1. Prove that the 2-bit NAND is a universal basis.

2. Prove that with MAJ, ∨, ∧, ¬ gates (arbitrary fan-in), there is a polynomial size, $O(1)$ depth circuit that computes PARITY.

3. Let $\text{SIZE}_{dt}(f)$ denote the smallest number of leaves in a decision tree computing f. Prove that for every $f : \{0, 1\}^n \rightarrow \{0, 1\}$ if ρ is a random restriction with parameter p (that is $\Pr[*] = p$), we have

$$E|_{\rho}[\text{SIZE}_{dt}(f_\rho)] \leq \text{SIZE}_{dt}(f)^{\log_2(1+p)}.$$

Prove that this bound cannot be improved by giving an example where the bound is sharp.

4. Let $C \subseteq \{0, 1\}^n$ be a set of size m, and $f : C \rightarrow \{0, 1\}$ be known to us. In the terminology of machine learning, C is called a concept class, and $f(x)$ is called the label of the concept $x \in C$. The goal is to determine the label of an unknown x by making the smallest possible number of queries about x. A query model specifies what queries are allowed. Some commonly used query models are coordinate queries x_i, parity queries $\oplus_{i \in S} x_i$, and threshold queries $\text{sgn}(t - \sum_{i=1}^n w_i x_i)$. Consider a query model Q (e.g., the parity query model).

The deterministic query complexity of C, denoted by $dt^Q(C)$, is the smallest k such that the label of every point $x \in C$ can be determined by making at most k queries about x. Note that this corresponds to a decision tree of depth at most k, where the internal nodes correspond to queries, and the leaves correspond to the predicted labels.

The randomized query complexity of C, denote by $r dt^Q(C)$, is the smallest k such that the label of every point $x \in C$ can be determined with error probability of at most $\frac{1}{3}$ by making at most k random queries. Prove that

$$dt^Q(C) = O(r dt^Q(C) \log m).$$
5. Let \(k > 0 \) be a fixed constant, and let the threshold function \(t_k : \{0,1\}^n \rightarrow \{0,1\} \) be defined as \(t_k(x) = 1 \) if and only if \(\sum x_i \geq k \).

(a) Prove that the deterministic parity decision tree complexity\(^1\) of \(t_k \) is \(\Omega(n) \).

(b) Prove that there is a (one-sided error) randomized parity decision tree \(T_R \) of constant depth that computes \(t_k(x) \). That is

\[
\Pr_{R}[T_R(x) = t_k(x)] = 1 \quad \text{for all } x \text{ with } t_k(x) = 0.
\]

\[
\Pr_{R}[T_R(x) = t_k(x)] \geq \frac{1}{2} \quad \text{for all } x \text{ with } t_k(x) = 1.
\]

What does this tell us about the bound in the previous question?

(Hint: First solve the problem for \(k = 1 \). For general \(k \), randomly partition the variables into \(k + 1 \) disjoint sets, and focus on each of these sets.)

6. Follow Razborov-Smolensky proof strategy to show that \textsc{Parity} and \textsc{Maj} do not have polynomial size \(\text{AC}^0[\text{mod } 3] \) circuits. These are circuits similar to \(\text{AC}^0 \) but additionally “mod 3” gates with arbitrary fan-in are allowed. The “mod 3” gates output 0 if and only if the number of 1’s on the input wires is divisible by 3.

Hint: Try to work in the field \(\mathbb{F}_p \) (\(p \) is a prime) for an appropriate value of \(p \). Recall that \(\mathbb{F}_p = \{0,1,\ldots,p-1\} \) along with operations addition and multiplication mod \(p \) forms a field. Recall that for every \(a \in \mathbb{F}_p \) we have \(a^p = a \).

7. A function \(f : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\} \) naturally corresponds to a bipartite graph on \(2 \times 2^n \) vertices. More formally there are two parts each with \(2^n \) elements labeled with \(\{0,1\}^n \), and there is an edge between \(x \) from part I and \(y \) from part II, if and only if \(f(x,y) = 1 \). This graph is called \(k \)-Ramsey if there do not exist \(A,B \subseteq \{0,1\}^n \) with \(|A| = |B| = k \), and \(b \in \{0,1\} \), with \(f(x,y) = b \) for all \(x \in A, y \in B \).

(a) Prove that with probability at least \(\frac{1}{2} \) a random function defines a \(O(n) \)-Ramsey graph.

More precisely, show that there is a universal constant \(c > 0 \) (does not depend on \(n \)) such that a random function is \(cn \)-Ramsey with probability at least \(1/2 \).

(b) Show that if \(f \) has an \(\text{AC} \) circuit of size \(s \), and depth \(d \), then it is not \(2^{\Omega(n/\log^d(s))} \)-Ramsey.

\(^1\)i.e., smallest depth of a parity decision for \(t_k \).