
COMP 531 - Fall 2022 - Assignment 3

Due: Nov 11, 11:59pm

• In solving these questions you may only consult the lecture notes, and
the Sipser book, but you need to provide citations in that case.

• Each student must find and write their own solution. Copying so-
lutions from any source, completely or partially, allowing others to
copy your work, will not be tolerated, and will be reported to the dis-
ciplinary office. You are allowed to discuss the problems with each
other without revealing your solution to each other.

• You must submit your solutions as one readable pdf file to my-
courses.

• Your grade will be based on the mathematical correctness of your
solution as well as the quality of your presentation.

1. Prove that with Maj,∨,∧,¬ gates (arbitrary fan-in), there is a poly-
nomial size, O(1) depth circuit that computes Parity.

2. A function f : {0, 1}n × {0, 1}n → {0, 1} naturally corresponds to
a bipartite graph on 2 × 2n vertices. More formally there are two
parts each with 2n elements labeled with {0, 1}n, and there is an edge
between x from part I and y from part II, if and only if f(x, y) = 1.
This graph is called k-Ramsey if there do not exist A,B ⊆ {0, 1}n with
|A| = |B| = k, and b ∈ {0, 1}, with f(x, y) = b for all x ∈ A, y ∈ B.

(a) Prove that with probability at least 1
2 a random function defines

a O(n)-Ramsey graph. More precisely, show that there is a uni-
versal constant c > 0 (does not depend on n) such that a random
function is cn-Ramsey with probability at least 1/2.

(b) Show that if f has an AC circuit of size s, and depth d, then it

is not 2Ω(n/ logd(s))-Ramsey.
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3. Follow the Razborov-Smolensky proof strategy to show that Parity
and Maj do not have polynomial size AC0[mod 3] circuits. These are
circuits similar to AC0 but additionally “mod 3” gates with arbitrary
fan-in are allowed. The “mod 3” gates output 0 if and only if the
number of 1’s on the input wires is divisible by 3.

Hint: Try to work in the field Fp (p is a prime) for an appropriate
value of p. Recall that Fp = {0, 1, . . . , p − 1} along with operations
addition and multiplication modp forms a field. Recall that for every
a ∈ Fp we have ap = a.)

4. Give a Boolean Am×m, let Cov(A) denote the smallest number of all-1
submatrices of A that cover all 1-entries of A. Let Cov&(A) be the
smallest number t such that A can be written as an entry-wise ∧ of t
Boolean matrices A1, . . . , At such that Cov(Ai) ≤ t for all i.

Let G be a bipartite m×m graph with m = 2n. We can represent G
with two different functions:

Binary: Identify the vertices of G with vectors in {0, 1}n, and repre-
sent G with the function

fG : {0, 1}n × {0, 1}n → {0, 1}

defined by fG(x, y) = 1 iff x and y are adjacent in G. Here, fG
corresponds to the so-called bi-adjacency matrix of G.

Unary: Let e1, . . . , em be the standard basis vectors in {0, 1}m. Define

gG : {e1, . . . , em} × {e1, . . . , em} → {0, 1}

where gG(ei, ej) = 1 iff i and j are adjacent in G. We consider gG as
a function on 2m variables (u1, . . . , um) ∈ {0, 1}m and (v1, . . . , vm) ∈
{0, 1}m.

(a) Let C be an AC circuit (with input variables x1, . . . , xn, y1, . . . , yn)
computing fG. Prove that one can replace each input literal by
an OR of variables u1, . . . , um and v1, . . . , vm so that the resulting
monotone circuit computes gG.

(b) Let cnf(G) denote the minimum number of clauses in a monotone
CNF representing gG. Prove that

cnf(G) = Cov(1− fG).

Note that 1− fG = fG.
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(c) Use the previous parts to obtain a lower bound on the size of
the smallest CNF (not necessarily monotone) that represents fG
where G is the (bipartite) complement of a perfect matching.

(d) Show that Boolean m × m matrices A with Cov&(A) ≥ mΩ(1)

exist.

(e) Suppose that we can find an explicit Boolean matrix Am×m with
Cov&(A) ≥ mΩ(1). How would we use part (a) and the matrix
A to obtain a strong explicit lower bound against depth 3 AC
circuits?
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