- Let S be a subset of positive integers, and let $A=\sum_{x \in S} x^{2}, B=\sum_{x \in S, x^{2} \in S} x$. What are the values of A and B if $S=\{1,2,4,5\}$?
- Let M be an $n \times n$ matrix. Let $M_{i j}$ denote the $i j$-th entry of M. If the total sum of the entries of M is 100 , then what is the value of $\sum_{i=1}^{n} \sum_{j \in\{1, \ldots, n\} \backslash\{i\}} \sum_{r=1}^{n} M_{i r}$?
- Is it true that there are $\left\lceil\log _{2} n\right\rceil$ digits in the binary representation of a positive integer n ?
- What is $\sum_{n=0}^{k} 2^{n}$?
- Consider a sequence $S=\left(a_{1}, \ldots, a_{n}\right)$ of integers, and let E denote the set of even integers in $\{1, \ldots, n\}$. Let $A=\sum_{i \in E} a_{i}$. What is the value of A if $S=(1,3,2,5,4)$?
- Let $G=(V, E)$ be an undirected graph. Suppose that to every edge $u v$ a positive integer $c_{u v}$ is assigned. What does the following statement mean?

$$
\exists c \forall u \in V, \quad \sum_{u v \in E} c_{u v}=c .
$$

- Let $G=(V, E)$ be an undirected graph where the degree of every vertex is 10 . Suppose that to every vertex $u \in V$ a positive integer a_{v} is assigned. If $\sum_{v \in V} a_{v}=5$, what is $\sum_{v \in V} \sum_{u \in V: u v \in E} a_{u}$?

