1. (3 points) Either prove that the following problem is NP-complete or show that it belongs to P by giving a polynomial time algorithm:

 - **Input:** An undirected graph G.
 - **Question:** Does G have a proper colouring with three colours R, G, B that assigns the colour B to exactly one vertex?

 Solution: The problem is in P as there is a polytime algorithm that solves it. Note that the problem is basically asking to see if it is possible to turn G into a bipartite graph after deleting only one vertex (the vertex with colour B). We can have a for-loop that goes over all the vertices, and for each one, we will check if G is bipartite after removing that vertex. Checking whether a graph is bipartite (equivalently 2-colourable) can be done in polynomial time using DFS or BFS.
2. (8 points) Consider the triangle elimination problem. We are given an undirected graph \(G = (V, E) \), and want to find the smallest possible set of vertices \(U \subseteq V \) such that deleting these vertices removes all the triangles (i.e. cycles of length 3) from the graph. For each one of the following algorithms, either show that it is a 3-factor approximation algorithm, or give an example to show that it is not.

Algorithm I:
- While there is still a triangle \(C \) left in \(G \):
 - Delete all the three vertices of \(C \) from \(G \)
- EndWhile
- Output the set of the deleted vertices

Algorithm II:
- While there is still a triangle \(C \) left in \(G \):
 - Delete one arbitrarily chosen vertex of \(C \) from \(G \)
- EndWhile
- Output the set of the deleted vertices

Algorithm III:
- While there is still a triangle left in \(G \):
 - Delete a vertex that is in the largest number of triangles
- EndWhile
- Output the set of the deleted vertices

Algorithm VI:
- Write an Integer Program for this problem with constraints \(x_u + x_v + x_w \geq 1 \) for every triangle \((u, v, w) \) in \(G \) (and constraints \(x_u \in \{0, 1\} \)).
 - Solve the LP relaxation of this Integer Program (with constraints \(0 \leq x_u \leq 1 \)).
- EndWhile
- Output the set of the vertices \(u \) with \(x_u \geq \frac{1}{3} \).

Solution: Algorithm I is a 3-factor approximation algorithm. If the algorithm detects \(m \) triangles, then it removes \(3m \) points. These \(m \) triangles are disjoint, and thus the optimal solution must remove at least 1 from each. Hence \(\text{opt} \geq m \), which implies output = \(3m \leq 3 \times \text{opt} \).

Solution: Algorithm II is not a 3-factor approximation algorithm. Consider four triangles all sharing one vertex \(v \). In this case the optimal answer is 1 (just removing \(v \)), while the algorithm might remove 4 different vertices. \(4 \not\leq 3 \times 1 \).

Solution: Algorithm III is not a 3-factor approximation algorithm. This one is difficult. We start with constructing a bipartite graph \(H \). Let \(L \) be a set of size \(r = k! = 2 \times 3 \times \ldots \times k \) for some large \(k \) to be determined later (we want \(r \) to be divisible to \(2, \ldots, k \)). Let \(R_2 \) be a set of size \(r/2 \), \(R_3 \) be a set of size \(r/3 \), etc, and finally \(R_k \) be a set of size \(r/k \) (there is no \(R_1 \)).

For each \(2 \leq j \leq k \), divide the \(r \) vertices in \(L \) into \(r/j \) equal parts of size \(j \), and connect each vertex in \(R_j \) to all the vertices in one of these parts (so no two vertices in the same \(R_j \) have any common neighbours in \(L \)).
Let us look at some of the properties of H. First note that H is bipartite, and every vertex in R_j is of degree j (it is connected to j vertices in L). On the other hand every vertex in L is of degree $k - 1$ (it is connected to one vertex in each R_j for $j = 2 \ldots, k$).

Now we finally construct G by “gluing” a separate triangle on top of each edge of H. In other words, for each each $e = uv$ of H, we add a new vertex w_e and connect both u and v to w_e.

Note that removing all the vertices of L from G will kill all the triangles. So $Opt \leq |L| = r$. Let us see how Algorithm III performs on this graph. Initially

- Every vertex in R_j is in j triangles (for each edge incident to it in H).
- Every vertex in L is in $k - 1$ triangles.
- Every new vertex w_e is only in 1 triangle.

So our algorithm will pick the vertices in R_k and delete them one by one. This will remove all of R_k. After this every vertex in L is going to be in $k - 2$ triangles, so it will start removing the vertices in R_{k-1} which are in $k - 1$ triangles, etc. So our algorithm will remove all the vertices in $R_2 \cup R_3 \cup \ldots \cup R_k$, which is of size

$$\frac{r}{k} + \frac{r}{k-1} + \ldots + \frac{r}{2} = (1/2 + 1/3 + \ldots + 1/k)r.$$

Remember that $Opt \leq r$, but if we take k to be large (say $k = 3^{100}$) we will have that

$$(1/2 + 1/3 + \ldots + 1/k)r \geq 100r.$$

Basically this algorithm is not a C-factor approx algorithm for no $C = O(1)$.

Solution: Algorithm VI is a 3-factor approximation algorithm. First note that since for every triangle uvw, we have $x_u + x_v + x_w \geq 1$, at least one of u, v, w will be assigned a value $\geq 1/3$, and thus we will select at least one vertex from every triangle. In other words, the algorithm outputs a proper set that removes all the triangles.

Why is the solution at most 3 times the optimal? Because the linear program is a relaxation of the integer program that solves the actual problem (with constraints $x_u \in \{0, 1\}$ for all u) we have that

$$Opt(LP) \leq Opt(problem).$$

On the other hand the output is at most 3 times $Opt(LP)$. This is because

$$Output = \sum \overline{x}_u \leq 3 \sum x_u = Opt(LP) \leq Opt(problem),$$

where $\overline{x}_u = 1$ if $x_u \geq 1/3$ and $\overline{x}_u = 1$ if $x_u < 1/3$.

3. (4 points) We are given a graph G together with an ordering of the vertices of G such that every vertex v has at most 5 neighbours that appear before v in that order (but v can have many neighbours appear later in the order).

- Show that the vertices of G can be properly coloured using 6 colours.

Solution: We can colour the vertices greedily following the ordering. That is we colour every vertex with a colour that is currently available for that vertex. Note that when we colour a vertex, it has at most five neighbours that are already coloured, so there is always at least one colour available for that vertex.
Next we want to colour the vertices of G with 5 colours so as to maximize the number of edges that are properly coloured (that is they have different colours on their endpoints). Design a $\frac{14}{15}$-factor approximation algorithm for this problem.

Solution: We start with the 6 colouring that we have already found. Let V_1, \ldots, V_6 be the set of the vertices that are coloured by colours 1, \ldots, 6 respectively. We find the $i \neq j$ such that the number of edges between V_i and V_j is minimized. Since there are $\binom{6}{2} = 15$ different choices for ij, we know that the number of edges between V_i and V_j is at most $|E|/15$.

We combine V_i and V_j by colouring all the vertices in V_j with the colour i as well. This way we eliminated one colour but now the edges between V_i and V_j (and only these edges) are not properly coloured. So the total number of edges that are properly coloured is at least $|E| - |E|/15 = 14|E|/15$. So

$$Output \geq 14|E|/15 \geq 14Opt/15,$$

because Opt cannot be larger that $|E|$.

4. Let x be a string of length n of 0’s and 1’s. Consider the following operations:

- $\text{del}(x, i)$ (for $1 \leq i \leq n$) deletes the i-th bit of the string x, and thus decreases its length to $n-1$.
- $\text{set}(x, i, b)$ (for $1 \leq i \leq n$ and $b \in \{0,1\}$) sets the i-th bit of x to the bit b.
- $\text{insert}(x, i, b)$ (for $1 \leq i \leq n+1$ and $b \in \{0,1\}$) inserts b after the $i-1$-th bit of x, and thus increases the length of x.

Let a and b be two strings 0’s and 1’s. Define the distance $d(a, b)$ to be the smallest number of operations required to convert a to b.

(a) (1 point) Show that $d(a, b) = d(b, a)$.

Solution: “Insert” is the reverse of “delete”, and “set” can be reversed with “set”. So if we have a sequence of k operations that converts a to b, we can find a sequence of k operations that can convert b to a, and vice versa. We have $d(a, b) = d(b, a)$.

(b) (2 point) Explain briefly how $d(a, b)$ can be computed in polynomial time using dynamic programming.

Solution: This is basically the sequence alignment problem (See 6.6 of the book). We define $D[i, j] = d(a[1 \ldots i], b[1 \ldots j])$, and then we can find a recursive formula for this. See also https://web.stanford.edu/class/cs124/lec/med.pdf

(c) (4 points) We are given 3 strings a, b, c, and we want to find a fourth string d that minimizes $d(a, d) + d(b, d) + d(c, d)$. Give a 4/3-approximation algorithm for this problem.

Solution: We try $d = a, d = b,$ and $d = c$ and output the best one (we can find the distances in polytime using the previous dynamic programming part). That is our output is the smallest of $d(a, b) + d(a, c)$, and $d(a, b) + d(b, c)$, and $d(c, a) + d(c, b)$ which is obviously at most their average

$$Output \leq \frac{1}{3} (d(a, b) + d(b, c) + d(a, b) + d(b, c) + d(c, a) + d(c, b)) = \frac{2}{3} (d(a, b) + d(a, c) + d(b, c)).$$

Let d^* be the optimal solution. Obviously

$$Opt = d(a, d^*) + d(b, d^*) + d(c, d^*) = \frac{1}{2} (d(a, d^*) + d(b, d^*) + d(a, d^*) + d(c, d^*) + d(b, d^*) + d(c, d^*)).$$
But by triangle inequality, \(d(a, d^*) + d(b, d^*) \geq d(a, b) \), and \(d(a, d^*) + d(c, d^*) \geq d(a, c) \), and \(d(b, d^*) + d(c, d^*) \geq d(b, c) \). Hence

\[
Opt \geq \frac{1}{2} (d(a, b) + d(a, c) + d(b, c)).
\]

This and what we had above shows

\[
Opt \leq \frac{4}{3} \text{Output}.
\]

Fun fact: No better algorithm is known.