COMP 360 - Sample Midterm

1. Chemco produces two chemicals: A and B. These chemicals are produced via two manufacturing processes. Process 1 requires 2 hours of labor and 1 kg of raw material to produce 1 g of A and 1 g of B. Process 2 requires 3 hours of labor and 2 kg of raw material to produce 3 g of A and 2 g of B. Sixty hours of labor and 40 kg of raw material are available. Chemical A sells for $\$ 16$ per gram and B sells for $\$ 14$ per gram. Formulate a linear program that maximizes Chemco's revenue.
2. There are n athletes, numbered $1, \ldots, n$, and m races are scheduled between them. Every race is between five athletes and has one winner. More formally we are given m sets $R_{1}, \ldots, R_{m} \subseteq$ $\{1, \ldots, n\}$ each of size exactly 5 , where R_{i} is the list of the athletes in the i-th race. We are also given positive integers p_{1}, \ldots, p_{n}. We want to see if it is possible for the races to finish in such a way that the i-th athlete wins at most p_{i} races (for all $1 \leq i \leq n$). Show that this problem can be modeled as a max flow problem and solved using the Ford-Fulkerson algorithm.
3. Prove that for every flow network $\left(G, s, t,\left\{c_{e}\right\}\right)$, there is a maximum flow f such that the edges with non-zero flow on them form a graph that does not contain any directed cycles.
4. We are given two positive numbers n and d and a function $f:\{0,1, \ldots, n\} \rightarrow \mathbb{R}$. Our goal is to find the best approximation of f with a polynomial of degree d. More precisely we want to find a polynomial of degree d that minimizes $\max _{x \in\{0, \ldots, n\}}|f(x)-p(x)|$.
(a) Formulate this problem as a linear program.
(b) Write the dual of your linear program.
