
COMP 360 - Sample Midterm

1. Chemco produces two chemicals: A and B. These chemicals are produced via two manufacturing
processes. Process 1 requires 2 hours of labor and 1kg of raw material to produce 1g of A and
1g of B. Process 2 requires 3 hours of labor and 2kg of raw material to produce 3g of A and
2g of B. Sixty hours of labor and 40kg of raw material are available. Chemical A sells for $16
per gram and B sells for $14 per gram. Formulate a linear program that maximizes Chemco’s
revenue.

Solution: Let x1 be the number of times we run process 1, and x2 be the number of times we
run process 2.

max (16 + 14)x1 + (3× 16 + 2× 14)x2
s.t. 2x1 + 3x2 ≤ 60

x1 + 2x2 ≤ 40
x1 ≥ 0
x2 ≥ 0
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2. There are n athletes, numbered 1, . . . , n, and m races are scheduled between them. Every race
is between five athletes and has one winner. More formally we are given m sets R1, . . . , Rm ⊆
{1, . . . , n} each of size exactly 5, where Ri is the list of the athletes in the i-th race. We are also
given positive integers p1, . . . , pn. We want to see if it is possible for the races to finish in such a
way that the i-th athlete wins at most pi races (for all 1 ≤ i ≤ n). Show that this problem can
be modeled as a max flow problem and solved using the Ford-Fulkerson algorithm.

Solution: Create a node for each race, and one for each athlete, and direct 5 edges of capacity
1 from each race to the five athletes in that race. Connect the source to each race with an edge
of capacity 1, for each i, connect the i-th athelete to the sink with an edge of capacity pi. If
Max-flow equals m, then we know that it is possible for the races to finish in such a way that
the i-th athlete wins at most pi races. Indeed in that case, in an integer valued flow, the edge
with one unit of flow on it going of each race will determine the winner of that race.
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3. Prove that for every flow network (G, s, t, {ce}), there is a maximum flow f such that the edges
with non-zero flow on them form a graph that does not contain any directed cycles.

Solution: We first find a max-flow and then modify it to remove all the directed cycles. If
there is such a cycle, we decrease the flow on all the edges of the cycle by the smallest flow
value on the cycle, and we repeat this process until all the cycles are gone. This preserves the
conservation condition because it decreases the same amount from the incoming and outgoing
flow of the vertices on the cycle. Capacity condition is also obviously remains valid. Moreover
the value of the flow does not change because the cycle cannot pass through the source s. So at
every step we arrive at a new valid max flow. This process has to terminate because at every
step at least one new edge will have 0 flow on it and the number of edges is finite. Finally when
the algorithm terminates we will not have any cycle with positive flow on it as otherwise the
algorithm would have not halted.
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4. We are given two positive numbers n and d and a function f : {0, 1, . . . , n} → R. Our goal is to
find the best approximation of f with a polynomial of degree d. More precisely we want to find
a polynomial of degree d that minimizes maxx∈{0,...,n} |f(x)− p(x)|.

(a) Formulate this problem as a linear program.

Solution: The variables are a0, . . . , ad, e, and they are all free:

min e

s.t. e+
∑d

i=0 k
iai ≥ f(x) ∀k ∈ {0, 1, ..., n}

e−
∑d

i=0 k
iai ≥ −f(x) ∀k ∈ {0, 1, ..., n}

(b) Write the dual of your linear program.

Solution: The variables are b0, . . . , bn, c0, . . . , cn:

max
∑n

k=0 f(k)bk − f(k)ck
s.t.

∑n
k=0 k

ibk −
∑n

k=0 k
ick = 0 ∀i ∈ {0, 1, ..., d}∑n

k=0 bk + ck = 1
bk, ck ≥ 0 ∀k ∈ {0, 1, ..., n}
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