
Harmonic Analysis of Boolean Functions

Lectures: MW 10:05-11:25 in MC 103
Office Hours: MC 328, by appointment
(hatami@cs.mcgill.ca).
Evaluation:

Assignments: 60 %
Presenting a paper at the end of the term: 20 %
Scribing two lectures: 15 %
Attending lectures: 5 %



Tentative plan

Overview:
Basic functional analysis.
Basic Fourier analysis of discrete Abelian groups.

Mathematical theory:
Influences, Noise operator; Discrete Log-Sobolov
inequalities, Hyper-contractivity, Threshold Phenomena,
Noise sensitivity, etc.

Applications to computer science:
Property testing.
Machine Learning.
Circuit Complexity.
Communication complexity.
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What are we going to study?

Boolean Functions

f : {0,1}n → {0,1}.



What is Harmonic Analysis of Boolean Functions?

Harmonic Analysis
Focuses on the quantitative properties of functions, and how
these quantitative properties change when apply various (often
quite explicit) operators.

Fourier analysis

Studies functions by decomposing them into
a linear combination of “symmetric” functions.
These symmetric functions are usually explicit,
and are often associated with physical concepts
such as frequency or energy.
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Examples I: Circuit
Complexity



Circuit complexity

Question
What can one say about the Fourier expansion of functions
computable with small circuits (with gates ∧,∨,¬)?

Theorem (Linial, Mansour, Nisan 1993)
The Fourier expansion of every such functions is always
concentrated on low frequencies.

Corollary: Parity cannot be computed with a small circuit.
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Examples II: Influences



We study Boolean functions f : {0,1}n → {0,1}.
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f(x)

Think of them as voting systems.

...

Two candidates 0 and 1.
Everybody votes 0 or 1.
f determines the winner.
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Consider a function f : {0,1}n → {0,1} and a voter i .

...

How important is the vote of the i-th person?
(Find a mathematical definition of the influence of a variable.)
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Consider a function f : {0,1}n → {0,1} and a voter i .

...

How important is the vote of the i-th person?
(Find a mathematical definition of the influence of a variable.)

x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Ii =
scenarios that xi mattered

2n

I1 = 6
8

I3 = 2
8



Definition (In Probabilistic Language:)

Consider f : {0,1}n → {0,1}, and the i-th person.

Everybody else votes uniformly at random.
Ii = Pr[ i-th voter can change the outcome].
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Question
f : {0,1}n → {0,1} with minimum total influence?

Answer
The constant function f = 0 or f = 1. The total influence is 0.

Question
Balanced f : {0,1}n → {0,1} with minimum total influence?
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Example (Dictatorship)

...

f (x) = x1 or f (x) = 1− x1.

I1 = 1, I2 = I3 = . . . = In = 0.
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More examples of
Influences



Example (Majority)

f (x) = Majority(x1, . . . , xn).

I1 = I2 = . . . = In ≈ 1√
n .

Example (Parity)
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Total influence

Dictator:
∑

Ii = 1 + 0 + . . .+ 0 = 1.

Parity:
∑

Ii = 1 + . . .+ 1 = n.
Majority:

∑
Ii ≈ 1√

n + . . . 1√
n =
√

n.

Question
Which functions have constant O(1) total influence?
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Junta session one week after the 1973 coup in Chile.

Definition (Junta)

There is a small set of voters {i1, . . . , ik} who decide the
election

f (x) := g(xi1 , . . . , xik ).
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There is a small set of voters {i1, . . . , ik} who decide the
election

f (x) := g(xi1 , . . . , xik ).

Everybody outside the junta has influence 0.∑
Ii ≤ k .

Friedgut: The inverse is essentially true.

Theorem (Friedgut’98)

If the total influence is constant then f is approximately a junta.

Proof is based on the proof of the KKL inequality.
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Theorem (KKL inequality 1988)
Let f be a balanced function. Then

max
i

Ii &
log n

n
.

It has many applications in computer science.
The proof was influential.
It is based on hyper-contractivity, a phenomenon in
harmonic analysis.
It introduced this tool to the community of computer
science and combinatorics.
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Example III: Phase
Transitions



Erdös-Rényi graph

In early sixties Erdös and Rényi invented the notion of a
random graph G(n,p):

A random graph on n vertices, where
every edge is present independently with probability p.

G(n, p)

e

Pr[e ∈ G(n, p)] = p
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Thresholds

They observed that some fundamental graph properties such
as connectivity exhibit a threshold as p increases.

1

1

p

Pr[G(n, p) is connected]



Thresholds

This is an instance of the phenomenon of phase transition in
statistical physics which explains the rapid change of behavior
in many physical processes.



The critical probability

Definition
Let f : {0,1}n → {0,1} be an increasing function. The critical
probability pc is defined as

Pr
x∼µpc

[f (x) = 1] = 1/2.

1

p

Pr[G(n, p) is connected]

pc =
lnn
n



Theorem (Bollobás-Thomason 1987)

Let f : {0,1}n → {0,1} be increasing. Then

Pr
x∼µp

[f (x) = 1] =
{

o(1) p � pc
1− o(1) p � pc .

1
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Pr[f(x) = 1]

pc

transition interval
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Example
Connectivity:

1

p
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lnn
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Example
Containing a triangle:

1

p

Pr[triangle]

pc



sharpness of threshold

One of the main questions that arises in studying phase
transitions is:

“How sharp is the threshold?”

That is how short is the interval in which the transition
occurs.
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Theorem (Recall Bollobás-Thomason)

Every increasing function f : {0,1}n → {0,1} exhibits a
threshold:

Pr
x∼µp

[f (x) = 1] =
{

o(1) p � pc
1− o(1) p � pc .

Definition (Sharp threshold)

An increasing function f : {0,1}n → {0,1} exhibits a sharp
threshold, if for all ε > 0,

Pr
x∼µp

[f (x) = 1] =
{

o(1) p ≤ (1− ε)pc
1− o(1) p ≥ (1 + ε)pc .
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Example
Containing a triangle does not exhibit a sharp threshold.
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Example
Connectivity exhibits a sharp threshold.
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Pr[G(n, p) is connected]

pc =
lnn
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Example
What about more complicated properties such as

Satisfiability of a 3-SAT formula.
3-colorability of a graph.

Is there a general approach to such questions?

Question
What can we say about f : {0,1}n → {0,1} if it does not exhibit
a sharp threshold?
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