1. A language $L \subseteq \{0, 1\}^*$ is sparse if there is a polynomial $p(n)$ such that $|L \cap \{0, 1\}^n| \leq p(n)$ for every n. Show that every sparse language is in P/poly.

2. Prove that $\text{PSPACE} \neq \text{uniformNC}^1$.

3. Prove that if there is a polynomial time oracle TM that takes two CNF’s ϕ_1 and ϕ_2 and outputs their satisfiability using only one oracle query to SAT, then $P = NP$.

4. A function $f : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ naturally corresponds to a bipartite graph on $2n$ vertices. This graph is called k-Ramsey if there do not exist $A, B \subseteq \{0, 1\}^n$ with $|A| = |B| = k$, and $b \in \{0, 1\}$, with $f(x, y) = b$ for all $x \in S, y \in T$.

 (a) Prove that with probability at least $\frac{1}{2}$ a random function defines a $O(n)$-Ramsey graph.

 (b) Show that if f has an AC circuit of size s, and depth d, then it is not $2^{\Omega(n/\log^2(s))}$-Ramsey.

5. Let $p \in [0,1/2]$ and $q \in [0,1]$, $c > 5$ and $t > 1$. Suppose that a Boolean function $f : \{0,1\}^n \to \{0,1\}$ is computed by an AC circuit of size S and depth at most $d \leq \frac{\log q}{(tc + \log \log S)}$. Select a random restriction ρ with parameters

 $\Pr[*] = q, \Pr[1] = (1 - q)p, \Pr[0] = (1 - q)(1 - p)$.

 Prove that

 $\Pr[\text{dt}(f|_\rho) \geq \log(S)/c] \leq S^{1-t}$.

6. Below is a few facts/problems related to finite fields.

 (a) Let p be prime. Let $\mathbb{F}_p = \{0, 1, \ldots, p-1\}$ along with operations addition and multiplication mod p. Every integer can be treated as an element of \mathbb{F}_p (by taking the remainder after dividing by p). All of \mathbb{F}_p forms a group under addition. The nonzero elements of \mathbb{F}_p, denoted \mathbb{F}_p^* form a group under multiplication. Both groups are commutative.

 (b) For each $a \in \mathbb{F}_p$, we have $a^p = a$, and if $a \neq 0$, then $a^{p-1} = 1$.

 (c) Following the Razborov-Smolensky proof strategy from the lecture notes, show that PARITY and MAJORITY do not have polynomial size $AC_0(MOD_3)$ circuits. Here in addition to the usual gates of AC circuits, we all MOD_3 gates, which have unbounded fan-in, and output 0 iff the number of 1s on the input wires is divisible by 3.

 (d) Where does the above proof fail if we replace MOD_3 with MOD_6?