Consider the max flow problem in a flow network G with multiple sources s_1, \ldots, s_k and multiple sinks t_1, \ldots, t_r. Here the conservation and the capacity condition are as before, but the value of a flow f is defined to be

$$\text{val}(f) = f^{\text{out}}(s_1) + \ldots + f^{\text{out}}(s_k).$$

Show that this problem can be converted to the original max flow problem (with a single source and a single sink).

Solution: Construct a flow network G' from G by adding a sink s, a source t, and edges ss_1, \ldots, ss_k and t_1t, \ldots, t_rt all with ∞ capacities. In G', s is the only source and t is the only sink, so G' is a flow network.

We claim that max flow in G' equals to max flow in G. Indeed let f be a max-flow in G, with

$$\text{val}(f) = f^{\text{out}}(s_1) + \ldots + f^{\text{out}}(s_k).$$

We can extend f to a valid flow for G' by assigning $f(ss_i) = f^{\text{out}}(s_i)$ and $f(t_jt) = f^{\text{in}}(t_j)$ for all i and j. Note that this is a valid flow for G' and moreover its value is

$$f^{\text{out}}(s) = f(ss_1) + \ldots + f(ss_k) = f^{\text{out}}(s_1) + \ldots + f^{\text{out}}(s_k) = \text{val}(f).$$

This shows that Max flow in G' is at least the max flow in G. On the other hand take a max flow g in G'. Now if we restrict g to the original graph G we will obtain valid flow for G whose value (by definition) is

$$g^{\text{out}}(s_1) + \ldots + g^{\text{out}}(s_k) = g^{\text{in}}(s_1) + \ldots + g^{\text{in}}(s_k) = g^{\text{out}}(s),$$

and that is exactly the max flow in G'. So we also showed that the max flow in G is least the max flow in G'.