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1 What is Polyhedral Computation FAQ?

This is an FAQ to answer some basic questions arising from certain geometric computation in
general dimensional (mostly Euclidean) space. The main areas to be covered are the convex
hull computation of a finite point set, the vertex enumeration for a convex polytope, the
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computation of Voronoi diagram and Delaunay triangulation, in Rd. We illustrate typical
solution processes with small examples and publicly available codes such as cdd+ and lrs.

It is still incomplete and perhaps contains a number of typos and mistakes at this moment,
but I will try to make it as complete as possible for the primary purposes.

We do not intend to discuss techniques and algorithms specially designed for particular
dimensions (e.g. 2D and 3D). For those interested primarily in geometric computation in lower
dimensions (e.g. 2 and 3) should consult the comp.graphics.algorithms FAQ [O’R] as well as
a handbook of discrete and computational geometry [Ge97].

Please note that the Polyhedral Computation FAQ is available from [Fuk] in two formats,
ps and html. (A pdf version will be available soon). The html version is created by latex2html,
and it has an advantage of having html links within the documents. Yet, one has to be aware
of the fact that some conversion errors exist that give wrong equation numberings and missing
figures. Please consider the ps version as the most reliable source.

To refer to this document, please use

Komei Fukuda
Polyhedral computation FAQ
Swiss Federal Institute of Technology
Lausanne and Zurich, Switzerland
fukuda@ifor.math.ethz.ch http://www.ifor.math.ethz.ch/˜fukuda/polyfaq/polyfaq.html.

Please send your comments to fukuda@ifor.math.ethz.ch

2 Convex Polyhedron

2.1 What is convex polytope/polyhedron?

A subset P of Rd is called a convex polyhedron if it is the set of solutions to a finite system of
linear inequalities, and called convex polytope if it is a convex polyhedron and bounded. When
a convex polyhedron (or polytope) has dimension k, it is called a k-polyhedron (k-polytope).
For the sequel, we might omit convex for convex polytopes and polyhedra, and call them
simply polytopes and polyhedra.

2.2 What are the faces of a convex polytope/polyhedron?

Let P be a convex d-polyhedron (or d-polytope) in Rd.
For a real d-vector c and a real number d, a linear inequality cT x ≤ d is called valid for

P if cT x ≤ d holds for all x ∈ P . A subset F of a polyhedron P is called a face of P if it is
represented as

F = P ∩ {x : cT x = d}

for some valid inequality cT x ≤ d. By this definition, both the empty set ∅ and the whole set
P are faces. These two faces are called improper faces while the other faces are called proper
faces.

We can define faces geometrically. For this, we need to define the notion of supporting
hyperplanes. A hyperplane h of Rd is supporting P if one of the two closed halfspaces of h
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contains P . A subset F of P is called a face of P if it is either ∅, P itself or the intersection
of P with a supporting hyperplane.

The faces of dimension 0, 1, dim(P ) − 2 and dim(P ) − 1 are called the vertices, edges,
ridges and facets, respectively. The vertices coincide with the extreme points of P which are
defined as points which cannot be represented as convex combinations of two other points in
P . When an edge is not bounded, there are two cases: either it is a line or a half-line starting
from a vertex. A half-line edge is called an extreme ray .

2.3 What is the face lattice of a convex polytope

The face poset FL(P ) of a convex polyhedron is the set of all faces of P ordered by set
inclusion. Two polytopes are called isomorphic if their face posets are isomorphic. The face
poset of a convex polytope is a lattice.

The face poset of a convex polyhedron is sometimes referred to as the combinatorial struc-
ture of the polyhedron. Thus the expression “two polyhedra are combinatorially equal” means
they are isomorphic.

2.4 What is a dual of a convex polytope?

For a convex polytope P , any convex polytope P ′ with FL(P ′) anti-isomorphic to FL(P )
(i.e. “upside-down” of FL(P )) is called a (combinatorial) dual of P . By the definition, a
dual polytope has the same dimension as P . The duality theorem states that every convex
polytope admits a dual.

Theorem 1 (Duality of Polytopes) Every nonempty d-polytope P in Rd admits a dual
polytope in Rd. In particular, one can construct a dual polytope by the following “polar”
construction:

P ∗ = {y ∈ Rd : xT y ≤ 1 for all x ∈ P}

where P is assumed to contain the origin in its interior.

When P contains the origin in its interior, the polytope P ∗ is called the polar of P . One
can easily show that

P ∗ = {y ∈ Rd : vT y ≤ 1 for all v ∈ V (P )}

where V (P ) denote the set of vertices of V , and this inequality (H-) representation of P ∗ is
minimal (i.e. contains no redundant inequalities).

2.5 What is simplex?

A subset P of Rd is called a k-simplex (k = 0, 1, 2, . . .) if it is the convex hull of k + 1 affinely
independent points. It has exactly k + 1 vertices and k + 1 facets. A simplex is a k-simplex
for some k.

Simplices are selfdual, i.e. a dual (see 2.4) of a simplex is again a simplex.
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2.6 What is cube/hypercube/cross polytope?

A subset P of Rd is called a unit d-cube if it is the convex hull of all 2d points with components
0 or 1. It has exactly 2d vertices and 2d facets. A cube or hypercube is a convex polytope
which is isomorphic to the d-cube for some d.

A dual (see 2.4) of a cube is called a cross polytope.

2.7 What is simple/simplicial polytope?

A d-polytope is called simple if each vertex is contained in exactly d facets. A d-polytope
is called simplicial if each facet contains exactly d vertices. By definition, a dual of simple
(simlicial) polytope is simplicial (simple, respectively). Every facet of a simplicial d-polytope
is a (d − 1)-simplex. Each vertex of a simple d-polytope is contained in exactly d-edges.

A d-cube is a simple polytope and a d-simplex is both simple and simplicial.

2.8 What is 0-1 polytope?

A polytope in Rd is called 0-1 if all its vertices are in {0, 1}d. In other words, a 0-1 polytope
is the convex hull of a subset of the 2d point set {0, 1}d, for some d ≥ 0.

2.9 What is the best upper bound of the numbers of k-dimensional

faces of a d-polytope with n vertices?

Let fk(P ) denote the number of k-faces of a d-polytope P , for k = 0, 1, . . . , d.
The exact upper bound for fk in terms of f0 and d. is known, thanks to McMullen’s upper

bound theorem.
The convex hull of distinct n points on the moment curve {m(t) = (t1, t2, . . . , td) : t ∈ R}

in Rd is known as a cyclic polytope. It is known that its combinatorial structure (i.e. its face
lattice, see Section 2.3) is uniquely determined by n and d. Thus we often write C(d, n) to
denote any such cyclic d-polytope with n vertices.

McMullen’s Upper Bound Theorem shows that the maximum of fk(P ) is attained by the
cyclic polytopes.

Theorem 2 (Upper Bound Theorem) For any d-polytope with n vertices,

fk(P ) ≤ fk(C(d, n)), ∀k = 1, . . . , d − 1,

holds.

The number of k-faces of a cyclic polytope C(d, n) can be explicitely given and thus one
can evaluate the order of the upper bound in terms of n and d.

Theorem 3 For d ≥ 2 and 0 ≤ k ≤ d − 1,

fk(C(d, n)) =
n − δ(n − k − 2)

n − k − 1

bd/2c
∑

j=0

(

n − 1 − j

k + 1 − j

)(

n − k − 1

2j − k − 1 + δ

)
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where δ = d − 2bd/2c. In particular,

fd−1(C(d, n)) =

(

n −
⌊

d+1
2

⌋

n − d

)

+

(

n −
⌊

d+2
2

⌋

n − d

)

. (1)

For example,

P f0 f1 f2 f3 f4

C(5, 10) 10 45 100 105 42
C(5, 20) 20 190 580 680 272
C(5, 30) 30 435 1460 1755 702

The upper bound theorem can be written in dual form which gives, for example, the
maximum number of vertices in a d-polytope with m facets.

Theorem 4 (Upper Bound Theorem in Dual Form) For any d-polytope with m facets,

fk(P ) ≤ fd−k−1(C(d, m)), ∀k = 0, 1, . . . , d − 2,

holds.

The original proof of the Upper Bound Theorem is in [McM70, MS71]. There are different
variations, see [Kal97, Mul94, Zie94].

2.10 What is convex hull? What is the convex hull problem?

For a subset S of Rd, the convex hull conv(S) is defined as the smallest convex set in Rd

containing S.
The convex hull computation means the “determination” of conv(S) for a given finite set

of n points S = {p1, p2, . . . , pn} in Rd.
The usual way to determine conv(S) is to represent it as the intersection of halfspaces, or

more precisely, as a set of solutions to a minimal system of linear inequalities. This amounts to
output a matrix A ∈ Rm×d and a vector b ∈ Rm for some m such that conv(S) = {x|A x ≤ b}.
When conv(S) is full-dimensional, each (nonredundant) inequality corresponds to a facet of
conv(S). Thus the convex hull problem is also known as the facet enumeration problem, see
Section 2.12.

Some people define the convex hull computation as the determination of extreme points
of conv(S), or equivalently that of redundant points in S to determine conv(S). This is much
simpler computation than our convex hull problem. In fact, this can be done by solving O(n)
linear programs and thus polynomially solvable, see Section 2.19 and 2.20. It is better to name
this as the “redundancy removal for a point set S”.

2.11 What is the Minkowski-Weyl theorem for convex polyhedra?

The Minkowski-Weyl Theorem states every polyhedron is finitely generated and every finitely
generated set is a polyhedron. More precisely, for two subsets P and Q of Rd, P + Q denotes
the Minkowski sum of P and Q:

P + Q = {p + q : p ∈ P and q ∈ Q}.

6



Theorem 5 (Minkowski-Weyl’s Theorem) For a subset P of Rd, the following state-
ments are equivalent:

(a) P is a polyhedron, i.e., for some real (finite) matrix A and real vector b, P = {x : Ax ≤ b};

(b) There are finite real vectors v1, v2, . . . , vn and r1, r2, . . . , rs in Rd such that
P = conv(v1, v2, . . . , vn) + nonneg(r1, r2, . . . , rs).

Thus, every polyhedron has two representations of type (a) and (b), known as (halfs-
pace) H-representation and (vertex) V-representation, respectively. A polyhedron given by
H-representation (V-representation) is called H-polyhedron (V-polyhedron).

2.12 What is the vertex enumeration problem, and what is the

facet enumeration problem?

When a polyhedron P in Rd has at least one extreme point and full dimensional, both repre-
sentations (a) and (b) in Miknowski-Weyl Theorem 5 are unique up positive multiples of each
inequality and ray rj.

Under these regularity conditions, the conversions between the H-representation and the
V-representation are well-defined fundamental problems. The transformation (a) to (b) is
known as the vertex enumeration and the other (b) to (a) is known as the facet enumeration.
When P is in addition bounded (i.e. polytope), the facet enumeration problem reduces to
what we call the convex hull problem, see 2.10.

If a given polyhedron does not satisfy the assumptions, it is easy to transform the polyhe-
dron to an isomorphic lower dimensional polyhedron satisfying the assumptions.

There are easy (nondegenerate) cases and difficult (degenerate) cases. For simplicity, we
assume that P is bounded (i.e. polytope). The vertex enumeration is called nondegenerate if
there is no point x ∈ Rd which satisfies d + 1 given inequalities with equality, and degenerate
otherwise. The facet enumeration is called nondegenerate if there is no (d + 1) given points
which are on a common hyperplane, and degenerate otherwise.

2.13 How can one enumerate all faces of a convex polyhedron?

Let P be a convex polytope in Rd. One can extend the discussion below for the unbounded
case (polyhedron) by adding a face at infinity, but for simplicity we assume P is bounded.

First of all the answer does not depend on how P is given. The problem for H-polytopes
is equivalent to the one for V-polytopes by duality. See Sections 2.11 and 2.4.

There are algorithms (e.g. [Rot92, Sei86, FLM97] ) that can generate all faces from a V-
representation or from a H-rerepsentation. Perhaps the backtrack algorithm [FLM97] is easiest
to implement and works directly for the unbounded case. It is also a compact polynomial
algorithm (see 2.15) and thus needs little space to run. Algorithms that need to store all faces
during computation tend to be too complicated to implement, because one needs to manage
a complex data structure of faces and their incidences.

Another approach to generate all faces consists of two steps.

(1) Firstly compute the second representation by a representation conversion algorithm.
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(2) Secondly use a combinatorial method to genrate all faces.

The first part is discussed in Section 2.15 and Section 5 presents some existing implementation.
The second part can be done efficiently by purely combinatorial computation, see [FR94].
As explained in [FR94], when the polytope is simple (simplicial), the face listing without
duplication can be done implicitely by sorting the vertices (the facets) by a generic linear
function (a generic line through an interior point).

2.14 What computer models are appropriate for the polyhedral

computation?

There are two important computational models, the unit cost RAM (random access machine)
and the Turing machine. The essential difference is that the Turing machine uses the binary
representations of numbers and the computational time is measured precisely down to the
number of (unit cost) bit operations. I believe that the RAM model, in which each elementary
arithmetic operation takes a unit time and each integer number takes a unit space, is the
standard model for the polyhedral computation. This model, despite its simplicity, often
illuminates the critical parts of an algorithm and thus reflects the actual computation well.
Of course, ignoring the number of bits of a largest number arising in the computation is
dangerous, if one does not control the exponential growth of bit lengths of the numbers (in
terms of the input bit length). This warning should be always kept in mind to design a good
implementation. Furthermore, there are certain cases in which we need to use the Turing
complexity. For example, all known “polynomial” algorithms for the linear programming (see
Section 4) are Turing polynomial but not RAM polynomial. We may avoid this problem
by pretending that there were a RAM polynomial algorithm for LP. After all, we (those
interested in geometric computation) are interested in an analysis which reflects the reality
and the simplex method for LP is practically a RAM polynomial (or equivalently, strongly
polynomial) method. We refer to the recent book [Yap00] for further discussions.

2.15 How do we measure the complexity of a convex hull algo-
rithm?

To answer this question, we assume the unit cost RAM model, where the computational time
is essentially the number of elementary arithmetic operations and the storage for any integer
number takes a unit space. See Section 2.14.

There are two approaches to evaluate the complexity of a given convex hull algorithm.
Let α be an algorithm which computes a minimal inequality description P = {x : Ax ≤ b}

of a full-dimensional convex polytope P = conv(S) for a given point set S in Rd with n = |S|.
Let m denote the number of inequalities in the output Ax ≤ b.

(One can interprete the discussion here in dual setting: consider α as an algorithm to
compute all vertices S ′ of a convex polytope P = {x : A′x ≤ b′} with n inequaities with m
vertices.)

First of all, most people agree that the efficiency of computing the convex hull should
be measured at least by the critical input parameters d and n. Some people like to see the
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complexity by fixing d to constant, but it is always better to evaluate in terms of d as well,
and fix it later.

The first measure, often employed by computational geometers, is to bound the worst
case running time of an algorithm α for any input with n points in Rd. For example, if
α is of O(d! nd), then it means α terminates in time O(d! nd) for ANY input of n points
in dimension d. Also, when one set d to be fixed (constant), such an algorithm is said to
have time complexity O(nd), since d! is simply a constant. We may call this worst-case-input
measure. For fixed dimension, there is an optimum algorithm [Cha93] for the convex hull in
terms of the worst-case-input measure, that runs in time O(nbd/2c) for d ≥ 4. It cannot be
better because the largest output is of the same order by the upper bound theorem (Theorem
2).

The worst-case-input measure is quite popular, but it might be little misleading. For
example, suppose algorithms α and β are of time complexity O(nd) and O(n2d), respectively.
Then by this measurement, the algorithm α is superior to β.

Here is a potentially serious problem with this worst-case-input measure. Above, it is still
possible that α takes worst-case time nd for ALL input of n points in Rd, and β takes time
proportional to some polynomial function of n, d, m. Note that the number m of inequalities
varies wildly from O(1) to O(nbd/2c), even for fixed d (by the upper bound theorem Theorem 2
and (1)). This diversity is just too big to be ignored if d ≥ 4. Furthermore, the input data
leading to the worst-case output hardly occurs in practice. In fact, for the random spherical
polytope, the expected size of m is linear in n, see Section 2.16. While the worst-case-input
optimal algorithm [Cha93] is a remarkable theoretical achievement, we are still very far
from knowing the best ways to compute the convex hull for general dimensions.

In order to circumvent this pitfall, one can use a measure using all key variables d, n, m.
Or more generally, one can measure the time complexity in terms of both the size of input
and the size of output. We say an algorithm α is polynomial if it runs in time bounded by
a polynomial in d, n, m. This polynomiality coincides with the usual polynomiality when the
output size is polynomially bounded by the size of input.

Under the nondegeneracy assumption (see 2.12), there is a polynomial algorithm for the
convex hull problem. Few of the earlier polynomial algorithms are pivot-based algorithms
[CCH53, Dye83] solving the problem in dual form (the vertex enumeration problem) and a
wrapping algorithm [CK70]. A more recent algorithm [AF92] based on reverse search technique
[AF96] is not only polynomial but compact at the same time. Here, we say an algorithm is
compact if its space complexity is polynomial in the input size only.

In the general case, there is no known polynomial algorithm. The paper [ABS97] is an
excellet article presenting how various algorithms fail to be polynomial, through ingenious
constructions of “nasty” polytopes.

2.16 How many facets does the average polytope with n vertices in

Rd have?

Clearly we need to define a probability distribution of points to answer the question.
Perhaps the most interesting describution for which the answer is known is the uniform

distribution on the unit sphere Sd−1. The results of Buchta et al [BMT85] show that the
expected number of facets is f(d, n) = 2

d
γ((d−1)2)γ(d−1)−(d−1)(n+o(1)) assymtotically with
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n → ∞. The important fact is that it depends linearly on n essentially. Here the function
γ(p) is defined recursively by

γ(0) =
1

2

γ(p) =
1

2 π p γ(p − 1)
.

Just to see how large the slope g(d) = 2
d
γ((d − 1)2)γ(d − 1)−(d−1) of this “linear” function in

n is, we calculate it for d ≤ 15:

d g(d)
2 1
3 2
4 6.76773
5 31.7778
6 186.738
7 1296.45
8 10261.8
9 90424.6

10 872190.
11 9.09402E+06
12 1.01518E+08
13 1.20414E+09
14 1.50832E+10
15 1.98520E+11

2.17 How many facets can a 0-1 polytope with n vertices in Rd

have?

Let f(d) denote the maximum number of facets of a 0-1 polytope in Rd. The question such as
“is this function bounded by an exponential in d?” was open just until recently. The negative
answer was given by Bárány and Pór who proved the superexponential behavior of f(d).

Theorem 6 (Bárány and Pór [BP00]) There is a positive constant c such that

f(d) >

(

c d

log d

)
d

4

. (2)

This is a recent breakthrough in the theory of 0-1 polytopes.

2.18 How hard is it to verify that an H-polyhedron PH and a V-

polyhedron PV are equal?

This is a fundamental complexity question associated with the Minkowski-Weyl theorem (The-
orem 5). This problem, known as the polyhedral verification problem was first posed by L.
Lovasz (see [Sey94]).
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To simplify our discussion, let us assume PH and PV are bounded and thus polytopes.
Also we may assume that the given representations contain no redundant data, since removing
redundancies is just a matter of solving linear programs, see Sections 2.19 and 2.21.

The verification consists of two questions, “is PV ⊆ PH?” and “is PH ⊆ PV ?” The first
question is easy to answer by just checking whether each generator (vertex) of PV satisfies the
H-representation of PH . The second question is known to be coNP-complete, due to [FO85].
(It is not hard to see that it belongs to coNP, since the negative answer to the question has
a succinct certificate, a vertex v of PH and a hyperplane separating v from PV .) Yet, the
complexity of the second question, when the first question has the positive answer, is not
known.

It is possible to prove that the polynomial solvability of this problem implies the polynomial
solvability of the representation conversion problem for general convex polytopes (i.e. the
vertex enumeration and the facet enumeration problems). Here the polynomial solvability of
the representation conversion problem means the existence of an algorithm that generates the
second minimal representation in time polynomial in the size of both input and output. See
Section 2.15 for discussion on complexity measures.

How does the above reduction work? Assume we have a polynomial algorithm for the
verification, and we design an algorithm to generate all vertices of an H-polytope PH . Let V
be a set of vertices of PH generated so far. Take the first inequality from the H-representation,
and ask whether we have generated all vertices on the face F1, the intersection of PH and
the hyperplane given by the first inequality being forced to be equality. This is just one
application of the verification algorithm. If yes, we move to the second inequality and repeat.
Otherwise, we go down to lower dimensional face by setting one of the remaining inequality
to equality. When we have d-independent equalities, we compute the unique vertex by solving
the equation system. The key observation is that we generate a subproblem only when the
verification algorithm returns NO answer. This means every subproblem created generates at
least one new vertex. This guarantees our generation algorithm to be polynomial.

I do not know who is the first to recognize this reduction. I consider this belongs to folklore.
Finally I repeat: the complexity of the polyhedral verification problem is unknown. Is

it in P or in coNP-complete? This is perhaps the most important question in polyhedral
computation. A fascinating question, indeed.

2.19 Is there an efficient way of determining whether a given point
q is in the convex hull of a given finite set S of points in Rd?

Yes. However, we need to be careful.
First we give a method that we do not recommend but many people use. This method

computes an inequality representation {x ∈ Rd : Ax ≤ b} of conv(S) where A is some m × d
matrix and b is a m-vector. This is called the convex hull computation 2.10. Once the system
Ax ≤ b is computed, it is easy to check whether p satisfies the system or not.

In most cases, this method is too expensive, since the convex hull computation is very hard
in general and impossible for large data. In fact, the number of inequalities in such a system
Ax ≤ b is often exponential in d and n = |S|. (This method might be of practical interests
when we need to remove lots of redundant points in clouds of points in small dimensions, see
2.20.)
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A standard method to check whether q is in conv(S) uses linear programming (LP)
technique 4. An LP problem to be formulated for the question is the following. Let S =
{p1, p2, . . . , pn}.

find q
satisfying q =

∑n
i=1 λipi

∑n
i=1 λi = 1

λi ≥ 0 for all i = 1, . . . , n.

(3)

This problem has no objective function and such a problem is often called a linear feasibility
problem. Although it might look simpler problem to solve, it is polynomially equivalent to
the general LP. In fact, it is usually a good idea to set up an equivalent LP to solve it. More
specifically, the problem (3) has a solution if and only if the following has no solution:

find z0 ∈ R and z ∈ Rd

satisfying zT pi ≤ z0 for all i = 1, . . . , n
zT q > z0.

(4)

Geometrically, the meaning of this problem is simple. If it admits a solution (z0, z), then the
set H = {x ∈ Rd : zT x = z0} is a hyperplane in Rd separating the polytope conv(S) from
the inquiry point q. Thus the existence of the separation means the nonredundancy. Now, to
actually solve the problem (4), we set up the LP:

f ∗ = maximize zT q − z0

subject to zT pi − z0 ≤ 0 for all i = 1, . . . , n
zT q − z0 ≤ 1.

(5)

The last inequality is artificially added so that the LP has a bounded solution. It is easy to see
that the point q is non-redundant if and only if the optimal value f ∗ of the LP (5) is (strictly)
positive.

2.20 How can one remove all interior points of conv(S) from S for

large clouds S of points in Rd?

The problem is formally known as the redundancy removal. Let S be a set of n points in Rd.
We say a point q ∈ S is redundant (for conv(S)) if q ∈ conv(S−q). In short, redundant points
are unnecessary to determine the convex hull conv(S).

In principle, one can apply the linear programming (LP) method given in 2.19 to remove
all redundant points. This amounts to solving n LPs. While the time complexity of this pure
LP method is polynomial and additional techniques given by [Cla94, OSS95] can reduce the
size of LPs, this might end up in a very time consuming job for large n (say > 1, 000).

There is a technique that might be useful to remove “obviously redundant” points quickly
as a preprocessing. This works only in small dimensions (probably up to 100?). Such a method
picks up a few nonredundant point set T = {t1, . . . , tk} from S. Selecting nonredundant points
can be done by picking points maximizing (or minimizing) any given linear function over S.
When k is small relative to d, say d + 2 or d + 3, the computation of conv(T ) is usually very
easy with any standard convex hull algorithm. Thus we assume that an inequality system
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Ax ≤ b such that conv(T ) = {x : Ax ≤ b} is given. It is easy to see that any point q ∈ S − T
satisfying the inequalities (i.e. Aq ≤ b) is redundant. One can repeat the same procedure
with a different set T ′ of nonredundant points as long as it removes “sufficient number” of
redundant points.

2.21 Is there any efficient algorithm to remove redundant inequal-
ities from a system of linear inequalities

This problem is essentially equivalent to the redundancy removal from point sets given in 2.20.
Although one can transform one to the other, let us describe a direct method. Let Ax ≤

b, sT x ≤ t be a given system of m + 1-inequalities in d-variables x = (x1, x2, . . . , xd)
T . We

want to test whether the subsystem of first m inequalities Ax ≤ b implies the last inequality
sT x ≤ t. If so, the inequality sT x ≤ t is redundant and can be removed from the system. A
linear programming (LP) formulation of this checking is rather straightforward:

f ∗ = maximize sT x
subject to Ax ≤ b

sT x ≤ t + 1.
(6)

Then the inequality sT x ≤ t is redundant if and only if the optimal value f ∗ is less than or
equal to t.

By successively solving this LP for each untested inequality against the remaining, one
would finally obtain a equivalent non-redundant system.

As we discussed in 2.20, one might be able to remove many redundant inequalities by using
the same technique in dual form. Let Ax ≤ b be the given system with high redundancy. The
first step is to select a small subsystem A′x ≤ b′ of non-redundant inequalities from the original
system. Typically such a system contains only d + k inequalities for some small k (say 2 or
3). The second step is to compute all extreme points of P ′ = {x : A′x ≤ b′}. (Here we assume
that P ′ is bounded, but one can generalize the technique for the unbounded case.) This is
known as the vertex enumeration computation, 2.12. Clearly P ′ contains the feasible region
P = {x : Ax ≤ b}. The final step is to test whether each original inequality is satisfied by
all extreme points and rays. If so, the inequality is redundant for the subsystem and thus
redundant for the original system.

2.22 Is there any efficient algorithm to compute the intersection of
two (or k) polytopes

Let k ≥ 2, and let P1, . . . , Pk be input polytopes in Rd, and let P = P1 ∩ P2 ∩ · · · ∩ Pk be the
polytope we want to compute.

This problem of computing P needs to be specified further. Namely, what is the represen-
tation of input and that of output?

If the input polytopes are H-polytopes (given by inequalities) then the intersection is
represented by the union of the two inequality systems. To get a minimal H-reprentation
for the intersection is just a redundancy removal given in Section 2.21. To get a minimal
V-representation for the intersection is the vertex enumeration problem explained in Section
2.12.
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An interesting case is when both input and output polytopes are V-polytopes (i.e. given
by vertices and perhaps some redundant points). One primitive way to solve this problem
consists of two steps: (1) generate minimal H-representations of each of the input k polytopes,
(2) solve the vertex enumeration problem for the union of the k H-representations. This
naive approach might be satisfactory for small dimensions or not-too-complicated polytopes.
Recently, a polynomial algorithm has been found for the special case when the input polyopes
are in general position [FLL00]. This algorithm is not yet practical because the general position
assumption does not seem to be easily simulated for the general case. It should be remarked
that the dual version of this problem is to compute a minimal H-representation of the convex
hull of k H-polytopes. Actually the paper [FLL00] treats this dual problem.

2.23 Is there any efficient algorithm to compute the volume of a
convex polytope in Rd?

It is known that computing the volume of a V -polytope (or H-polytope) is #P-hard, see
[DF88] and [Kha93]. There are theoretically efficient randomized algorithms to approximate
the volume of a convex body [LS93] but no implementation seems to be available.

There is a comparative study [BEF00] of various volume computation algorithms for convex
polytopes. It indicates that there is no single algorithm that works well for many different
types of polytopes. For “near” simple polytopes, triangulation-based algorithms are more
efficient. For “near” simplicial polytopes, sign-decomposition-based algorithms are better.
See the paper for the justification of these claims.

3 Voronoi Diagram and Delaunay Triangulation

3.1 What is cell complex? What is triangulation?

A cell complex or simply complex in Rd is a set K of convex polyhedra (called cells) in Rd

satisfying two conditions: (1) Every face of a cell is a cell (i.e. in K), and (2) If P and P ′ are
cells, then their intersection is a common face of both. A simplicial complex is a cell complex
whose cells are all simplices.

The body |K| of a complex K is the union of all cells. When a subset P of Rd is the body
of a simplicial complex K, then K is said to be a triangulation of P . For a finite set S of
points in Rd, a triangulation of S is a simplicial complex K with |K| = conv(S).

3.2 What is Voronoi diagram in Rd?

See also 3.3.
Given a set S of n distinct points in Rd, Voronoi diagram is the partition of Rd into n

polyhedral regions vo(p) (p ∈ S). Each region vo(p), called the Voronoi cell of p, is defined as
the set of points in Rd which are closer to p than to any other points in S, or more precisely,

vo(p) = {x ∈ Rd|dist(x, p) ≤ dist(x, q) ∀q ∈ S − p},

where dist is the Euclidean distance function. (One can use different distance functions to
define various variations of Voronoi diagrams, but we do not discuss them here.)
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The set of all Voronoi cells and their faces forms a cell complex. The vertices of this
complex are called the Voronoi vertices, and the extreme rays (i.e. unbounded edges) are the
Voronoi rays. For each point v ∈ Rd, the nearest neighbor set nb(S, v) of v in S is the set of
points p ∈ S − v which are closest to v in Euclidean distance. Alternatively, one can define a
point v ∈ Rd to be a Voronoi vertex of S if nb(S, v) is maximal over all nearest neighbor sets.

In order to compute the Voronoi diagram, the following construction is very important.
For each point p in S, consider the hyperplane tangent to the paraboloid in Rd+1 at p: xd+1 =
x2

1 + · · ·+ x2
d. This hyperplane is represented by h(p):

d
∑

j=1

p2
j −

d
∑

j=1

2pjxj + xd+1 = 0.

By replacing the equality with inequality ≥ above for each point p, we obtain the system of
n inequalities, which we denote by b − Ax ≥ 0. The polyhedron P in Rd+1 of all solutions
x to the system of inequalities is a lifting of the Voronoi diagram to one higher dimensional
space. In other words, by projecting the polyhedron P onto the original Rd space, we obtain
the Voronoi diagram in the sense that the projection of each facet of P associated with p ∈ S
is exactly the voronoi cell vo(p). The vertices and the extreme rays of P project exactly to
the Voronoi vertices and the rays, respectively.

3.3 What is the Delaunay triangulation in Rd?

See also 3.2, 3.1.
Let S be a set of n points in Rd. The convex hull conv(nb(S, v)) of the nearest neighbor set

of a Voronoi vertex v is called the Delaunay cell of v. The Delaunay complex (or triangulation)
of S is a partition of the convex hull conv(S) into the Delaunay cells of Voronoi vertices together
with their faces.
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The Delaunay complex is not in general a triangulation but becomes a triangulation when
the input points are in general position (or nondegenerate), i.e. no d+2 points are cospherical
or equivalently there is no point c ∈ Rd whose nearest neighbor set has more than d + 1
elements.

The Delaunay complex is dual to the Voronoi diagram 3.2 in the sense that there is a
natural bijection between the two complexes which reverses the face inclusions.

There is a direct way to represent the Delaunay complex, just like the Voronoi diagram 3.2.
In fact, it uses the same paraboloid in Rd+1: xd+1 = x2

1 + · · · + x2
d. Let f(x) = x2

1 + · · · + x2
d,

and let p̃ = (p, f(x)) ∈ Rd+1 for p ∈ S. Then the so-called lower hull of the lifted points
S̃ := {p̃ : p ∈ S} represents the Delaunay complex. More precisely, let

P = conv(S̃) + nonneg(ed+1)

where ed+1 is the unit vector in Rd+1 whose last component is 1. Thus P is the unbounded
convex polyhedron consisting of conv(S̃) and any nonnegative shifts by the “upper” direction
r. The nontrivial claim is that the the boundary complex of P projects to the Delaunay
complex: any facet of P which is not parallel to the vertical direction r is a Delaunay cell once
its last coordinate is ignored, and any Delaunay cell is represented this way.

3.4 Computing the Delaunay complex and the Voronoi diagram.
What does it mean and how to do it with available software?

Let S be a given set of n points in Rd. Computing the Voronoi diagram normally means to
generate the set V o(S) of Voronoi vertices, and computing the Delaunay complex is essentially
the same thing. Once the Voronoi vertices are generated, the nearest neighbor sets nb(S, v) for
all Voronoi vertices v can be easily computed, and in fact most of the algorithms for generating
the Voronoi vertices computes the nearest neighbor sets as well at the same time.

The complexity of computing the Voronoi diagram is not well understood in general. For
example, there is no known algorithm that runs polynomial in the size of input and output.
For the much easier nondegenerate case, there is an algorithm, known as the reverse search
algorithm, which runs in time O(nd|V o(S)|). When the dimension is fixed (in particular
d = 2), one can analyse complexities of various-type algorithms in terms of the input size.
In the plane, there are O(n log n) algorithms that is optimal, and for fixed d there is an
incremental O(ndd/2e) algorithm, see [Ge97, Chapter 20].

How large is the number —Vo(S)— of output? The tight upper bound was given in [Sei91]
which is O(nb(d+1)/2c). While this bound may be a far over-estimate of expected behavior,
the number of output typically grows exponentially in n and d, and thus the computation
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itself is expected to be heavy. Therefore, one must take a caution to do the Delaunay/Voronoi
computation. In fact,

I know quite a few people who tried to use Voronoi diagram computation codes in
order to accomplish a much simpler task.

It is not only a waste of time and computer resources, but it often leads to a prohibitively
hard computation, while an appropriate use of mathematical techniques resolves the problem
instantly.

For example, the following computations are much simpler and should be solved via linear
programming techniques in Section 4:

• For given two points p and q in S, check whether their Voronoi cells are adjacent in the
Voronoi diagram, see 3.5.

• For any given point c ∈ Rd, find a Delaunay cell containing c, see 3.7.

The most natural way to compute the Voronoi diagram is by computing the vertices and
the extreme rays of the polyhedron in Rd+1 given in 3.2. By ignoring the last component of
each vertices we obtain the Voronoi vertices.

3.4.1 Sample session with cdd+

Consider a simple two dimensional case: d = 2, n = 6 and S = {(0, 0), (2, 1), (1, 2), (4, 0), (0, 4), (4, 4)}.
In principle the session below will work in any d and n, although the computation time depends
heavily on the size.

The first step is to write down the system of linear inequalities in (d + 1) variables as explained
in 3.2: for each p ∈ S,

d
∑

j=1

p2
j −

d
∑

j=1

2pjxj + xd+1 ≥ 0.

For our example, we have:
0 +x3 ≥ 0
5 −4x1 −2x2 +x3 ≥ 0
5 −2x1 −4x2 +x3 ≥ 0

16 −8x1 +x3 ≥ 0
16 −8x2 +x3 ≥ 0
32 −8x1 −8x2 +x3 ≥ 0

We denote by P the polyhedron of all solutions x ∈ Rd satisfying the inequalities above. Now we
prepare an input file of cdd+. The file must be in polyhedra format and for the system above, it is
rather straightforward since it essentially codes the coefficients of the system.

* filename: vtest_vo.ine

H-representation

begin

6 4 integer

0 0 0 1

5 -4 -2 1
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5 -2 -4 1

16 -8 0 1

16 0 -8 1

32 -8 -8 1

end

incidence

input_adjacency

The last two lines “incidence” and “input adjacency” are options for cdd+. They are not necessary
for listing the vertices of the polyhedron, but but can be used to generate the nearest neighbor sets
and the adjacency of Voronoi cells.

Now, by running cdd+ with commands:

% cddr+ vtest.ine

or

% cddf+ vtest.ine

we obtain three files: vtest vo.ext (all extreme points and rays), vtest vo.iad (adjacency of facet
inequalities) and vtest vo.ecd (incidence of extreme points/rays and inequalities). Note that cddr+
runs in rational (exact) arithmetic and cddf+ runs in floating-point arithmetic. cddf+ runs much
faster than cddr+ but it may not give a correct answer.

The file vtest vo.ext would be something like the following:

*FINAL RESULT:

*Number of Vertices =6, Rays =4

begin

10 4 rational

0 -1 0 0

1 -3/2 2 0

1 5/6 5/6 0

1 2 -3/2 0

0 0 -1 0

1 27/10 27/10 56/5

1 15/4 2 14

0 1 0 8

0 0 1 8

1 2 15/4 14

end

hull

The output contains all the vertices and extreme rays of the (unbounded) polyhedron P in R3.
Namely each row starting with “1” represents a vertex. So the second row

1 -3/2 2 0
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represents the vertex (−3/2, 2, 0). Each row starting with “0” represents an extreme ray, e.g. the
first row

0 -1 0 0

represents the ray (−1, 0, 0).
By ignoring the last components, we obtain the set of six Voronoi vertices (−3/2, 2), (5/6, 5/6),

(2,−3/2), (27/10, 27/10), (15/4, 2) and (2, 15/4) and four Voronoi rays (−1, 0), (0,−1), (1, 0) and
(0, 1).

With the option “incidence, cdd+ outputs vtest vo.ecd file:

begin

10 6 7

3 : 1 5 7

3 : 1 3 5

3 : 1 2 3

3 : 1 2 4

3 : 1 4 7

3 : 2 3 6

3 : 2 4 6

3 : 4 6 7

3 : 5 6 7

3 : 3 5 6

end

Each row corresponds to the same row in vtest vo.ine file. For example, the second data

3 : 1 3 5

says the second data in vtest vo.ine file:

1 -3/2 2 0

is a voronoi vertex whose nearest neighbor set is {p1, p3, p5}. Also, this set corresponds to a Delaunay
cell. Similarly, the first row

3 : 1 5 7

indicates the ray (the first output in vtest vo.ine file)

0 -1 0 0

is determined by 1, 5 and 7th halfspaces. The 7th halfspace is an artificial one corresponding to the
infinity. So this ray is determined by the input points 1 and 5 and going to infinity.

Thus, the index sets (triples, in this case) not containing the infinity 7 determine all Delaunay
cells, and those containing 7 correspond to the Voronoi rays.

Finally, look at the vtest vo.iad file:
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begin

7

1 5 : 2 3 4 5 7

2 4 : 1 3 4 6

3 4 : 1 2 5 6

4 4 : 1 2 6 7

5 4 : 1 3 6 7

6 5 : 2 3 4 5 7

7 4 : 1 4 5 6

end

This file contains the graph structure of the Delaunay complex and equivalently the adjacency of
Voronoi cells in the Voronoi diagram.

1

2

3

4

5 6

The first line in this file:

1 5 : 2 3 4 5 7

says the point p1 is adjacent to 5 neighbors p2, p3, p4, p5 and p7. Here, the point p7 is the artificial
infinity point which is considered adjacent to any input point whose Voronoi cell is unbounded.

As we remarked before, this graph information can be computed much more efficiently by linear

programming. See 3.5.

3.5 Is it possible to compute only the adjacencies of Voronoi cells
in the Voronoi diagram efficiently?

Yes, it can be done very efficiently by linear programming (LP), and very importantly this can
be done for very large scale problems, with practically no bounds on the size with an efficient
LP solver.

The method is simple. The lifting technique we described in 3.2 immediately gives the
idea. Recall that the Voronoi diagram of a set S of n points in Rd is the projection of the
following (d + 1)-polyhedron to Rd space of the first d components.

P = {x ∈ Rd+1 |
d

∑

j=1

p2
j −

d
∑

j=1

2pjxj + xd+1 ≥ 0 ∀p ∈ S}.
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For simplicity, denote it as
P = {x ∈ Rd+1 | b − Ax ≥ 0},

where A is a given n× (d + 1) matrix and b is a n-vector. Now for each i = 1, . . . , n, consider
the ith facet Fi of P :

Fi = {x ∈ Rd+1 | b − A x ≥ 0 and bi − Ai x ≤ 0}, (7)

Two facets Fi and Fj are called adjacent if the intersection Fi ∩ Fj is a facet of both, i.e. has
dimension d − 2. An equivalent definition is: they are adjacent if (*) the facet Fi becomes
larger once the facet Fj is removed from the polyhedron, i.e. the jth inequality is removed
from the system b − A x ≥ 0.

It is easy to see that two Voronoi cells vo(pi) and vo(pj) are adjacent if and only if the
corresponding facets Fi and Fj are adjacent in the polyhedron P . Now, we formulate the
following LP for any distinct i, j = 1, 2, . . . , n:

minimize f(x) := bj − Aj x
subject to b′ − A x ≥ 0

bi − Ai x ≤ 0,
(8)

where b′ is equal to b except for jth component b′j = bj + 1. The new inequality system
b′ − A x ≥ 0 is simply a modification of the original system obtained by relaxing the jth
inequality a little bit. An important remark is, by definition (*), Fj and Fi are adjacent if and
only if the objective value f(x) is negative at an optimum solution. Thus we formulated the
Voronoi adjacency computation as an LP problem.

How much do we gain by using LP for the adjacency computation, instead of computing
the whole Voronoi diagram? A lot. It is hard to exaggerate this, because the LP (8) (in
fact any LP) is solvable in polynomial time, whereas the associated Voronoi computation is
exponential in d and n. Using the standard simplex method, the time complexity of solving
an LP is not polynomial, but the practical complexity is roughly O(nd3).

3.5.1 Sample session with cdd+

With cdd+, a setup for computing the adjacency of Voronoi cells is quite simple. Consider the same
example 3.4.1. For each input point i = 1, 2, 3, 4, 5, 6, we write the inequality system for the facet F i:

b − Ax ≥ 0 and
bi − Aix ≤ 0,

instead of writing the relaxed inequality (8). For example, for i = 4, we have

H-representation

begin

7 4 real

0 0 0 1

5 -4 -2 1
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5 -2 -4 1

16 -8 0 1

16 0 -8 1

32 -8 -8 1

-16 8 0 -1 % negative of 4th inequality

end

facet_listing

The last inequality is the negative of the forth inequality to force the forth inequality to be equality.
The code cdd+ has an option called “facet listing”. If we apply this option to the facet F4,

then cdd+ will check which of the given inequalities is redundant or not (essential), by soving the
associated LP’s (8) for each inequality j. As we discussed in 3.5, each inequality for F4, except for
the 4th and the 7th one,

The program cdd+ will output a file:

*Facet listing is chosen.

* ‘e‘ means essential and ‘r‘ means redundant.

begin

1 e: 2 7 1

2 e: 2 7 1

3 r: 2 7 6

4 e: 4 2 6

5 r: 7 2 6

6 e: 7 2 6

7 e: 7 2 6

end

We simply ignore the 4th and the 7th row, and also the lists of numbers after colons. Then we
can consider the set {1, 2, 6} of essential constraints as the set of indices of Voronoi cells adjacent to
the 4th cell. Of course, this adjacency coincides with the adjacency of input points in the Delaunay
triangulation. See the figure below.

1

2

3

4

5 6

3.6 Is it possible to compute only the edges of the Delaunay com-
plex (triangulation) ?

This is essentially the same question as computing the adjacencies of Voronoi cells, see 3.5.
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3.7 Is it possible to determine the Delaunay cell containing a given
point efficiently?

Yes, it is possible to find the nearest point set associated with the Delaunay cell containing a
given point c ∈ Rd. As we discussed in Section 3.3, the Delaunay complex can be represented
by the convex hull of appropriately lifted points in Rd+1, and the non-vertical facets coincide
with the Delaunay cells once they are projected to the original space. Thus the problem of
determining the Delaunay cell containing a given point c can be reduced to finding the first
facet of a polyhedron “shoot” by a ray.

To be more precise, let f(x) = x2
1 + · · ·+ x2

d, and let p̃ = (p, f(x)) ∈ Rd+1 for p ∈ S. Then
the lower hull P of the lifted points S̃ := {p̃ : p ∈ S}:

P = conv(S̃) + nonneg(ed+1)

represents the Delaunay complex. Here ed+1 is the unit vetor in Rd+1 whose last component is
1. For any vector ỹ ∈ Rd+1 and y0 ∈ R, let ỹTx ≥ −y0 denote a general inequality of a variable
vector x ∈ Rd+1. For such an inequality to represent a valid inequality of P (see Section 2.2),
it must be satisfied by all points in S̃:

ỹT p̃ ≥ −y0, ∀p̃ ∈ S̃, (9)

and by any points shifted vertically upwards, i.e.

ỹT (p̃ + αed+1) ≥ −y0, ∀p̃ ∈ S̃ and any α ≥ 0.

Under the first inequality (9), the last inequality is equivalent to

ỹd+1 ≥ 0. (10)

Now every Delaunay cell is a projection of a non-vertical facet of P . We are thus looking
for an inequality ỹTx ≥ −y0 satisfying (9), (10) and yd+1 6= 0. By scaling with ỹd+1 > 0,
we may assume ỹd+1 = 1. For a given point c, let c̃ = (c, 0)T , and let L(λ) = c̃ + λ ed+1,
λ ≥ 0. Determining the Delaunay cell containing c is equivalent to finding the last inequality
“hit” by the halfline L. More precisely, it is to find a non-vertical facet inequality such that
the intersecion point of the corresponding hyperplane {x : yTx = −y0} and the half line
L(λ), λ ≥ 0 is highest possible.

By substituting L(λ) for x in yTx = −y0 with ỹd+1 = 1, we obtain

λ = −y0 − yT c,

where y denotes the vector ỹ without the last coordinate ỹd+1. The LP formulation is therefore:

minimize z := y0+yT c (11)

subject to f(p)+y0+yTp ≥ 0 for all p ∈ S.

While an optimal solution (y0, y) to this LP may not determine any facet in general, the
simplex method always returns an optimal basic solution which determines a facet inequality
in this case. The Delaunay cell containing c is the one determined by the set of points in S
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whose corresponding inequalities are satisfied by equality at the optimal solution. If the LP
solution is not degenerate, the dual variables that are positive at the dual optimal solution
coincides with the former set.

It is important to note that the above LP might be unbounded. If it is unbounded, it can
be easily shown that c is not in any Delaunay cell, i.e., not in the convex hull of S. A certificate
of unboundedness actually induces a hyperplane strongly separating c from S. (why?)

3.7.1 Sample session with cdd+

With cdd+ and any reasonable LP code, the only necessary step should be to prepare the LP file
for determination of the Delaunay cell containing a given point c ∈ Rd. Consider the same example
3.4.1.

For a given point c = (3, 2), the LP (11) file for cdd+ is

H-representation

begin

6 4 rational

0 1 0 0

5 1 2 1

5 1 1 2

16 1 4 0

16 1 0 4

32 1 4 4

end

minimize

0 1 3 2

The solution by cddr+ is:

*LP status: a dual pair (x, y) of optimal solutions found.

begin

primal_solution

1 : 14

2 : -15/2

3 : -4

dual_solution

4 : -1/8

2 : -1/2

6 : -3/8

optimal_value : -33/2

end

Therefore, the facet inequality is 14 − 15/2x1 − 4x2 ≥ 0, and the dual solution indicate that the
points p2, p4, p6 determine the Delaunay cell which contains (3, 2).
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3.8 What is the best upper bound of the numbers of simplices in
the Delaunay triangulation?

See 3.4.

4 Linear Programming

4.1 What is LP?

A linear programming (abbreviated by LP) is to find a maximizer or minimizer of a linear
function subject to linear inequality constraints. More precisely,

maximize f(x) :=
d

∑

j=1

cjxj (12)

subject to
d

∑

j=1

aijxj ≤ bi for all i = 1, 2, . . . , m, (13)

where A = [aij] is a given rational m× d matrix, c = [cj] and b = [bi] are given rational d- and
n-vector. We often write an LP in matrix form:

maximize f(x) :=cT x (14)

subject to Ax ≤ b. (15)

Theoretically every rational LP is solvable in polynomial time by both the ellipsoid method
of Khachian (see [Kha79, Sch86]) various interior point methods (see [Kar84, RTV97]). The
well-known simplex method of Dantzig (see [Dan63, Chv83]) has no known polynomial vari-
ants. In practice, very large LPs can be solved efficiently by both the simplex method and
interior-point methods. For example, it is very easy on a standard unix station to solve an
LP with d = 100 and m = 100, 000, while the vertex enumeration/convex hull computation
of the same size is simply intractable. There are many commercial codes and public codes
available. See the LP FAQ [FG]. Two excellent books on LP are Chvatal’s textbook [Chv83]
and Schrijver’s “researcher’s bible” [Sch86].

5 Polyhedral Computation Codes

• cddlib, cdd and cdd+ [Fuk02] (C and C++ implementations of the double description
method [MRTT53]).

Comments: Floating and exact arithmetic. Efficient for highly degenerate
cases. The exact version cddr+ is much slower. It can remove redundancies
from input data using a built-in LP code. cddlib is a C-library with basic
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polyhedral conversion functions and LP solvers. cddlib can be compiled with
both GMP rational (mpq) and floating point arithmetic.

• lrs [Avi] (C implementation of the reverse search algorithm [AF92]). A parallel version
prs has been developed by A. Marzetta, see [BMFN96].

Comments: Exact arithmetic only, efficient for nondegenerate cases. Uses
a little memory and perhaps the only available code which can deal with
problems generating huge output (say, one million vertices/facets).

• pd [Mar97] (C implementation of the primal-dual algorithm [BFM97]).

Comments: Exact arithmetic only, efficient for dually nondegenerate cases.

• qhull [BDH96, BDH03] (C implementation of the beneath-beyond method, see [Ede87,
Mul94], which is the dual of the dd method).

Comments: Floating arithmetic only but handles numerical problems well.
Highly efficient for nondegenerate cases. User can call it as a C-libary.

• porta [CL97] (C implementation of the Fourier-Motzkin elimination method [Zie94]).

Comments: Efficient for combinatorial (e.g. 0-1) polytopes. Guarantees cor-
rect numerical results as long as double precision integer arithmetic does not
overflow. It can list all integer solutions in a polytope.

• polymake [GJ99] (computational environment for the algorithmic treatment of polytopes
and polyhedra).

One can generate convex polytopes and do various computations with convex
polyhedra. It uses cdd+/porta/lrs for representation conversions. It is ex-
tendable by writing own ”rules” to generate new structures/data associated
with polyhedra.

• zeRone [Lüb99] (C implementation of the backtrack vertex enumeration algorithm for
0-1 H-polytopes [BL98].

Comments: In general, the straightforward backtrack algorithm for the vertex
enumeration problem must solve NP-complete decision problems, as it was
shown in [FLM97]. The situation is different for 0-1 polytopes and the problem
is strongly polynomially solvable. The code can generate all 0-1 points in a
general H-polytope. It relies on the commercial LP solver CPLEX.

• Pointers to many other programs in geometric computations are stored in [Ame, Eri].

• For linear programming, one should check the Linear Programming FAQ at [FG]. It
lists both public (open source) and commercial codes.
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