COMP 360 - Sample Midterm

1. Chemco produces two chemicals: A and B. These chemicals are produced via two manufacturing processes. Process 1 requires 2 hours of labor and 1kg of raw material to produce 1g of A and 1g of B. Process 2 requires 3 hours of labor and 2kg of raw material to produce 3g of A and 2g of B. Sixty hours of labor and 40kg of raw material are available. Chemical A sells for \$16 per gram and B sells for \$14 per gram. Formulate a linear program that maximizes Chemco's revenue.

2. There are *n* athletes, numbered $1, \ldots, n$, and *m* races are scheduled between them. Every race is between five athletes and has one winner. More formally we are given *m* sets $R_1, \ldots, R_m \subseteq$ $\{1, \ldots, n\}$ each of size exactly 5, where R_i is the list of the athletes in the *i*-th race. We are also given positive integers p_1, \ldots, p_n . We want to see if it is possible for the races to finish in such a way that the *i*-th athlete wins at most p_i races (for all $1 \le i \le n$). Show that this problem can be modeled as a max flow problem and solved using the Ford-Fulkerson algorithm. 3. Prove that for every flow network $(G, s, t, \{c_e\})$, there is a maximum flow f such that the edges with non-zero flow on them form a graph that does not contain any directed cycles.

- 4. We are given two positive numbers n and d and a function $f : \{0, 1, \ldots, n\} \to \mathbb{R}$. Our goal is to find the best approximation of f with a polynomial of degree d. More precisely we want to find a polynomial of degree d that minimizes $\max_{x \in \{0, \ldots, n\}} |f(x) p(x)|$.
 - (a) Formulate this problem as a linear program.
 - (b) Write the dual of your linear program.