of Influences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example (Majority)

$$f(x) =$$
Majority (x_1, \ldots, x_n) .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example (Majority)

$$f(x) =$$
Majority (x_1, \ldots, x_n) .

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

•
$$I_1 = I_2 = \ldots = I_n \approx \frac{1}{\sqrt{n}}$$
.
Example (Majority)

$$f(x) =$$
Majority (x_1, \ldots, x_n) .

•
$$I_1 = I_2 = \ldots = I_n \approx \frac{1}{\sqrt{n}}$$
.

Example (Parity)

$$f(x) = x_1 \oplus x_2 \oplus \ldots \oplus x_n.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Example (Majority)

$$f(x) =$$
Majority (x_1, \ldots, x_n) .

•
$$I_1 = I_2 = \ldots = I_n \approx \frac{1}{\sqrt{n}}$$
.

Example (Parity)

$$f(x)=x_1\oplus x_2\oplus\ldots\oplus x_n.$$

•
$$I_1 = I_2 = \ldots = I_n = 1.$$

◆□> < □> < □> < □> < □> < □> < □</p>

Dictator: $\sum I_i = 1 + 0 + ... + 0 = 1$.

Dictator: $\sum I_i = 1 + 0 + ... + 0 = 1$. Parity: $\sum I_i = 1 + ... + 1 = n$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Dictator:
$$\sum I_i = 1 + 0 + ... + 0 = 1$$
.
Parity: $\sum I_i = 1 + ... + 1 = n$.
Majority: $\sum I_i \approx \frac{1}{\sqrt{n}} + ... \frac{1}{\sqrt{n}} = \sqrt{n}$.

<ロ> <圖> <圖> < 国> < 国>

æ

Dictator:
$$\sum I_i = 1 + 0 + \ldots + 0 = 1$$
.
Parity: $\sum I_i = 1 + \ldots + 1 = n$.
Majority: $\sum I_i \approx \frac{1}{\sqrt{n}} + \ldots \frac{1}{\sqrt{n}} = \sqrt{n}$.

Question

Which functions have constant O(1) total influence?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Junta session one week after the 1973 coup in Chile.

Definition (Junta)

There is a small set of voters $\{i_1, \ldots, i_k\}$ who decide the election

$$f(\mathbf{x}) := g(\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}).$$

There is a small set of voters $\{i_1, \ldots, i_k\}$ who decide the election

$$f(x) := g(x_{i_1},\ldots,x_{i_k}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

There is a small set of voters $\{i_1, \ldots, i_k\}$ who decide the election

$$f(\mathbf{x}) := g(\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Everybody outside the junta has influence 0.

There is a small set of voters $\{i_1, \ldots, i_k\}$ who decide the election

$$f(\mathbf{x}) := g(\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Everybody outside the junta has influence 0.

• $\sum I_i \leq k$.

There is a small set of voters $\{i_1, \ldots, i_k\}$ who decide the election

$$f(\mathbf{x}) := g(\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}).$$

Everybody outside the junta has influence 0.

•
$$\sum I_i \leq k$$
.

Friedgut: The inverse is essentially true.

Theorem (Friedgut'98)

If the total influence is constant then f is approximately a junta.

There is a small set of voters $\{i_1, \ldots, i_k\}$ who decide the election

$$f(\mathbf{x}) := g(\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}).$$

Everybody outside the junta has influence 0.

•
$$\sum I_i \leq k$$
.

Friedgut: The inverse is essentially true.

Theorem (Friedgut'98)

If the total influence is constant then f is approximately a junta.

Proof is based on the proof of the KKL inequality.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• It has many applications in computer science.

- It has many applications in computer science.
- The proof was influential.

- It has many applications in computer science.
- The proof was influential.
- It is based on hyper-contractivity, a phenomenon in harmonic analysis.

- It has many applications in computer science.
- The proof was influential.
- It is based on hyper-contractivity, a phenomenon in harmonic analysis.
- It introduced this tool to the community of computer science and combinatorics.

Example III: Phase Transitions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Erdös-Rényi graph

 In early sixties Erdös and Rényi invented the notion of a random graph G(n, p):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Erdös-Rényi graph

- In early sixties Erdös and Rényi invented the notion of a random graph G(n, p):
- A random graph on *n* vertices, where

Erdös-Rényi graph

- In early sixties Erdös and Rényi invented the notion of a random graph G(n, p):
- A random graph on *n* vertices, where
- every edge is present independently with probability *p*.

Thresholds

They observed that some fundamental graph properties such as connectivity exhibit a threshold as p increases.

・ロト ・聞ト ・ヨト ・ヨト 三日

Thresholds

This is an instance of the phenomenon of phase transition in statistical physics which explains the rapid change of behavior in many physical processes.

(日)

The critical probability

Definition

Let $f : \{0, 1\}^n \to \{0, 1\}$ be an increasing function. The critical probability p_c is defined as

$$\Pr_{x \sim \mu_{\rho_c}}[f(x) = 1] = 1/2.$$

Theorem (Bollobás-Thomason 1987)

Let $f:\{0,1\}^n \to \{0,1\}$ be increasing. Then

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (Bollobás-Thomason 1987)

Let $f:\{0,1\}^n \to \{0,1\}$ be increasing. Then

$$\Pr_{x \sim \mu_p}[f(x) = 1] = \begin{cases} o(1) & p \ll p_c \\ 1 - o(1) & p \gg p_c. \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Bollobás-Thomason 1987)

Let $f:\{0,1\}^n \to \{0,1\}$ be increasing. Then

$$\Pr_{x \sim \mu_p}[f(x) = 1] = \begin{cases} o(1) & p \ll p_c \\ 1 - o(1) & p \gg p_c. \end{cases}$$

Connectivity:

Containing a triangle:

sharpness of threshold

One of the main questions that arises in studying phase transitions is:

(日)

• "How sharp is the threshold?"

sharpness of threshold

One of the main questions that arises in studying phase transitions is:

- "How sharp is the threshold?"
- That is how short is the interval in which the transition occurs.

Theorem (Recall Bollobás-Thomason)

Every increasing function $f : \{0,1\}^n \rightarrow \{0,1\}$ exhibits a *threshold*:

$$\Pr_{x \sim \mu_p}[f(x) = 1] = \begin{cases} o(1) & p \ll p_c \\ 1 - o(1) & p \gg p_c. \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Recall Bollobás-Thomason)

Every increasing function $f : \{0,1\}^n \rightarrow \{0,1\}$ exhibits a *threshold*:

$$\Pr_{x \sim \mu_p}[f(x) = 1] = \begin{cases} o(1) & p \ll p, \\ 1 - o(1) & p \gg p, \end{cases}$$

Definition (Sharp threshold)

An increasing function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ exhibits a sharp threshold, if for all $\epsilon > 0$,

$$\Pr_{x \sim \mu_p}[f(x) = 1] = \begin{cases} o(1) & p \leq (1 - \epsilon)p_c \\ 1 - o(1) & p \geq (1 + \epsilon)p_c. \end{cases}$$

Containing a triangle does not exhibit a sharp threshold.

Connectivity exhibits a sharp threshold.

• What about more complicated properties such as

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
Example

What about more complicated properties such as

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- Satisfiability of a 3-SAT formula.
- 3-colorability of a graph.

Example

What about more complicated properties such as

・ロト ・聞ト ・ヨト ・ヨト 三日

- Satisfiability of a 3-SAT formula.
- 3-colorability of a graph.

Is there a general approach to such questions?

Example

- What about more complicated properties such as
 - Satisfiability of a 3-SAT formula.
 - 3-colorability of a graph.

Is there a general approach to such questions?

Question

What can we say about $f : \{0, 1\}^n \to \{0, 1\}$ if it does not exhibit a sharp threshold?

・ロト ・聞ト ・ヨト ・ヨト 三日