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Abstract
Dependently typed programming languages allow programmers to
express a rich set of invariants and verify them statically via type
checking. To make programming with dependent types practical,
dependently typed systems provide a compact language for pro-
grammers where one can omit some arguments, called implicit,
which can be inferred. This source language is then usually elab-
orated into a core language where type checking and fundamen-
tal properties such as normalization are well understood. Unfor-
tunately, this elaboration is rarely specified and in general is ill-
understood. This makes it not only difficult for programmers to un-
derstand why a given program fails to type check, but also is one
of the reasons that implementing dependently typed programming
systems remains a black art known only to a few.

In this paper, we specify the design of a source language for
a dependently typed programming language where we separate
the language of programs from the language of types and terms
occurring in types. Total functions in our language correspond
directly to first-order inductive proofs over a specific index domain.
We then give a bi-directional elaboration algorithm to translate
source terms where implicit arguments can be omitted to a fully
explicit core language and prove soundness of our elaboration. Our
framework provides post-hoc explanation for elaboration found in
the programming and proof environment, Beluga.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Syntax; F.3.3 [Studies of Program Constructs]: Type
structure

Keywords dependent types, type reconstruction

1. Introduction
Dependently typed programming languages allow programmers to
express a rich set of properties and statically verify them via type
checking. To make programming with dependent types practical,
these systems provide a source language where programmers can
omit (implicit) arguments which can be reasonably easy inferred
and elaborate the source language into a well-understood core lan-
guage, an idea going back to Pollack [1990]. However, this elabo-
ration is rarely specified formally for dependently typed languages
which support recursion and pattern matching. For Agda, a full de-
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pendently typed programming language based on Martin Löf type
theory, Norrel [2007, Chapter 3] describes a bi-directional type in-
ference algorithm, but does not treat the elaboration of recursion
and pattern matching. For the fully dependently typed language
Idris, Brady [2013] describes the elaboration between source and
target, but no theoretical properties such as soundness are estab-
lished. A notable exception is Asperti et.al [2012] that describes
a sound bi-directional elaboration algorithm for the Calculus of
(Co)Inductive Constructions (CCIC) implemented in Matita.

In this paper, we concentrate on dependently typed programs
which directly correspond to first-order logic proofs over a specific
domain. More specifically, a proof by cases (and more generally by
induction) corresponds to a (total) functional program with depen-
dent pattern matching. We hence separate the language of programs
from the language of our specific domain about which we reason.
Our language is similar to indexed type systems (see [Zenger 1997;
Xi and Pfenning 1999]); however, unlike these aforementioned sys-
tems, we allow pattern matching on index objects, i.e. we sup-
port case-analysis on objects in our domain. As a consequence, we
cannot simply erase our implicit arguments and obtain a program
which is simply typed.

Specifically, our source language is inspired by the Beluga lan-
guage [Pientka 2008; Pientka and Dunfield 2010; Cave and Pientka
2012] where we specify formal systems in the logical framework
LF [Harper et al. 1993] (our index language) and write proofs about
LF objects as total recursive functions using pattern matching.

More generally, our language may be viewed as a smooth ex-
tension of simply typed languages, like Haskell or OCaml and we
support nested pattern matching without having to either specify
the return type or removing nested pattern matching during elabo-
ration which is often the case in fully dependently typed systems
such as Agda or Coq. Moreover, taking advantage of the separation
between types and terms, it is easy to support effects, allow non-
termination, partial functions, and polymorphism. All this while
reaping some of the benefits of dependent types.

The main contribution of this paper is the design of a source
language for dependently typed programs where we omit implicit
arguments together with a sound bi-directional elaboration algo-
rithm from the source language to a fully explicit core language.
This language supports dependent pattern matching without requir-
ing type invariant annotations, and dependently-typed case expres-
sions can be nested as in simply-typed pattern matching. Through-
out our development, we will keep the index language abstract and
state abstractly our requirements such as decidability of equality
and typing. There are many interesting choices of index languages.
For example choosing arithmetic would lead to a DML [Xi 2007]
style language ; choosing an authorization logic would let us ma-
nipulate authorization certificates (similar to Aura [Jia et al. 2008]);
choosing LF style languages (like Contextual LF [Nanevski et al.
2008]) we obtain Beluga; choosing substructural variant of it like
CLF [Watkins et al. 2002] we are in principle able to manipulate
and work with substructural specifications.
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A central question when elaborating dependently typed lan-
guages is what arguments may the programmer omit. In dependently-
typed systems such as Agda or Coq, the programmer declares con-
stants of a given (closed) type and labels arguments that can be
freely omitted when subsequently using the constant. Both, Coq
and Agda, give the user the possibility to locally override the im-
plicit arguments and provide instantiations explicitly.

In contrast, we follow here a simple, lightweight recipe which
comes from the implementation of the logical framework Elf [Pfen-
ning 1989] and its successor Twelf [Pfenning and Schürmann
1999]: programmers may leave some index variables free when
declaring a constant of a given type; elaboration of the type will
abstract over these free variables at the outside; when subsequently
using this constant, the user must omit passing arguments for those
index variables which were left free in the original declaration.
Following this recipe, elaboration of terms and types in the logical
framework has been described in Pientka [2013]. Here, we will
consider a dependently typed functional programming language
which supports pattern matching on index objects.

The key challenge in elaborating recursive programs which sup-
port case-analysis is that pattern matching in the dependently typed
setting refines index arguments and hence refines types. In con-
trast to systems such as Coq and Agda, where we must annotate
case-expressions with an invariant, i.e. the type of the scrutinee,
and the return type, our source language does not require such an-
notations. Instead we will infer the type of the scrutinee and for
each branch, we infer the type of the pattern and compute how the
pattern refines the type of the scrutinee. This makes our source lan-
guage lightweight and closer in spirit to simply-typed functional
languages. Our elaboration of source expressions to target expres-
sions is type-directed, inferring omitted arguments and producing
a closed well-typed target program. Finally, we prove soundness
of our elaboration, i.e. if elaboration succeeds our resulting pro-
gram type checks in our core language. Our framework provides
post-hoc explanation for elaboration found in the programming and
proof environment, Beluga [Pientka 2008; Cave and Pientka 2012],
where we use as the index domain terms specified in the logical
framework LF [Harper et al. 1993].

The paper is organized as follows: We first give the grammar of
our source language. Showing example programs, we explain in-
formally what elaboration does. We then revisit our core language,
describe the elaboration algorithm formally and prove soundness.
We conclude with a discussion of related and future work.

2. Source language
We consider here a dependently typed language where types are in-
dexed by terms from an index domain. Our language is similar to
Beluga [Pientka and Dunfield 2010], a dependently typed program-
ming environment where we specify formal systems in the logical
framework LF and we can embed LF objects into computation-
level types and computation-level programs which analyze and pat-
tern match on LF objects. However, in our description, as in for
example Cave and Pientka [2012], we will keep the index domain
abstract, but only assume that equality in the index domain is de-
cidable and unification algorithms exist. This will allow us to focus
on the essential challenges when elaborating a dependently typed
language in the presence of pattern matching.

We describe the source language that allows programmers to
omit some arguments in Fig. 1. As a convention we will use low-
ercase c to refer to index level objects, lowercase u for index level
types, and upper case letters X,Y for index-variables. Index ob-
jects can be embedded into computation expressions by using a box
modality written as [c]. Our language supports functions (fnx⇒e),
dependent functions (λX⇒e), function application (e1 e2), depen-
dent function application (e1 [c]), and case-expressions. We also

Kinds k ::= ctype | {X:u} k
Atomic Types p ::= a

−→
[c]

Types t ::= p | [u] | {X:u} t | t1 → t2

Expressions e ::= fnx⇒e | λX⇒e | x | c | [c] |
e1 e2 | e1 [c] | e | case e of~b | e:t

Branches ~b ::= b | (b | ~b)
Branch b ::= pat 7→ e

Pattern pat ::= x | [c] | c−→pat | pat:t
Declarations d ::= rec f :t = e | c:t | a:k

Figure 1. Grammar of Source Language

support writing underscore ( ) instead of providing explicitly the
index argument in a dependent function application (e ). Note that
we are overloading syntax: we write e [c] to describe the applica-
tion of the expression e of type [u] → t to the expression [c]; we
also write e [c] to describe the dependent application of the expres-
sion e of type {X:u}t to the (unboxed) index object c.This ambigu-
ity can be easily resolved using type information. Note that in our
language the dependent function type and the non-dependent func-
tion type do not collapse, since we can only quantify over objects
of our specific domain instead of arbitrary propositions (types).

We may write type annotations anywhere in the program (e:t
and in patterns pat:t); type annotations are particularly useful to
make explicit the type of a sub-expression and name index variables
occurring in the type. This allows us to resurrect index variables
which are kept implicit. In patterns, type annotations are useful
since they provide hints to type elaboration regarding the type of
pattern variables.

A program signature Σ consists of kind declarations (a:k), type
declarations (c:t) and declaration of recursive functions (rec f :t =
e). This can be extended to allow mutual recursive functions in a
straightforward way.

One may think of our source language as the language obtained
after parsing where for example let-expressions have been trans-
lated into case-expression with one branch.

Types for computations include non-dependent function types
(t1 → t2) and dependent function types ({X:u}t); we can also
embed index types into computation types via [u] and indexed
computation-level types by an index domain written as a

−→
[c]. We

also include the grammar for computation-level kinds which em-
phasizes that computation-level types can only be indexed by terms
from an index domain u. We write ctype (i.e. computation-level
type) for the base kind, since we will use type for kinds of the in-
dex domain.

We note that we do only support one form of dependent func-
tion type {X:u}t; the source language does not provide any means
for programmers to mark a given dependently typed variable as im-
plicit as for example in Agda. Instead, we will allow programmers
to leave some index variables occurring in computation-level types
free; elaboration will then infer their types and abstract over them
explicitly at the outside. The programmer must subsequently omit
providing instantiation for those “free” variables. We will explain
this idea more concretely below.

2.1 Well-formed source expressions
Before elaborating source expressions, we state when a given
source expression is accepted as a well-formed expression. In par-
ticular, it will highlight that free index variables are only allowed
in declarations when specifying kinds and declaring the type of
constants and recursive functions. We use δ to describe the list of
index variables and γ the list of program variables. We rely on two
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` d wf Declaration d is well-formed

·; f ` e wf · `f t wf
` rec f :t = e wf

wf-rec
· `f t wf
` c : t wf

wf-types
· `f k wf
` a : k wf

wf-kinds

δ; γ `N e wf Normal expression e is well-formed in context δ and γ

δ; γ, x `N e wf
δ; γ `N fnx⇒e wf

wf-fn
δ,X; γ `N e wf

δ; γ `N λX⇒e wf
wf-mlam

δ ` c wf
δ; γ `N [c] wf

wf-box

δ; γ `n e wf for all bn in~b . δ; γ ` bn wf

δ; γ `N case e of~b wf
wf-case

δ; γ `n e wf
δ; γ `N e wf

wf-neu

δ; γ `n e wf Neutral expression e is well-formed in context δ and γ

δ; γ `N e wf δ ` t wf
δ; γ `n e:t wf

wf-ann
δ; γ `n e1 wf δ; γ `N e2 wf

δ; γ `n e1 e2 wf
wf-app

δ; γ `n e wf δ ` c wf
δ; γ `n e [c] wf

wf-app-explicit

δ; γ `n e1 wf
δ; γ `n e1 wf

wf-apph
x ∈ γ

δ; γ `n x wf
wf-var

δ; γ ` pat 7→ e wf Branch is well-formed in δ and γ

δ′; γ′ ` pat wf δ, δ′; γ, γ′ `n e wf
δ; γ ` pat 7→ e wf

wf-branch

δ; γ ` pat wf Pattern pat is well-formed in a context δ for index variables and a context γ for pattern variables

δ;x ` x wf
wf-p-var

δ ` c wf
δ; · ` [c] wf

wf-p-i
for all pi in

−−→
Pat. δ; γi ` pi wf

δ; γ1, . . . , γn ` c
−−→
Pat wf

wf-p-con δ; γ ` pat wf δ ` t wf
δ; γ ` pat:t wf

wf-p-ann

Figure 2. Well-formed source expressions

judgments from the index language:
δ ` c wf Index object c is well formed and

closed with respect to δ
δ `f c wf Index object c is well formed with respect to δ

and may contain free index variables

We describe declaratively the well-formedness of declarations
and source expressions in Fig. 2. The distinction between nor-
mal and neutral expressions forces a type annotation where a non-
normal program would occur. The normal vs. neutral term dis-
tinction is motivated by the bidirectional type-checker presented
in Section 3.1. For brevity, we omit the full definition of well-
formedness for kinds and types which is given in the appendix.

In branches, pattern variables from γ must occur linearly while
we put no such requirement on variables from our index language
listed in δ. The judgement for well formed patterns synthesizes con-
texts δ and γ that contain all the variables bound in the pattern (this
presentation is declarative, but algorithmically the two contexts re-
sult from the well-formed judgement). Notice that the rules wp-p-i
and wp-con look similar but they operate on different syntactic cat-
egories and refer to the judgement for well-formed index terms pro-
vided by the index level language. They differ in that the one for
patterns synthesizes the δ context that contains the meta-variables
bound in the pattern.

2.2 Some example programs
We next illustrate writing programs in our language and explain the
main ideas behind elaboration.

2.2.1 Translating untyped terms to intrinsically typed terms
We implement a program to translate a simple language with num-
bers, booleans and some primitive operations to its typed coun-
terpart. This illustrates declaring an index domain, using index
computation-level types, and explaining the use and need to pat-
tern match on index objects. We first define the untyped version of
our language using the recursive datatype UTm. Note the use of the
keyword ctype to define a computation-level recursive data-type.

datatype UTm : ctype =
| UNum : Nat→UTm
| UPlus : UTm→UTm→UTm
| UTrue : UTm
| UFalse: UTm
| UNot : UTm→UTm
| UIf : UTm→UTm→UTm→UTm;

Terms can be of type nat for numbers or bool for booleans. Our
goal is to define our language of typed terms using a computation-
level type family Tm which is indexed by objects nat and bool
which are constructors of our index type tp. Note that tp is de-
clared as having the kind type which implies that this type lives at
the index level and that we will be able to use it as an index for
computation-level type families.
datatype tp : type =
| nat : tp
| bool : tp;
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Using indexed families we can now define the type Tm that specifies
only type correct terms of the language, by indexing terms by their
type using the index level type tp.
datatype Tm : [tp]→ctype =
| Num : Nat →Tm [nat]
| Plus : Tm [nat] →Tm [nat]→Tm [nat]
| True : Tm [bool]
| False : Tm [bool]
| Not : Tm [bool] →Tm [bool]
| If : Tm [bool] →Tm [T]→Tm [T]→Tm [T];

When the Tm family is elaborated, the free variable T in the If
constructor will be abstracted over by an implicit Π-type, as in the
Twelf [Pfenning and Schürmann 1999] tradition. Because T was
left free by the programmer, the elaboration will add an implicit
quantifier; when we use the constant If, we now must omit passing
an instantiation for T. For example, we must write (If True
(Num 3) (Num 4)) and elaboration will infer that T must be nat.

One might ask how we can provide the type explicitly - this
is possible indirectly by providing type annotations. For example,
If e (e1:TM[nat]) e2 will fix the type of e1 to be Tm [nat].

Our goal is to write a program to translate an untyped term UTm
to its corresponding typed representation. Because this operation
might fail for ill-typed UTm terms we need an option type to reflect
the possibility of failure.

datatype TmOpt : ctype =
| None : TmOpt
| Some : {T : tp}Tm [T] → TmOpt;

A value of type TmOpt will either be empty (i.e. None) or some
term of type T. We chose to make T explicit here by quantifying
over it explicitly using the curly braces. When returning a Tm term,
the program must now provide the instantiation of T in addition to
the actual term.

So far we have declared types and constructors for our language.
These declarations will be available in a global signature. The next
step is to declare a function that will take untyped terms into typed
terms if possible. Notice that for the function to be type correct it
has to respect the specification provided in the declaration of the
type Tm. We only show a few interesting cases below.

rec tc : UTm → TmOpt = fn e ⇒ case e of ...
| UNum n ⇒ Some [nat] (Num n)
| UNot e ⇒ (case tc e of
| Some [bool] x ⇒ Some [bool] (Not x)
| other ⇒ None)

| UIf c e1 e2 ⇒ (case tc c of
| Some [bool] c’ ⇒ (case (tc e1 , tc e2) of
| (Some [T] e1’ , Some [T] e2’) ⇒

Some [T] (If c’ e1’ e2’)
| other ⇒ None )

| other ⇒ None )
;

In the tc function the cases for numbers, plus, true and false are
completely straightforward. The case for negation (i.e. constructor
UNot) is interesting because we need to pattern match on the result
of type-checking the sub-expression e to match its type to bool
otherwise we cannot construct the intrinsically typed term, i.e. the
constructor Not requires a boolean term, this requires matching on
index level terms. Additionally the case for UIf is also interesting
because we not only need a boolean condition but we also need to
have both branches of the UIf term to be of the same type. Again
we use pattern matching on the indices to verify that the condition
is of type bool but notably we use non-linear pattern matching
to ensure that the type of the branches coincides. We note that If
has an implicit argument (the type T) which will be inferred during
elaboration.

In the definition of type TmOpt we chose to explicitly quantify
over T, however another option would have been to leave it implicit.
When pattern matching on Some e, we would need to resurrect the
type of the argument e to be able to inspect it and check whether
it has the appropriate type. We can employ type annotations, as
shown in the code below, to constrain the type of e.

| UIf c e1 e2 ⇒ (case tc c of
| Some (c’:Tm [bool]) ⇒ (case (tc e1, tc e2) of
| (Some (e1’:Tm [T]), Some (e2’:Tm [T])) ⇒

Some (If c’ e1’ e2’)
| other ⇒ None)

| other ⇒ None)

In this first example there is not much to elaborate. The missing
argument in If and the types of variables in patterns are all that
need elaboration.

2.2.2 Type-preserving evaluation
Our previous program used dependent types sparingly; most no-
tably there were no dependent types in the type declaration given
to the function tc. We now discuss the implementation of an eval-
uator, which evaluates type correct programs to values of the same
type, to highlight writing dependently typed functions. Because we
need to preserve the type information, we index the values by their
types in the following manner:

datatype Val : [tp] → ctype =
| VNum : Nat → Val [nat]
| VTrue : Val [bool]
| VFalse: Val [bool];

We define a type preserving evaluator below; again, we only
show some interesting cases.

rec eval : Tm [T] → Val [T] = fn e ⇒ case e of ...
| Num n ⇒ VNum n
| Plus e1 e2 ⇒ (case (eval e1 , eval e2) of
| (VNum x , VNum y) ⇒ VNum (add x y))

| Not e ⇒ (case eval e of
| VTrue ⇒ VFalse
| VFalse ⇒ VTrue)

| If e e1 e2 ⇒ (case eval e of
| VTrue ⇒ eval e1
| VFalse ⇒ eval e2)

;

First, we specify the type of the evaluation function as Tm[T]
→ Val [T] where T remains free. As a consequence, elaboration
will infer its type and abstract over T at the outside, T is an implicit
parameter (as it is introduced by Πi). We now elaborate the body of
the function against ΠiT:tp. Tm [T] → Val [T]. It will first
need to introduce the appropriate dependent function abstraction
in the program before we introduce the non-dependent function
fnx⇒e. Moreover, we need to infer omitted arguments in the
pattern in addition to inferring the type of pattern variables in the If
case. Since T was left free in the type given to eval, we must also
infer the omitted argument in the recursive calls to eval. Finally,
we need to keep track of refinements the pattern match induces: our
scrutinee has type Tm [T]; pattern matching against Plus e1 e1
which has type Tm [nat] refines T to nat.

2.2.3 A certifying evaluator
So far in our examples, we have used a simply typed index lan-
guage. We used our index language to specify natural numbers,
booleans, and a tagged enumeration that contained labels for the
bool and nat types. In this example we go one step further, and use
a dependently typed specification, in fact we use LF as our index
level language as used in Beluga [Cave and Pientka 2012]. Using
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LF at the index language we specify the simply-typed lambda cal-
culus and its operational semantics in Figure 3. Using these speci-
fications we write a recursive function that returns the value of the
program together with a derivation tree that shows how the value
was computed. This example requires dependent types at the index
level and consequently the elaboration of functions that manipulate
these specifications has to be more powerful.

As in the previous example, we define the types of terms of
our language using the index level language. As opposed to the
type preserving evaluator, in this case we define our intrinsically
typed terms also using the index level language (which will be LF
for this example). We take advantage of LF to represent binders in
the lambda terms, and use dependent types to represent well-typed
terms only.

datatype tp : type =
| unit : tp
| arr : tp → tp → tp
;

datatype term : tp → type =
| one : term unit
| lam : (term A → term B) → term (arr A B)
| app : term (arr A B) → term A → term B
;

These datatypes represent an encoding of well typed terms of
a simply-typed lambda calculus with unit as a base type. Using
LF we can also describe what constitutes a value and a big-step
operational semantics. We use the standard technique in LF to rep-
resent binders with the function space (usually called Higher Or-
der Abstract Syntax, HOAS [Pfenning and Elliott 1988]) and type
families to only represent well-typed terms, thus this representa-
tion combines the syntax for terms with the typing judgement from
Figure 3.

datatype value : tp → type =
| v-one : value unit
| v-lam : (term A → term B) → value (arr A B)
;

datatype big-step : term T → value T → type =
| e-one : big-step one v-one
| e-lam : big-step (lam M) (v-lam M)
| e-app : big-step M (v-lam M’) →

big-step (M’ N) N’ →
big-step (app M N) N’

;

The value type simply states that one and lambda terms are
values, and the type big-step encodes the operational semantics
where each constructor corresponds to one of the rules in Figure 3.
The constructors e-one and e-lam simply state that one and lamb-
das step to themselves. On the other hand rule e-app requires that
in an application, the first term evaluates to a lambda expression
(which is always the case as the terms are intrinsically well typed)
and then it performs the substitution and continues evaluating the
term to a value. Note how the substitution is performed by an ap-
plication as we reuse the LF function space for binders as typically
done with HOAS.

In this paper we discuss how to elaborate recursive programs,
however because this example uses dependently typed specifica-
tions at the index level, these specifications will be elaborated fol-
lowing the elaboration described in Pientka [2013].

To implement a certifying evaluator we want the eval function
to return a value and a derivation tree that shows how we computed
this value. We encode this fact in the Cert data-type that encodes
an existential or dependent pair that combines a value with a deriva-
tion tree.

Types T ::= > | T1 → T2

Terms M,N ::= () | x | λx:T.M |MN

Context Γ ::= · | Γ, x:T

Values V ::= > | λx:T.M

Γ `M :T Term M has type T in context Γ

Γ ` ():>
x:T ∈ Γ
Γ ` x:T

Γ, x:T1 `M :T2

Γ ` λx:T1.M :T2

Γ `M :T1 → T Γ ` N :T1

Γ `MN :T

M ⇓ V Term M steps to value V

> ⇓ > λx:T.M ⇓ λx:T.M

M ⇓ λx : T.M ′ [N/x]M ′ ⇓ N ′

MN ⇓ N ′

Figure 3. Example: A simply-typed lambda calculus

datatype Cert : [term T] → ctype =
| Ex : {N: [value T]}[big-step M N] → Cert [M]
;

In the Ex constructor we have chosen to explicitly quantify over
N, the value of the evaluation, and left the starting term M implicit.
However another option would have been to leave both implicit,
and use type annotations when pattern matching to have access to
both the term and its value.

Finally the evaluation function simply takes a term and returns
a certificate that contains the value the terms evaluates to, and the
derivation tree that led to that value.

rec eval : {M : [term T]} Cert [M] =
λ M ⇒ case [M] of
| [one] ⇒ Ex [v-one] [e-one]
| [lam M] ⇒ Ex [v-lam M] [e-lam]
| [app M N] ⇒

let Ex [v-lam M’] [D] = eval [M] in
let Ex [N’][D’] = eval [M’ N] in
Ex [N’] [e-app D D’]

;

Elaboration of eval starts by the type annotation. Inferring the
type of variable T and abstracting over it, resulting in:
ΠiT:[tp]. {M : [term T] → [value T]. The elaboration
proceeds with the body, abstracting over the inferred dependent ar-
gument with λ T ⇒ ... When elaborating the case expression,
the patterns in the index language will need elaboration. In this
work we assume that each index language comes equipped with an
appropriate notion of elaboration (described in [Pientka 2013] for
this example). For example, index level elaboration will abstract
over free variables in constructors and the pattern for lambda terms
becomes [lam A B (λx. M x)] when the types for parameters
and body are added (and the body of the lambda is η-expanded).
Additionally, in order to keep the core language as lean as possible
we desugar let expressions into case expressions. For example, in
the certifying evaluator, the following code from eval:

let Ex [v-lam M’] [D] = eval [M] in
let Ex [N’][D’] = eval [M’ N] in
Ex [N’] [e-app D D’]

5 2014/8/8



Kinds K ::= ΠeX:U.K | ΠiX:U.K |
ctype

Atomic Types P ::= a ~C
Types T ::= ΠeX:U. T | ΠiX:U. T

P | [U ] | T1 → T2

Expressions E ::= fnx⇒E | λX⇒E
| E1 E2 | E1 [C] | [C] |
caseE of ~B | x | E:T | c

Branches ~B ::= B | (B | ~B)
Branch B ::= Π∆; Γ.Pat:θ 7→ E

Pattern Pat ::= x | [C] | c
−−→
Pat

Declarations D ::= c:T | a:K | rec f :T = E

Context Γ ::= · | Γ, x:T
Index-Var-Context ∆ ::= · | ∆, X:U
Refinement θ ::= · | θ, C/X | θ,X/X

Figure 4. Target language

is desugared into:

(case eval [M] of | Ex [v-lam M’] [D] ⇒
(case eval [M’ N] of
| Ex [N’][D’] ⇒ Ex [N’] [e-app D D’]))

We will come back to this example and discuss the fully elabo-
rated program in the next section.

3. Target language
The target language is similar to the computational language de-
scribed in Cave and Pientka [2012] which has a well developed
meta-theory including descriptions of coverage [Dunfield and Pien-
tka 2009] and termination [Pientka et al. 2014]. The target language
(see Fig. 4), which is similar to our source language, is indexed
by fully explicit terms of the index level language; we use C for
fully explicit index level objects, and U for elaborated index types;
index-variables occurring in the target language will be represented
by capital letters such as X,Y . Moreover, we rely on a substitution
which replaces index variablesX with index objects. The main dif-
ference between the source and target language is in the description
of branches. In each branch, we make the type of the pattern vari-
ables (see context Γ) and variables occurring in index objects (see
context ∆) explicit. We associate each pattern with a refinement
substitution θ which specifies how the given pattern refines the type
of the scrutinee.

3.1 Typing of target language
The typing rules for our core language are given in Fig. 5. We
again omit the rules for types and kind which are given in Cave
and Pientka [2012].

We use a bidirectional type system [Pierce and Turner 2000] for
the target language which is similar to the one in Cave and Pien-
tka [2012] but we simplify the presentation by omitting recursive
types. Instead we assume that constructors together with their types
are declared in a signature Σ. We choose a bi-directional type-
checkers because it minimizes the need for annotations by prop-
agating known typing information in the check phase (judgement
∆; Γ ` E ⇐ T in the rules) and inferring the types when it is
possible in the synthesis phase (judgement ∆; Γ ` E ⇒ T ).

We rely on the fact that our index domain comes with rules
which check that a given index object is well-typed. This is de-
scribed by the judgment: ∆ ` C : U .

The introductions, functions fnx⇒e and dependent functions
λx⇒e, check against their respective type. Dependent functions
check against both ΠeX:U. T and ΠiX:U. T where types are an-
notated with e for explicit quantification and i for implicit quantifi-
cation filled in by elaboration. Their corresponding eliminations,
application E1 E2 and dependent application E [C], synthesize
their type. We rely in this rule on the index-level substitution op-
eration and we assume that it is defined in such a way that normal
forms are preserved1.

To type-check a case-expressions caseE of ~B against T , we
synthesize a type S for E and then check each branch against
S → T . A branch Π∆′; Γ′.Pat:θ 7→ E checks against S → T ,
if: 1) θ is a refinement substitution mapping all index variables
declared in ∆ to a new context ∆′, 2) the pattern Pat is compatible
with the type S of the scrutinee, i.e.Pat has type [θ]S, and the body
E checks against [θ]T in the index context ∆′ and the program
context [θ]Γ,Γi. Note that the refinement substitution effectively
performs a context shift.

We present the typing rules for patterns in spine format which
will simplify our elaboration and inferring types for pattern vari-
ables. We start checking a pattern against a given type and check in-
dex objects and variables against the expected type. If we encounter
c
−−→
Pat we look up the type T of the constant c in the signature and

continue to check the spine
−−→
Pat against T with the expected return

type S. Pattern spine typing succeeds if all patterns in the spine−−→
Pat have the corresponding type in T and yields the return type S.

3.2 Elaborated examples
In Section 2.2.3 we give an evaluator for a simply typed lambda
calculus that returns the result of the evaluation together with the
derivation tree needed to compute the value. The elaborated version
of function eval is:

rec eval : Πi. T:tp. {M : [term T]} Cert [T][M] =
λ T ⇒ λ M ⇒ case [M] of
| .;. [one]: unit/T ⇒ Ex [unit] [v-one] [e-one]
| T1:[tp], T2:[tp], M : [x:T1`term T2];.
[lam T1 T2 (λx.M x)] : arr T1 T2/ T ⇒
Ex [arr T1 T2]

[v-lam T1 T2 (λx. M x)]
[e-lam (λx. M x)]

| T1:[tp], T2:[tp],
M:[term (arr T1 T2)], N:[term T1];.
[app T1 T2 M N]: T2/T ⇒

(case eval [arr T1 T2] [M] of
| T1:[tp],T2:[tp],M’:[x:T1`term T2],
D: [big-step (arr T1 T2) M’

(v-lam (λx.M x))];.
Ex [arr T1 T2][v-lam (arr T1 T2) M’][D]:.⇒
(case eval [T2] [M’ N] of
| T2:[tp], N’:[val T2],

D’:[big-step T2 (M’ N) N’];.
Ex [T2] [N’][D’]:. ⇒
Ex [T2] [N’]

[e-app M M’ N N’ D D’]))
;

To elaborate a recursive declaration we start by reconstructing
the type annotation given to the recursive function. In this case the
user left the variable T free which becomes an implicit argument
and we abstract over this variable with Πi. T:Tp marking it im-
plicit. Notice however how the user explicitly quantified over M this
means that callers of eval have to provide the term M while pa-
rameter T will be omitted and inferred at each calling point. Next,

1 In Beluga, this is for example achieved by relying on hereditary substitu-
tions[Cave and Pientka 2012].
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` D wf Target declaration D is well-formed

· ` T ⇐ ctype · ; f :T ` E ⇐ T

` rec f :T = E wf
t-rec

· ` T ⇐ ctype
` c:T wf

t-type · ` K ⇐ kind
` a:K wf

t-kind

∆; Γ ` E ⇒ T E synthesizes type T

∆; Γ ` E1 ⇒ S → T ∆; Γ ` E2 ⇐ S

∆; Γ ` E1 E2 ⇒ T
t-app

∆; Γ ` E ⇒ Π∗X:U. T ∗ = {i, e} ∆ ` C ⇐ U

∆; Γ ` E [C]⇒ [C/X]T
t-app-index

Γ(x) = T

∆; Γ ` x⇒ T
t-var

∆; Γ ` E ⇐ T

∆; Γ ` E:T ⇒ T
t-ann

∆; Γ ` E ⇐ T E type checks against type T

∆; Γ ` E ⇒ T

∆; Γ ` E ⇐ T
t-syn

∆; Γ, x:T1 ` E ⇐ T2

∆; Γ ` (fnx⇒E)⇐ T1 → T2
t-fn

∆, X:U ; Γ ` E ⇐ T ∗ = {i, e}
∆; Γ ` (λX⇒E)⇐ Π∗X:U. T

t-mlam
∆; Γ ` E ⇒ S ∆; Γ `

−→
B ⇐ S → T

∆; Γ ` caseE of
−→
B ⇐ T

t-case

∆; Γ ` Π∆′; Γ′.Pat:θ 7→ E ⇐ T Branch B = Π∆′; Γ′.Pat:θ 7→ E checks against type T

∆′ ` θ:∆ ∆′; Γ′ ` Pat⇐ [θ]S ∆′; [θ]Γ,Γ′ ` E ⇐ [θ]T

∆; Γ ` Π∆′; Γ′.Pat:θ 7→ E ⇐ S → T
t-branch

∆; Γ ` Pat⇐ T Pattern Pat checks against T

∆ ` C ⇐ U
∆; Γ ` [C]⇐ [U ]

t-pindex
Γ(x) = T

∆; Γ ` x⇐ T
t-pvar

Σ(c) = T ∆; Γ `
−−→
Pat⇐ T 〉 S

∆; Γ ` c
−−→
Pat⇐ S

t-pcon

∆; Γ `
−−→
Pat⇐ T 〉 S Pattern spine

−−→
Pat checks against T and has result type S

∆ ` C ⇐ U ∆; Γ `
−−→
Pat⇐ [C/X]T 〉 S

∆; Γ ` [C]
−−→
Pat⇐ ΠeX:U. T 〉 S

t-spi
∆; Γ ` Pat⇐ T1 ∆; Γ `

−−→
Pat⇐ T2 〉 S

∆; Γ ` Pat
−−→
Pat⇐ T1 → T2 〉 S

t-sarr
∆; Γ ` · ⇐ S 〉 S t-snil

Figure 5. Typing of computational expressions

we elaborate the function body given the fully elaborated type. We
therefore add the corresponding abstraction λ T⇒ for the implicit
parameter.

Elaboration proceeds recursively on the term. We reconstruct
the case-expression, considering the scrutinee [M] and we infer
its type as [term T]. We elaborate the branches next. Recall that
each branch in the source language consists of a pattern and a body.
Moreover, the body can refer to any variable in the pattern or vari-
ables introduced in outer patterns. However, in the target language
branches abstract over the context ∆; Γ and add a refinement sub-
stitution θ. The body of the branch refers to variables declared
in the branch contexts only. In each branch, we list explicitly the
index variables and pattern variables. For example in the branch
for [lam M] we added T1 and T2 to the index context ∆ of the
branch, index-level reconstruction adds these variables to the pat-
tern. The refinement substitution moves terms from the outer con-
text to the branch context, refining the appropriate index variables
as expressed by the pattern. For example in this branch, the sub-
stitution refines the type [T] to [arr T1 T2]. And in the [one]
branch it refines the type [T] to [unit].

As we mentioned before, elaboration adds an implicit param-
eter to the type of function eval, and the user is not allowed to
directly supply an instantiation for it. Implicit parameters have to
be inferred by elaboration. In the recursive calls to eval, we add
the parameter that represents the type of the term being evaluated.

The output of the elaboration process is a target language term
that can be type checked with the rules from Figure 5.

If elaboration fails it can either be because the source level
program describes a term that would be ill-typed when elaborated,
or in some cases, elaboration fails because it cannot infer all the
implicit parameters. This might happen if unification for the index
language is undecidable, as is for example the case for contextual
LF. In this case, annotations are needed when the term falls outside
the strict pattern fragment where unification is decidable; this is
rarely a problem in practice. For other index languages where
unification is decidable, we do not expect such annotations to be
necessary.
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4. Description of elaboration
Elaboration of our source-language to our core target language is
bi-directional and guided by the expected target type. Recall that
we mark in the target type the arguments which are implicitly quan-
tified (see ΠiX:U. T ). This annotation is added when we elaborate
a source type with free variables. If we check a source expression
against ΠiX:U. T we insert the appropriate λ-abstraction in our
target. If we have synthesized the type ΠiX:U. T for an expression,
we insert hole variables for the omitted argument of type U . When
we switch between synthesizing a type S for a given expression
and checking an expression against an expected type T , we will
rely on unification to make them equal. A key challenge is how to
elaborate case-expressions where pattern matching a dependently
typed expression of type τ against a pattern in a branch might re-
fine the type τ . Our elaboration is parametric in the index domain,
hence we keep our definitions of holes, instantiation of holes and
unification abstract and only state their definitions and properties.

4.1 Elaboration of index objects
To elaborate a source expression, we insert holes for omitted index
arguments and elaborate index objects which occur in it. We char-
acterize holes with contextual objects as in [Pientka 2009]. Contex-
tual objects encode the dependencies on the context that the hole
might have. We hence make a few requirements about our index
domain. We assume:

1. A function genHole (?Y :∆.U) that generates a term standing
for a hole of type U in the context ∆, i.e. its instantiation may
refer to the index variables in ∆. If the index language is first-
order, then we can characterize holes for example by meta-
variables [Nanevski et al. 2008]. If our index language is higher-
order, for example if we choose contextual LF as in Beluga,
we characterize holes using meta2-variables as described in
Boespflug and Pientka [2011]. As is common in these meta-
variable calculi, holes are associated with a delayed substitution
θ which is applied as soon as we know what Y stands for.

2. A typing judgment for guaranteeing that index objects with
holes are well-typed:

Θ; ∆ ` C:U Index object C has index type U in context ∆
and all holes in C are declared in Θ

where Θ stores the hole typing assumptions:

Hole Context Θ ::= · | Θ, ?X:∆.U

3. Unification algorithm which finds the most general unifier for
two index objects. In Beluga, we rely on the higher-order unifi-
cation; more specifically, we solve eagerly terms which fall into
the pattern fragment [Miller 1991; Dowek et al. 1996] and delay
others [Abel and Pientka 2011]. A most general unifier exists if
all unification constraints can be solved. Our elaboration relies
on unifying computation-level types which in turn relies on uni-
fying index-level terms; technically, we in fact rely on two uni-
fication judgments: one finding instantiations for holes in Θ, the
other finding most general instantiations for index variables de-
fined in ∆ such that two index terms become equal. We use the
first one during elaboration when unifying two computation-
level types; the second one is used when computing the type
refinement in branches.

Θ; ∆ ` C1
.
= C2/Θ

′; ρ where: Θ′ ` ρ:Θ
∆ ` C1

.
= C2/∆

′; θ where: ∆′ ` θ:∆

where ρ describes the instantiation for holes in Θ. If unification
succeeds, then we have JρKC1 = JρKC2 and [θ]C1 = [θ]C2

respectively.

4. Elaboration of index objects themselves. If the index language
is simply typed, the elaboration has nothing to do; however,
if as in Beluga, our index objects are objects described in the
logical framework LF, then we need to elaborate them and infer
omitted arguments following [Pientka 2013]. There are two
related forms of elaboration for index objects we use:

Θ; ∆ ` c : U  C/Θ′; ∆′; ρ
Θ; ∆ ` Hc ; θI : U  C/Θ′; ρ

The first judgment reconstructs the index object c by checking
it against U . We thread through a context Θ of holes and a
context of index variables ∆, we have seen so far. The object
c however may contain additional free index variables whose
type we infer during elaboration. All variables occurring in C
will be eventually declared with their corresponding type in
∆′. As we elaborate c, we may refine holes and add additional
holes. ρ describes the mapping between Θ and Θ′, i.e. it records
refinement of holes. Finally, we know that ∆′ = JρK∆,∆0,
i.e. ∆′ is an extension of ∆. We use the first judgment in
elaborating patterns and type declarations in the signature.
The second judgment is similar to the first, but does not allow
free index variables in c. We elaborate c together with a refine-
ment substitution θ, which records refinements obtained from
earlier branches. When we encounter an index variable, we look
up what it is mapped to in θ and return it. Given a hole context
Θ and an index variable context ∆, we elaborate an index term
c against a given type U . The result is two fold: a context Θ′

of holes is related to the original hole context Θ via the hole
instantiation ρ. We use the second judgment to elaborate index
objects embedded into target expressions.

4.2 Elaborating declarations
We begin our discussion of elaborating source programs in a top-
down manner starting with declarations, the entry point of the algo-
rithm. Types and kinds in declarations may contain free variables
and there are two different tasks: we need to fill in omitted argu-
ments, infer the type of free variables and abstract over the free
variables and holes which are left over in the elaborated type / kind.
We rely here on the fact that the index language provides a way of
inferring the type of free variables.

To abstract over holes in a given type T , we employ a lifting
operation: ∆ ` ε : Θ which maps each hole to a fresh index
variable.

· ` · : ·
∆ ` ε : Θ

∆, X : U ` ε, ( .X)/X : Θ, X : ( .U)

We require that holes are closed (written as .U and .X resp.
where the context associated with a hole is empty); otherwise lifting
fails2. In other words, holes are not allowed to depend on some
local meta-variables.

We use double brackets (i.e. JεKM ) to represent the application
of the lifting substitutions and hole instantiation substitutions. We
use this to distinguish them from regular substitutions such as the
refinement substitutions in the target language.

Elaborating declarations requires three judgements. One for
constants and one for kinds to be able to reconstruct inductive type

2 In our implementation of elaboration in Beluga, we did not find this
restriction to matter in practice.
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·; · | · ` t T/Θ; ∆; · ∆i ` ε : Θ

` c : t Πi(∆i, JεK∆). JεKT
el-typ

·; · | · ` k  K/Θ; ∆; · ∆i ` ε : Θ

` a : k  Πi(∆i, JεK∆). JεKK
el-kind

·; · | · ` t T/Θ; ∆; · ∆i ` ε : Θ ·; f :Πi∆i, JεK∆. T ` He ; ·I : Πi(∆i, JεK∆). JεKT  E/·; ·
` rec f :t = e rec f :Πi(∆i, JεK∆). JεKT = E

el-rec

Figure 6. Elaborating declarations

declarations, and one for recursive functions. These judgements
are:

` c:t  T
` a:k  K
` rec f :t = e  rec f :T = E

The elaboration of declarations succeeds when the result does
not contain holes.

Figure 6 shows the rules for elaborating declarations. To elabo-
rate a constant declarations c : t we elaborate the type t to a target
type T where free index variables are listed in ∆ and the remain-
ing holes in T are described in Θ. We then lift all the holes in Θ
to proper declarations in ∆i via the lifting substitution ε. The final
elaborated type of the constant c is: Πi(∆i, JεK∆). JεKT . Note that
both the free variables in the type t and the lifted holes described
in ∆i form the implicit arguments and are marked with Πi. For ex-
ample in the certifying evaluator, the type of the constructor Ex is
reconstructed to:

ΠiT:[tp],M:[term T].
ΠeN:[value T]. [big-step T M N] → Cert [T][M]

The elaboration of kinds follows the same principle.
To elaborate recursive function declarations, we first elaborate

the type t abstracting over all the free variables and lifting the
remaining holes to obtain Πi(∆i, JεK∆). JεKT . Second, we as-
sume f of this type and elaborate the body e checking it against
Πi(∆i, JεK∆). JεKT . We note that we always elaborate a source
expression e together with a possible refinement substitution θ. In
the beginning, θ will be empty. We describe elaboration of source
expressions in the next section.

4.3 Elaborating source expressions
We elaborate source expressions bidirectionally. Expressions such
as non-dependent functions and dependent functions are elaborated
by checking the expression against a given type; expressions such
as application and dependent application are elaborated to a cor-
responding target expression and at the same time synthesize the
corresponding type. This approach seeks to propagate the typing
information that we know in the checking rules, and in the synthe-
sis phase, to take advantage of types that we can infer.

Synthesizing: Θ; ∆; Γ ` He ; θI  E:T/Θ′; ρ
Checking: Θ; ∆; Γ ` He ; θI : T  E /Θ′; ρ

We first explain the judgment for elaborating a source expres-
sion e by checking it against T given holes in Θ, index variables
∆, and program variables Γ. Because of pattern matching, index
variables in ∆ may get refined to concrete index terms. Abusing
slightly notation, we write θ for the map of free variables occur-
ring in e to their refinements and consider a source expression e
together with the refinement map θ, written as He ; θI. The result
of elaborating He ; θI is a target expression E, a new context of
holes Θ′, and a hole instantiation ρ which instantiates holes in Θ,
i.e. Θ′ ` ρ : Θ. The result E has type JρKT .

The result of elaboration in synthesis mode is similar; we return
the target expression E together with its type T , a new context of
holes Θ′ and a hole instantiation ρ, s.t. Θ′ ` ρ : Θ. The result is
well-typed, i.e. E has type T .

We give the rules for elaborating source expressions in checking
mode in Fig. 7 and in synthesis mode in Fig. 8. To elaborate a func-
tion (see rule el-fn) we simply elaborate the body extending the
context Γ. There are two cases when we elaborate an expression
of dependent function type. In the rule el-mlam, we elaborate a
dependent function λX⇒e against ΠeX:U. T by elaborating the
body e extending the context ∆with the declaration X:U . In the
rule el-mlam-i, we elaborate an expression e against ΠiX:U. T
by elaborating e against T extending the context ∆ with the decla-
rationX:U . The result of elaborating e is then wrapped in a depen-
dent function.

When switching to synthesis mode, we elaborate He ; θI and
obtain the corresponding target expression E and type T ′ together
with an instantiation ρ for holes in Θ. We then unify the synthesized
type T ′ and the expected type JρKT obtaining an instantiation ρ′

and return the composition of the instantiation ρ and ρ′. When
elaborating an index object [c] (see rule el-box), we resort to
elaborating c in our indexed language which we assume.

One of the key cases is the one for case-expressions. In the
rule el-case, we elaborate the scrutinee synthesizing a type S; we
then elaborate the branches. Note that we verify that S is a closed
type, i.e. it is not allowed to refer to holes. To put it differently,
the type of the scrutinee must be fully known. This is done to
keep a type refinement in the branches from influencing the type
of the scrutinee. The practical impact of this restriction is difficult
to quantify, however this seems to be the case for the programs
we want to write as it is not a problem in any of the examples of
the Beluga implementation. For a similar reason, we enforce that
the type T , the overall type of the case-expression, is closed; were
we to allow holes in T , we would need to reconcile the different
instantiations found in different branches.

We omit the special case of pattern matching on index objects
to save space and because it is a refinement on the el-case rule
where we keep the scrutinee when we elaborate a branch. We then
unify the scrutinee with the pattern in addition to unifying the
type of the scrutinee with the type of the pattern. In our imple-
mentation in Beluga, we distinguish between case-expressions on
computation-level expressions (which do not need to track the scru-
tinee and are described in the paper) and case-expressions on index
objects (which do keep the scrutinee when elaborating branches).

When elaborating a constant, we look up its type Tc in the sig-
nature Σ and then insert holes for the arguments marked implicit in
its type (see Fig. 8). Recall that all implicit arguments are quantified
at the outside, i.e. Tc = ΠiXn:Un. . . .Π

iX1:U1. S where S does
not contain any implicit dependent types Πi. We generate for each
implicit declaration Xk:Uk a new hole which can depend on the
currently available index variables ∆. When elaborating a variable,
we look up its type in Γ and because the variable can correspond
to a recursive function with implicit parameters we insert holes for
the arguments marked as implicit as in the constant case.
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Θ; ∆; Γ ` He ; θI : T  E/Θ′; ρ Elaborate source He ; θI to target expression E checking against type T

Θ; ∆ ` Hc ; θI : U  C/Θ′; ρ

Θ; ∆; Γ ` H[c] ; θI : [U ] [C]/Θ′; ρ
el-box

Θ; ∆; Γ, x:T1 ` He ; θI : T2  E/Θ′; ρ

Θ; ∆; Γ ` Hfnx⇒e ; θI : T1 → T2  fnx⇒E/Θ′; ρ
el-fn

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T  E/Θ′; ρ

Θ; ∆; Γ ` He ; θI : ΠiX:U. T  λX⇒E/Θ′; ρ
el-mlam-i

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T  E/Θ′; ρ

Θ; ∆; Γ ` HλX⇒e ; θI : ΠeX:U. T  λX⇒E/Θ′; ρ
el-mlam

Θ; ∆; Γ ` He ; θI E:S/·; ρ JρK∆; JρKΓ ` H~b ; JρKθI : S → JρKT  ~B

Θ; ∆; Γ ` Hcase e of~b ; θI : T  caseE of ~B/·; ρ
el-case

Θ; ∆; Γ ` He ; θI E:T1/Θ1; ρ Θ1; JρK∆ ` T1
.
= JρKT/Θ2; ρ′

Θ; ∆; Γ ` He ; θI : T  Jρ′KE/Θ2; ρ′ ◦ ρ
el-syn

Figure 7. Elaboration of Expressions (Checking Mode)

Elaboration of applications in the synthesis mode threads
through the hole context and its instantiation, but is otherwise
straightforward. In each of the application rules, we elaborate the
first argument of the application obtaining a new hole context Θ1

together with a hole instantiation ρ1. We then apply the hole instan-
tiation ρ1 to the context ∆ and Γ and to the refinement substitution
θ, before elaborating the second part.

4.3.1 Elaborating branches
We give the rules for elaborating branches in Fig. 9. Recall that a
branch pat 7→ e consists of the pattern pat and the body e. We
elaborate a branch under the refinement θ, because the body e may
contain index variables declared earlier and which might have been
refined in earlier branches.

Intuitively, to elaborate a branch, we need to elaborate the pat-
tern and synthesize the type of index and pattern variables bound
inside of it. In the dependently typed setting, pattern elaboration
needs to do however a bit more work: we need to infer implicit ar-
guments which were omitted by the programmer (e.g: the construc-
tor Ex takes the type of the expression, and the source of evaluation
as implicit parameter Ex [T] [M]...) and we need to establish
how the synthesized type of the pattern refines the type of the scru-
tinee.

Moreover, there is a mismatch between the variables the body
e may refer to (see rule wf-branch in Fig. 2) and the context in
which the elaborated body E is meaningful (see rule t-branch
in Fig. 5). While our source expression e possibly can refer to in-
dex variables declared prior, the elaborated body E is not allowed
to refer to any index variables which were declared at the outside;
those index variables are replaced by their corresponding refine-
ments. To account for these additional refinements, we not only
return an elaborated pattern Π∆r; Γr.Pat:θr when elaborating a
pattern pat (see rule el-subst in Fig. 9), but in addition return a
map θe between source variables declared explicitly outside to their
refinements.

Technically, elaborating a pattern is done in three steps (see rule
el-subst).

1. First, given pat we elaborate it to a target pattern Pat together
with its type Sp synthesizing the type of index variables ∆p

and the type of pattern variables Γp together with holes (Θp)
which denote omitted arguments. This is accomplished by the
first premise of the rule el-subst:

·; · ` pat Π∆p; Γp.Pat : S1/Θp; ·

Our pattern elaboration judgement(figure 10) threads through
the hole context and the context of index variables, both of
which are empty in the beginning. Because program variables
occur linearly, we do not thread them through but simply com-
bine program variable contexts when needed. The result of elab-
orating pat is a pattern Pat in our target language where ∆p

describes all index variables in Pat, Γp contains all program
variables and Θp contains all holes, i.e. most general instantia-
tions of omitted arguments. We describe pattern elaboration in
detail in Section 4.3.2.

2. Second, we abstract over the hole variables in Θp by lifting all
holes to fresh index variables from ∆′p. This is accomplished
by the second premise of the rule el-subst.

3. Finally, we compute the refinement substitution θr which en-
sures that the type of the pattern JρKSp is compatible with the
type S of the scrutinee. We note that the type of the scrutinee
could also force a refinement of holes in the pattern. This is
accomplished by the judgment:

∆, (∆′p, JρK∆p) ` JρKS1 + T1/∆r; θR θR = θr, θp

We note because θR maps index variables from ∆, (∆′p, JρK∆p)
to ∆r , it contains two parts: θr provides refinements for vari-
ables ∆ in the type of the scrutinee; θp provides possible refine-
ments of the pattern forced by the scrutinee. This can happen, if
the scrutinee’s type is more specific than the type of the pattern.

4.3.2 Elaborating patterns
Pattern elaboration is bidirectional. The judgements for elaborating
patterns by checking them against a given type and synthesizing
their type are:

Synthesizing: Θ; ∆`pat  Π∆′; Γ.Pat:T / Θ′; ρ
Checking: Θ; ∆`pat : T  Π∆′; Γ.Pat / Θ′; ρ

As mentioned earlier, we thread through a hole context Θ to-
gether with the hole substitution ρ that relates: Θ′ ` ρ:Θ. Recall
that as our examples show index-level variables in patterns need not
to be linear and hence we accumulate index variables and thread
them through as well. Program variables on the other hand must
occur linearly, and we can simply combine them. The elaboration
rules are presented in Figure 10. In synthesis mode, elaboration re-
turns a reconstructed pattern Pat, a type T where ∆′ describes
the index variables in Pat and Γ′ contains all program variables
occurring in Pat. The hole context Θ′ describes the most general
instantiations for omitted arguments which have been inserted into

10 2014/8/8



Θ; ∆ ` E : T  E′ : T ′/Θ′ Apply E to holes for representing omitted arguments based on T obtaining a term E′ of type T ′

genHole (?Y :∆.U) = C (Θ, ?Y :∆.U); ∆ ` E [C] : [C/X]T  E′:T ′ / Θ′

Θ; ∆ ` E : ΠiX:U. T  E′:T ′ / Θ′
el-impl

S 6= ΠiX:U. T

Θ; ∆ ` E:S  E:S / Θ
el-impl-done

Θ; ∆; Γ ` He ; θI E:T/Θ′; ρ Elaborate source He ; θI to target E and synthesize type T

Γ(x) = T Θ; ∆; Γ ` x:T  E′:T ′/Θ′

Θ; ∆; Γ ` Hx ; θI E′:T ′ / Θ′; id(Θ′)
el-var

Σ(c) = Tc Θ; ∆ ` c : Tc  E : T / Θ′

Θ; ∆; Γ ` Hc ; θI E : T / Θ′; id(Θ′)
el-const

Θ; ∆; Γ ` He1 ; θI E1:S → T / Θ1; ρ1 Θ1; Jρ1K∆; Jρ1KΓ ` He2 ; Jρ1KθI : Jρ1KS  E2 / Θ2; ρ2

Θ; ∆; Γ ` He1 e2 ; θI E1 E2 : Jρ2KT / Θ2; ρ2 ◦ ρ1

el-app

Θ; ∆; Γ ` He ; θI E1:ΠeX:U. T/Θ1; ρ1 Θ1; Jρ1K∆ ` Hc ; Jρ1KθI : U  C/Θ2; ρ2

Θ; ∆; Γ ` He [c] ; θI E1 [C]:[C/X](Jρ2KT )/Θ2; ρ2 ◦ ρ1

el-mapp

Θ; ∆; Γ ` He ; θI E:ΠeX:U. T/Θ1; ρ genHole (?Y : (JρK∆).U) = C

Θ; ∆; Γ ` He ; θI E [C] : [C/X]T / Θ1, ?Y :(Jρ1K∆).U ; ρ
el-mapp-underscore

Θ; ∆ ` Ht ; θI T/Θ1; ρ1 Θ1; Jρ1K∆; Jρ1K∆ ` He ; Jρ1KθI : T  E/Θ2; ρ2

Θ; ∆; Γ ` He:t ; θI (E:T ):T/Θ2; ρ2 ◦ ρ1
el-annotated

Where id(Θ)returns the identity substitution for context Θ such as:Θ ` id(Θ):Θ

Figure 8. Elaborating of Expressions (Synthesizing Mode)

∆; Γ ` Hb ; θI : S → T  B Elaborate source branch Hb ; θI to target branch B

∆ ` pat : S  Π∆r; Γr.Pat : θr | θe ·; ∆r; [θr]Γ,Γr ` He ; θr ◦ θ, θeI : [θr]T  E/·; ·
∆; Γ ` Hpat 7→ e ; θI : S → T  Π∆r; Γr.Pat:θr 7→ E

el-branch

∆ ` pat : T  Π∆r; Γr.Pat : θr | θe

·; · ` pat Π∆p; Γp.Pat : Sp/Θp; · ∆′p ` ρ : Θp ∆, (∆′p, JρK∆p) ` JρKSp + S/∆r; θR

∆ ` pat : S  Π∆r; [θp]JρKΓp.[θp]JρKPat : θr | θe
el-subst

where θR = θr, θp s.t. ∆r ` θp : (∆′p, JρK∆p) and θp = θi, θe s.t. ∆r ` θi : ∆′p

Figure 9. Branches and patterns

Pat. In checking mode, we elaborate pat given a type T to the tar-
get expression Pat and index variable context ∆′, pattern variable
context Γ′ and the hole context Θ′.

Pattern elaboration starts in synthesis mode, i.e. either elaborat-
ing an annotated pattern (e : t) (see rule el-pann) or a pattern
c −→pat (see rule el-pcon). To reconstruct patterns that start with a
constructor we first look-up the constructor in the signature Σ to
get its fully elaborated type Tc and then elaborate the arguments−→
pat against Tc. Elaborating the spine of arguments is guided by the
type Tc. If Tc = ΠiX:U. T , then we generate a new hole for the
omitted argument of type U . If Tc = T1 → T2, then we elaborate
the first argument in the spine pat

−→
pat against T1 and the remaining

arguments
−→
pat against T2. If Tc = ΠeX:U. T , then we elaborate

the first argument in the spine [c]
−→
pat against U and the remaining

arguments
−→
pat against [C/X]T . When the spine is empty, denoted

by ·, we simply return the final type and check that constructor was

fully applied by ensuring that the type S we reconstruct against is
either of index level type, i.e. [U ], or a recursive type, i.e. a

−→
[C].

For synthesizing the patterns with a type annotation, first we
elaborate the type t in an empty context using a judgement that
returns the reconstructed type T , its holes and index variables
(contexts Θ′ and ∆′). Once we have the type we elaborate the
pattern checking against the type T .

To be able to synthesize the type of pattern variables and return
it, we check variables against a given type T during elaboration
(see rule el-pvar). For index level objects, rule el-pindexwe de-
fer to the index level elaboration that the index domain provides3.
Finally, when elaborating a pattern against a given type it is possi-
ble to switch to synthesis mode using rule el-psyn, where first we

3 Both, elaboration of pattern variables and of index objects can be general-
ized by for example generating a type skeleton in the rule el-substgiven
the scrutinee’s type. This is in fact what is done in the implementation of
Beluga.
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Pattern (synthesis mode) Θ; ∆ ` pat Π∆′; Γ.Pat:T / Θ′ ; ρ

Σ(c) = T Θ; ∆ ` −→pat : T  Π∆′; Γ.
−−→
Pat 〉 S / Θ′; ρ

Θ; ∆ ` c−→pat Π∆′; Γ.c
−−→
Pat:S / Θ′; ρ

el-pcon

·; · ` Ht ; ·I T/Θ′; ∆′; · (Θ,Θ′) ; (∆,∆′) ` pat : T  Π∆′′; Γ.Pat / Θ′′; ρ′

Θ; ∆ ` (pat:t) Π∆′′; Γ.Pat:Jρ′KT / Θ′′; ρ′
el-pann

Pattern (checking mode) Θ; ∆ ` pat : T  Π∆′; Γ.Pat / Θ′; ρ

Θ; ∆ ` x : T  Π∆ ; x:T.x / Θ; id(Θ)
el-pvar

Θ; ∆ ` c : U  C/Θ′; ∆′; ρ

Θ; ∆ ` [c] : [U ] Π∆′; · . [C]/Θ′ ; ρ
el-pindex

Θ; ∆ ` pat Π∆′; Γ.Pat:S / Θ′; ρ Θ′; ∆′ ` S .
= JρKT / ρ′; Θ′′

Θ; ∆ ` pat : T  ΠJρ′K∆′; Jρ′KΓ . JρKPat / Θ′′ ; ρ′ ◦ ρ
el-psyn

Pattern Spines Θ; ∆ ` −→pat : T  Π∆′; Γ.
−−→
Pat 〉 S / Θ′; ρ

either T = [U ] or T = a
−→
[C]

Θ; ∆ ` · : T  Π∆; · . · 〉 T / Θ; id(Θ)
el-sp-empty

Θ; ∆ ` pat : T1  Π∆′; Γ.Pat/Θ′; ρ Θ′; ∆′ ` −→pat : JρKT2  Π∆′′; Γ′.
−−→
Pat 〉 S / Θ′′; ρ′

Θ; ∆ ` pat −→pat : T1 → T2  Π∆′′; (Γ,Γ′) . (Jρ′KPat)
−−→
Pat 〉 S / Θ′′; ρ′ ◦ ρ

el-sp-cmp

Θ; ∆ ` c : U  C/Θ′; ∆′; ρ Θ′; ∆′ ` −→pat : [C/X]JρKT  Π∆′′; Γ.
−−→
Pat 〉 S / Θ′′; ρ′

Θ; ∆ ` [c]
−→
pat : ΠeX:U. T  Π∆′′; Γ . (Jρ′K[C])

−−→
Pat 〉 S / Θ′′; ρ′ ◦ ρ

el-sp-explicit

genHole (?Y :∆.U) = C Θ, ?Y :∆.U ; ∆ ` −→pat : [C/X]T  Π∆′; Γ.
−−→
Pat 〉 S / Θ′; ρ

Θ; ∆ ` −→pat : ΠiX:U. T  Π∆′; Γ.(JρKC)
−−→
Pat 〉 S / Θ′; ρ

el-sp-implicit

Figure 10. Elaboration of patterns and pattern spines

elaborate the pattern synthesizing its type S and then we make sure
that S unifies against the type T it should check against.

5. Soundness of elaboration
We establish soundness of our elaboration: if we start with a well-
formed source expression, we obtain a well-typed target expression
E which may still contain some holes and E is well-typed for
any ground instantiation of these holes. In fact, our final result of
elaborating a recursive function and branches must always return a
closed expression.

Theorem 1 (Soundness).

1. If Θ; ∆; Γ ` He ; θI : T  E/Θ1; ρ1 then for any grounding
hole instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ρ1, we have
Jρ0K∆; Jρ0KΓ ` JρgKE ⇐ Jρ0KT .

2. If Θ; ∆; Γ ` He ; θI  E:T/Θ1; ρ1 then for any grounding
hole instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ρ1, we have
Jρ0K∆; Jρ0KΓ ` JρgKE ⇒ JρgKT .

3. If ∆; Γ ` Hpat 7→ e ; θI : S → T  Π∆′; Γ′.Pat : θ′ 7→ E
then ∆; Γ ` Π∆′; Γ′.Pat : θ′ 7→ E ⇐ S → T .

To establish soundness of elaboration of case-expressions and
branches, we rely on pattern elaboration which abstracts over the

variables in patterns as well as over the holes which derive from
most general instantiations inferred for omitted arguments. We
abstract over these holes using a lifting substitution ε. In practice,
we need a slightly more general lemma than the one stated below
which takes into account the possibility that holes in Pat are
further refined (see Appendix).

Lemma 2 (Pattern elaboration).

1. If Θ; ∆ ` pat Π∆1; Γ1.Pat:T/Θ1; ρ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ1

then ∆i, JεK∆1; JεKΓ1 ` JεKPat⇐ JεKT .

2. If Θ; ∆ ` pat : T  Π∆1; Γ1.Pat/Θ1; ρ1 and
ε is a ground lifting substitution, such as ∆i ` ε:Θ1

then ∆i, JεK∆1; JεKΓ1 ` JεKPat⇐ JεKJρ1KT .

3. If Θ; ∆ ` −→pat : T  Π∆1; Γ1.
−−→
Pat 〉 S/Θ1; ρ1 and

ε is a ground lifting substitution, such as ∆i ` ε:Θ1

then ∆i, JεK∆1; JεKΓ1 ` JεK
−−→
Pat⇐ JεKJρ1KT 〉 JεKS.

6. Related work
Our language contains indexed families of types that are related to
Zenger’s work [Zenger 1997] and the Dependent ML (DML) [Xi
2007] and Applied Type System (ATS) [Xi 2004; Chen and Xi
2005]. The objective in these systems is: a program that is typable
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in the extended indexed type system is already typable in ML. By
essentially erasing all the type annotations necessary for verifying
the given program is dependently typed, we obtain a simply typed
ML-like program. In contrast, our language supports pattern match-
ing on index objects. Our elaboration, in contrast to the one given in
Xi [2007], inserts omitted arguments producing programs in a fully
explicit dependently typed core language. This is different from
DML-like systems which treat all index arguments as implicit and
do not provide a way for programmers to manipulate and pattern
match directly on index objects. Allowing users to explicitly access
and match on index arguments changes the game substantially.

Elaboration from implicit to explicit syntax for dependently
typed systems has first been mentioned by Pollack [1990] although
no concrete algorithm to reconstruct omitted arguments was given.
Luther [2001] refined these ideas as part of the TYPELab project.
He describes an elaboration and reconstruction for the calculus
of constructions without treating recursive functions and pattern
matching. There is in fact little work on elaborating dependently-
typed source language supporting recursion and pattern matching.
For example, the Agda bi-directional type inference algorithm de-
scribed in Norell [2007] concentrates on a core dependently typed
calculus enriched with dependent pairs, but omits the rules for its
extension with recursion and pattern matching4. Idris, a depen-
dently typed language developed by Brady [2013] uses a different
technique. Idris starts by adding holes for all the implicit variables
and it tries to instantiate these holes using unification. However, the
language uses internally a tactic based elaborator that is exposed to
the user who can interactively fill the holes using tactics. He does
not prove soundness of the elaboration, but conjectures that given a
type correct program its elaboration followed by a reverse elabora-
tion produces a matching source level program.

A notable example, is the work by Asperti et al. [2012] on
describing a bi-directional elaboration algorithm for the Calculus of
(Co)Inductive Constructions (CCIC) implemented in Matita. Their
setting is very different from ours: CCIC is more powerful than
our language since the language of recursive programs can occur
in types and there is no distinction between the index language
and the programming language itself. Moreover in Matita, we are
only allowed to write total programs and all types must be positive.
For these reasons their source and target language is more verbose
than ours and refinement, i.e. the translation of the source to the
target, is much more complex than our elaboration. The difference
between our language and Matita particularly comes to light when
writing case-expressions. In Matita as in Coq, the programmer
might need to supply an invariant for the scrutinee and the overall
type of the case expression as a type annotation. Each branch then
is checked against the type given in the invariant. Sometimes, these
annotations can be inferred by using higher-order unification to
find the invariant. In contrast, our case-expressions require no type
annotations and we refine each branch according to refinement
imposed by the pattern in each branch. The refinement is computed
with help from higher-order unification. This makes our source and
target language more light-weight and closer to a standard simply
typed functional language.

Finally, refinement in Matita may leave some holes in the final
program which then can be refined further by the user using for
example tactics. We support no such interaction; in fact, we fail, if
holes are left-over and the programmer is asked to provide more
information.

Agda, Matita and Coq require users to abstract over all variables
occurring in a type and the user statically labels arguments the user
can freely omit. To ease the requirement of declaring all variables

4 Norell [2007] contains extensive discussions on pattern matching and
recursion, but the chapter on elaboration does not discuss them.

occurring in type, many of these systems such as Agda supports
simply listing the variables occurring in a declaration without the
type. This however can be brittle since it requires that the user
chose the right order. Moreover, the user has the possibility to
locally override the implicit arguments mechanism and provide
instantiations for implicit arguments explicitly. This is in contrast
to our approach where we guide elaboration using type annotations
and omit arguments based on the free variables occurring in the
declared type, similarly to Idris which abstracts and makes implicit
all the free variables in types.

This work is also related to type inference for Generalized Al-
gebraic Data Types (i.e: GADTs) such as [Schrijvers et al. 2009].
Here the authors describe an algorithm where they try to infer the
types of programs with GADTs when the principal type can be in-
ferred and requiring type annotations for the cases that lack a prin-
cipal type or it can not be inferred. This is in contrast to our sys-
tem which always requires a type annotation at the function level.
On the other hand our system supports a richer variety of index
languages (some index languages can be themselves dependently
typed as with Contextual LF in Beluga). Moreover we support pat-
tern matching on index terms, a feature that is critical to enable
reasoning about objects from the index level. Having said that, the
approach to GADTs from [Schrijvers et al. 2009] offers interesting
ideas for future work, first making the type annotations optional
for cases when they can be inferred, and providing a declarative
type systems that helps the programmer understand when will the
elaboration succeed to infer the types.

7. Conclusion and future work
In this paper we describe a surface language for writing depen-
dently typed programs where we separate the language of types and
index objects from the language of programs. Total programs in our
language correspond to first-order inductive proofs over a specific
index domain where we mediate between the logical aspects and
the domain-specific parts using a box modality. Our programming
language supports indexed data-types, dependent pattern matching
and recursion. Programmers can leave index variables free when
declaring the type of a constructor or recursive program as a way of
stating that arguments for these free variables should be inferred by
the type-directed elaboration. This offers a lightweight mechanism
for writing compact programs which resemble their ML counter-
parts and information pertaining to index arguments can be omit-
ted. In particular, our handling of case-expressions does not require
programmers to specify the type invariants the patterns and their
bodies must satisfy and case expressions can be nested due to the
refinement substitutions that mediate between the context inside
and outside a branch. Moreover, we seamlessly support nested pat-
tern matching inside functions in our surface and core languages
(as opposed to languages such as Agda or Idris where the former
supports pattern matching lambdas that are elaborated as top-level
functions and the latter only supports simply typed nested pattern
matching).

To guide elaboration and type inference, we allow type annota-
tions which indirectly refine the type of sub-expressions; type an-
notations in patterns are also convenient to name index variables
which do not occur explicitly in a pattern.

We prove our elaboration sound, in the sense that if elabora-
tion produces a fully explicit term, this term will be well-typed.
Finally, our elaboration is implemented in Beluga, where we use
as the index domain contextual LF, and has been shown practical
(see for example the implementation of a type-preserving compiler
[Belanger et al. 2013]). We believe our language presents an inter-
esting point in the design space for dependently typed languages in
general and sheds light into how to design and implement a depen-
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dently typed language where we have a separate index language,
but still want to support pattern matching on these indices.

As future work, we would like to strengthen our soundness re-
sult by relating the source and elaborated expressions with a type
directed equivalence. Furthermore, we intend to explore an appro-
priate notion of completeness of elaboration. This would provide
stronger guarantees for programmers stating that all terms in the
target language can be written as terms in the source language such
that elaboration succeeds. Also, it would be interesting to add type
inference for functions when such inference is decidable and to pre-
cisely characterize when annotations can be omitted (again, related
to the notion of completeness). Moreover, we would like to explore
more powerful type-systems for the computational language, such
as polymorphism. Polymorphism would improve how useful the
language is, but it is largely an orthogonal feature that would not
impact much what is discussed in this paper.
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Appendix (extra material)
A. Index language
We summarize here our requirements on the index domain. We
denote index terms in the source language with c and index types
in the source language as u.

Well-formedness of types and kinds (source) We define the well-
formedness requirements for computational types and kinds in the
source language:

δ ` k wf Kind k is well-formed and closed with respect to δ
δ ` t wf Type t is well-formed and closed with respect to δ

The rules inf figure 11 describe when types are well-formed, i.e.
all their variables are bound. Related to these judgments are:

δ `f k wf Kind k is well-formed with respect to δ
and may contain free variables.

δ `f t wf Type t is well-formed with respect to δ
and may contain free variables.

These judgments admit the possibility of free index-level vari-
ables, so they do not restrict the types and kinds as defined by the
grammar and are thus omitted.

Well-formedness of index objects (source) First, we define re-
quirements on well-formedeness.

δ ` c wf Index object c is well formed and closed with respect to δ
δ `f c wf Index object c is well formed with respect to δ

and may contain free index variables

Well-typed index objects (target)
∆ ` C : U Index object C has index type U in context ∆

Substitution C/X in an index object C′ is defined as [C/X]C′.

Well-typed index objects with holes
Θ; ∆ ` C : U Index object C has index type U in context ∆

and all holes in C are well-typed wrt Θ

Hole types ::= ∆.U
Hole Contexts Θ ::= · | Θ, ?X:∆.U
Hole Inst. ρ ::= · | ρ,∆.C/?X

When we insert hole variables for omitted arguments in a given
context ∆, we rely on the abstract function genHole (?Y : ∆.U)
which returns an index term containing a new hole variable.

genHole (?Y : ∆.U) = C where C describes a hole.

Unification of index objects The notion of unification that elab-
oration needs depends on the index level language. As we men-
tioned, we require that equality on our index domain is decidable;
for elaboration, we also require that there is a decidable unifica-
tion algorithm which makes two terms equal. In fact, we need two
forms: one which allows us to infer instantiations for holes and an-
other which unifies two index objects finding most general instan-
tiations for index variables such that the two objects become equal.
We use the first one during elaboration, the second one is used to
make two index objects equal as for example during matching.

Θ; ∆ ` C1
.
= C2/Θ

′; ρ where: Θ′ ` ρ:Θ
∆ ` C1

.
= C2/∆

′; θ where: ∆′ ` θ:∆
where ρ describes the instantiation for holes in Θ. If unification

succeeds, then we have JρKC1 = JρKC2 and [θ]C1 = [θ]C2

respectively.

Elaboration of index objects Elaboration of index objects them-
selves. If the index language is simply typed, the elaboration has
nothing to do; however, if as in Beluga, our index objects are ob-
jects described in the logical framework LF, then we need to elab-
orate them and infer omitted arguments following [Pientka 2013].
There are two related forms of elaboration for index objects we use:

Θ; ∆ ` c : U  C/Θ′; ∆′; ρ
Θ; ∆ ` Hc ; θI : U  C/Θ′; ρ

The first judgment elaborates the index object c by checking it
against U . We thread through a context Θ of holes and a context
of index variables ∆, we have seen so far. The object c however
may contain additional free index variables whose type we infer
during elaboration. All variables occurring in C will be eventually
declared with their corresponding type in ∆′. As we elaborate c, we
may refine holes and add additional holes. ρ describes the mapping
between Θ and Θ′, i.e. it records refinement of holes. Finally, we
know that ∆′ = JρK∆,∆0, i.e. ∆′ is an extension of ∆. We use
the first judgment in elaborating patterns and type declarations in
the signature.

The second judgment is similar to the first, but does not allow
free index variables in c. We elaborate c together with a refinement
substitution θ, which records refinements obtained from earlier
branches. When we encounter an index variable, we look up what it
is mapped to in θ and return it. Given a hole context Θ and a index
variable context ∆, we elaborate an index term c against a given
type U . The result is two fold: a context Θ′ of holes is related to
the original hole context Θ via the hole instantiation ρ. We use the
second judgment to elaborate index objects embedded into target
expressions.

B. Elaborating kinds and types in declarations
Recall that programmers may leave index variables free in type
and kind decarations. Elaboration must infer the type of the free
index variables in addition to reconstructing omitted arguments.
We require that the index language provides us with the following
judgments:

Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′

Θ; ∆ ` Hu ; θI U/Θ′; ρ′

Hence, we assume that the index language knows how to infer
the type of free variables, for example. In Beluga where the index
language is LF, we fall back to the ideas described in [Pientka
2013].

The first judgment collects free variables in ∆f that later in
elaboration will become implicit parameters. The context ∆f is
threaded through in addition to the hole context Θ.

The judgments for elaborating computation-level kinds and
types are similar:

1. Θ; ∆f | ∆ ` k  K/Θ′; ∆′f ; ρ′

2. Θ; ∆f | ∆ ` t T/Θ′; ∆′f ; ρ′

3. Θ; ∆f | ∆ `
−→
[c] : K  

−→
[C]/Θ′; ∆′f ; ρ′

We again collect free index variables in ∆f which are threaded
through together with the holes context Θ (see Figure 6 and Fig-
ure 12).
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δ ` k wf Kind k is well-formed and closed with respect to δ

δ ` ctype wf
δ ` u wf δ,X:u ` k wf

δ ` {X:u} k wf

δ ` t wf Type t is well-formed and closed with respect to δ

δ;` ci wf for all ci in −→c

δ ` a
−→
[c] wf

δ ` u wf
δ ` [u] wf

δ ` u wf δ,X:u ` t wf
δ ` {X:u} t wf

δ ` t1 wf δ ` t2 wf
δ ` t1 → t2 wf

Figure 11. Well-formed kinds and types

Θ; ∆f | ∆ ` k  K/Θ′; ∆′f ; ρ′ Elaborate kind k to target kind K

Θ; ∆f | ∆ ` ctype ctype/Θ; ∆f ; id(Θ)
el-k-ctype

Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′ Θ′; ∆′f | ∆, X:U ` k  K/Θ′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` {X:u} k  ΠeX:(Jρ′KU).K/Θ′′; ∆′′f ; ρ′′ ◦ ρ′
el-k-pi

Θ; ∆f | ∆ ` t T/Θ′; ∆′f ; ρ′ Elaborate type t to target type T

Θ; ∆f | ∆ ` t1  T1/Θ
′; ∆′f ; ρ′ Θ′; ∆′f | ∆ ` t2  T2/Θ

′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` t1 → t2  (Jρ′′KT1)→ T2/Θ
′′; ∆′′f ; ρ′′ ◦ ρ′

el-t-arr
Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′

Θ; ∆f | ∆ ` [u] [U ]/Θ′; ∆′f ; ρ′
el-t-idx

Θ; ∆f | ∆ ` u U/Θ′; ∆′f ; ρ′ Θ′; ∆′f | ∆, X:U ` t T/Θ′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` {X:u} t ΠeX:(Jρ′KU). T/Θ′′; ∆′′f ; ρ′′ ◦ ρ′
el-t-pi

Σ(a) = K Θ; ∆f | ∆ `
−→
[c] : K  

−→
[C]/Θ′; ∆′f ; ρ′

Θ; ∆f | ∆ ` a
−→
[c] a

−→
C/Θ′; ∆′f ; ρ′

el-t-con

Θ; ∆f | ∆ `
−→
[c] : K  

−→
[C]/Θ′; ∆′f ; ρ′ Elaborate fully applied spine

−→
[c] checking against kind K to target spine

−→
[C]

Θ; ∆f | ∆ ` c : U  C/Θ′; ∆′f ; ρ′ Θ′; ∆′f | ∆ `
−→
[c] : [C/X]K  

−→
[C]/Θ′′; ∆′′f ; ρ′′

Θ; ∆f | ∆ ` [c]
−→
[c] : ΠeX:U.K  (Jρ′K[C])

−→
[C]/Θ′′; ∆′′f ; ρ′′ ◦ ρ′

el-t-sp-explicit

genHole (?Y :(∆f ,∆).U) = C Θ; ∆f | ∆ ` −→c : [C/X]K  
−→
C/Θ′; ∆′f ; ρ′

Θ; ∆f | ∆ ` −→c : ΠiX:U.K  (Jρ′KC)
−→
C/Θ′; ∆′f ; ρ′

el-t-sp-implicit

Θ; ∆f | ∆ ` · : ctype ·/Θ; ∆f ; id(Θ)
el-t-sp-empty

Figure 12. Elaborating kinds and types in declarations
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C. Soundness proof
Theorem 3 (Soundness).

1. If Θ; ∆; Γ ` He ; θI : T  E/Θ1; ρ1 then for any grounding hole instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have
Jρ0K∆; Jρ0KΓ ` JρgKE ⇐ Jρ0KT .

2. If Θ; ∆; Γ ` He ; θI  E:T/Θ1; ρ1 then for any grounding hole instantiation ρg s.t. · ` ρg : Θ1 and ρ0 = ρg ◦ ρ1, we have
Jρ0K∆; Jρ0KΓ ` JρgKE ⇒ JρgKT .

3. If ∆; Γ ` Hpat 7→ e ; θI : S → T  Π∆′; Γ′.Pat : θ′ 7→ E then ∆; Γ ` Π∆′; Γ′.Pat : θ′ 7→ E ⇐ S → T .

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆; Γ ` Hcase e of
−→
b ; θI : T  caseE of

−→
B/Θ′; ρ

Θ; ∆; Γ ` He ; θI E:S/·; ρ by inversion on el-case

JρK∆; JρKΓ ` H
−→
b ; JρKθI : S → JρKT  

−→
B by inversion on el-case

for any grounding hole inst. ρ′ we have JρK∆; JρKΓ ` E ⇒ S by I.H. noting ρ′ = · and ρ′ ◦ ρ = ρ

[ρ]∆; [ρ]Γ ` B:S → [ρ]T for every branch by (3)

[ρ]∆; [ρ]Γ ` caseE of
−→
B ⇐ JρKT by t-case

Note that because E is ground then the only grounding hole inst. is the empty substitution.

Case D : Θ; ∆; Γ ` Hfnx⇒e ; θI : T1 → T2  fnx⇒E/Θ1; ρ1

17 2014/8/8



Θ; ∆; Γ, x:T1 ` He ; θI : T2  E/Θ1; ρ1 by assumption

for any grounding hole inst. ρg we have: Jρ0K∆; JρoK(Γ, x:T1) ` JρgKE ⇐ Jρ0KT2 by i.h. (1) with ρ0 = ρg ◦ ρ1

Jρ0K∆; (JρoKΓ), x:(Jρ0KT1) ` JρgKE ⇐ Jρ0KT2 by properties of substitution

Jρ0K∆; JρoKΓ) ` fnx⇒(JρgKE)⇐ (Jρ0KT1)→ (Jρ0KT2) by t-fn

Jρ0K∆; JρoKΓ) ` JρgK(fnx⇒E)⇐ Jρ0K(T1)→ T2) by properties of substitution

which is what we wanted to show

Case D : Θ; ∆; Γ ` HλX⇒e ; θI : ΠeX:U. T  λX⇒E/Θ1; ρ1

Θ; ∆, X:U ; Γ ` He ; θ,X/XI : T  E/Θ1; ρ1 by assumption

for any grounding hole inst. ρg we haveJρ0K(∆, X:U); Jρ0KΓ ` JρgKE ⇐ JρoKT by i.h.(1) with ρ0 = ρg ◦ ρ1

JρoK∆, X:(Jρ0KU); Jρ0KΓ ` JρgKE ⇐ JρoKT by properties of subst

JρoK∆; Jρ0KΓ ` λX⇒JρgKE ⇐ ΠeX:Jρ0KU. (JρoKT ) by t-mlam

JρoK∆; Jρ0KΓ ` JρgKλX⇒E ⇐ Jρ0KΠeX:U. T by properties of substitution

which is what we wanted to show

Case D : Θ; ∆; Γ ` He ; θI : ΠiX:U. T  λX⇒E/Θ1; ρ1

this case follows the same structure as the previous

Case D : Θ; ∆; Γ ` H[c] ; θI : [U ] [C]/Θ1; ρ1

Θ; ∆ ` Hc ; θI : U  C/Θ1; ρ1 by assumption

for any grounding inst. ρg we have Jρ0K∆; Jρ0KΓ ` JρgKC ⇐ Jρ0KU by properties of the index language and ρ0 = ρg ◦ ρ1

Jρ0K∆; Jρ0KΓ ` JρgK[C]⇐ Jρ0K[U ] by t-box and properties of subst.

which is what we wanted to show

Case D : Θ; ∆; Γ ` He ; θI : T  Jρ2KE/Θ2; ρ2 ◦ ρ1

Θ; ∆; Γ ` He ; θI E:T1/Θ1; ρ1

Θ1; Jρ1K∆ ` T1
.
= Jρ1KT/Θ2; ρ2 by assumption

for any grounding inst. ρg we have JρoK∆; Jρ0KΓ ` JρgKE ⇒ JρgKT1 by i.h. (2) where ρo = ρg ◦ ρ1[*]

for any grounding inst. ρ′g we have Jρ′g ◦ ρ2KT1 = Jρ′g ◦ ρ2 ◦ ρ1KT by prop of unification and applying a grounding subst [**]

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE ⇒ Jρ′g ◦ ρ2KT1 from [*] using ρg = ρ′g ◦ ρ2

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE ⇒ Jρ′g ◦ ρ2 ◦ ρ1KT by [**]

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE ⇐ Jρ′g ◦ ρ2 ◦ ρ1KT by t-syn

which is what we wanted to show

For(2):

Case E : Θ; ∆; Γ ` He [c] ; θI E1 [C]:[C/X](Jρ2KT )/Θ2; ρ2 ◦ ρ1

Θ; ∆; Γ ` He ; θI E1:ΠeX:U. T/Θ1; ρ1

Θ1; Jρ1K∆ ` Hc ; Jρ1KθI : U  C/Θ2; ρ2 by assumption

for any grounding instantiation ρg s.t. · ` ρg:Θ1 we have Jρg ◦ ρ1K∆; Jρg ◦ ρ1KΓ ` JρgKE1 ⇒ JρgKΠeX:U. T by i.h. (2)[*]
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for any grounding instantiation ρ′g s.t. · ` ρ′g:Θ2 we have Jρ′g ◦ ρ2 ◦ ρ1K∆ ` Jρ′gKC ⇐ Jρ′g ◦ ρ2KU by soundness of index reconstruction

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE1 ⇒ Jρ′g ◦ ρ2KΠeX:U. T Note that in [*] · ` ρg:Θ1 so we can instantiate ρg = ρ′g ◦ ρ2

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′g ◦ ρ2KE1 ⇒ ΠeX:(Jρ′g ◦ ρ2KU). (Jρ′g ◦ ρ2KT ) by properties of substitutions

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` (Jρ′g ◦ ρ2KE1) Jρ′gKC ⇒ [Jρ′gKC}/X](Jρ′g ◦ ρ2KT ) by t-app-index

Jρ′g ◦ ρ2 ◦ ρ1K∆; Jρ′g ◦ ρ2 ◦ ρ1KΓ ` Jρ′gK((Jρ2KE1)C)⇒ Jρ′gK([C/X](Jρ2KT ) by properties of substitutions

which is what we wanted to show.

Case E : Θ; ∆; Γ ` Hx ; θI E1:T1 / Θ1; id(Θ1)

Γ(x) = T

Θ; ∆; Γ ` x:T  E1:T1/Θ1 by assumption

∆; Γ ` x⇒ T by rule t-var[*]

for any grounding inst. ρg s.t. · ` Θ1 we have:
Jρg ◦ ρ1K∆; Jρg ◦ ρ1KΓ ` JρgKE1:JρgKT1 by [*], weakening and lemma 4 with ρ1 = id(Θ1)

which is what we wanted to show

For (3):

Case F : ∆; Γ ` Hpat 7→ e ; θI : S → T  Π∆r; Γr.Pat
′:θ 7→ E

∆ ` pat : S  Π∆r; Γr.Pat:θr | θe by assumption

·; · ` pat Pat : S′/Θp; ∆p; Γp | ·
∆′p ` ρ : Θp and Γr = [θp]JρKΓp, Pat′ = [θp]JρKPat by inversion on el-subst

∆′p, JρK∆p; JρKΓp ` JρKPat⇐ JρKS′ by pattern elaboration lemma

∆,∆′p, JρK∆p ` JρKS′ + S/∆r, θ by inversion on el-subst

where we can split θ as θ = θr, θi, θe so that:

 ∆r ` θr:∆
∆r ` θi:∆′p
∆r ` θi, θe:∆′p, JρK∆p

let θp = θi, θe

[θi, θe︸ ︷︷ ︸
θp

]JρKS′ = [θr]S by soundness of unification and the fact that ∆ and ∆′p, JρK∆p are distinct

∆r; [θp]JρKΓp ` [θp]JρKPat⇐ [θp]JρKS′ by substitution lemma

∆r; [θp]JρKΓp︸ ︷︷ ︸
Γr

` [θp]JρKPat︸ ︷︷ ︸
Pat′

⇐ [θr]S by [θ]JρKS′ = [θr]S

·; ∆r; [θr]Γ,Γr ` He ; θr ◦ θ, θeI : [θr]T  E/·; · by assumption

∆r; [θr]Γ,Γr ` E ⇐ [θr]T by (1)

∆; Γ ` Π∆r; Γr.Pat
′:θr 7→ E ⇐ S → T by t-branch

which is what we wanted to show.

Lemma 4 (Implicit parameter instantiation). Let’s consider the judgement: Θ; ∆; Γ ` E:T  E1:T1/Θ1, where Θ1 is a weakening of Θ.
We want to prove that, if ρg is a grounding instantiation such as · ` ρg:Θ1 where we split ρg = ρ′g, ρ

′′
g and · ` ρ′g:Θ and

·; Jρ′gK∆; Jρ′gKΓ ` Jρ′gKE:Jρ′gKT then ·; JρgK∆; JρgKΓ ` JrhogKE1:JρgKT1.

Proof. The proof follows by induction on the rules of the judgment where the base case for el-impl-done is trivial and the inductive step
for el-impl has also a very direct proof.

Lemma 5 (Pattern elaboration).

1. If Θ; ∆ ` pat  Π∆1; Γ1.Pat:T/Θ1; ρ1 and ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and ε is a ground lifting
substitution, such as ∆i ` ε:Θ1 then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrKPat⇐ JεKJρrKT .
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2. If Θ; ∆ ` pat : T  Π∆1; Γ1.Pat/Θ1; ρ1 and ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and ε is a ground lifting
substitution, such as ∆i ` ε:Θ1 then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrKPat⇐ JεKJρr ◦ ρ1KT .

3. If Θ; ∆ ` −→pat : T  Π∆1; Γ1.
−−→
Pat 〉 S/Θ1; ρ1 and ρr is a further refinement substitution, such as Θ2 ` ρr:Θ1 and ε is a ground lifting

substitution, such as ∆i ` ε:Θ1 then ∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1KT 〉 JεKJρrKS.

Proof. By simultaneous induction on the first derivation.

For (1):

Case D : Θ; ∆ ` c−→pat Π∆1; Γ1.c
−−→
Pat:S/Θ1; ρ1

Σ(c) = T

Θ; ∆ ` −→pat : T  Π∆1; Γ1.
−−→
Pat 〉 S/Θ1; ρ1 by assumption

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1KT 〉 JεKJρrKS by i.h. (3)

Note that types in the signature (i.e. Σ) are ground so JεKJρr ◦ ρ1KT = T

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` c (JεKJρrK
−−→
Pat)⇐ JεKJρrKS by t-pcon.

∆i, JεKJρrK∆1; JεKJρrKΓ1 ` JεKJρrK(c
−−→
Pat)⇐ JεKJρrKS by properties of substitution

which is what we wanted to show.

For (2):

Case E : Θ; ∆ ` x : T  Π∆1 ; x:T︸︷︷︸
Γ1

.x / Θ; id(Θ)

Γ1(x) = T by x being the only variable in Γ1

JεKJρrKΓ1 = JεKJρrKΓ1T by applying ε and ρr to ∆1, Γ1 and T

JεKJρrK∆1; JεKJρrKΓ1 ` x⇐ JεKJρrKT by rule t-pvar

which is what we wanted to prove

For (3):

Case F : Θ; ∆ ` pat −→pat : T1 → T2  Π∆2; Γ1,Γ2.(Jρ′KPat)
−−→
Pat 〉 S/Θ2; ρ2 ◦ ρ1

Θ; ∆ ` pat : T1  Π∆1; Γ1.Pat/Θ1; ρ1

Θ1; ∆1 `
−→
pat : JρKT2  Π∆2; Γ2.

−−→
Pat 〉 S/Θ2; ρ2 by assumption

Θ2 ` ρ2:Θ1 by invariant of rule

Θ3 ` ρ3 ◦ ρ2:Θ1 (further refinement substitution) by composition

∆i ` ε:Θ3 lifting substitution

∆i, JεKJρ3 ◦ ρ2K∆1; JεKJρ3 ◦ ρ2KΓ1 ` JεKJρ3 ◦ ρ2KPat⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT1 by i.h. on (1). [*]

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K
−−→
Pat⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT2 〉 JεKJρ3KS by i.h. on (2)

we note that in pattern elaboration we have:

∆2 = Jρ2K∆1,∆
′
2 ∆2 is the context ∆1 with the hole instantiation applied and some extra assumptions(i.e. ∆′2).

and Γ2 = Jρ2KΓ1,Γ
′
2 Γ2 is the context Γ1 with the hole instantiation applied and some extra assumptions(i.e. Γ′2).

and we can weaken [*] to:

∆i, JεKJρ3 ◦ ρ2K∆1, JεKJρ3K∆′2; JεKJρ3 ◦ ρ2KΓ1, JεKJρ3KΓ′2 ` JεKJρ3 ◦ ρ2KPat⇐ JρKJρ3 ◦ ρ2 ◦ ρ1KT1

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` (JεKJρ3 ◦ ρ2KPat)(JεKJρ3K
−−→
Pat)⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KT1 → JεKJρ3 ◦ ρ2 ◦ ρ1KT2 〉 JεKJρ3KS by t-sarr.

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K(Jρ2KPat
−−→
Pat)⇐ JεKJρ3 ◦ ρ2 ◦ ρ1K(T1 → T2) 〉 JεKJρ3KS by properties of substitution

which is what we wanted to show.
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Case F : Θ; ∆ ` [c]
−→
pat : ΠeX:U. T  Π∆2; Γ2.(Jρ1K[C])

−−→
Pat 〉 S/Θ2; ρ2 ◦ ρ1

Θ; ∆ ` c : U  C/Θ1; ∆1; ρ1

Θ1; ∆1 `
−→
pat : [C/X]Jρ1KT  Π∆2; Γ2.

−−→
Pat 〉 S/Θ2; ρ2 by assumption

Θ2 ` ρ2:Θ1 by invariant of rule

Θ3 ` ρ3 ◦ ρ2:Θ1 (further refinement substitution) by composition

∆i ` ε:Θ3 lifting substitution

∆i, JεKJρ3 ◦ ρ2K∆1 ` JεKJρ3 ◦ ρ2KC ⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KU by property of the index language[*]

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K
−−→
Pat⇐ JεKJρ3 ◦ ρ2K([C/X]Jρ1KT ) 〉 JεKJρ3KS by i.h. (3)

as before, we note that:

∆2 = Jρ2K∆1,∆
′
2 ∆2 is the context ∆1 with the hole instantiation applied and some extra assumptions(i.e. ∆′2).

and we can weaken [*] to:

∆i, JεKJρ3 ◦ ρ2K∆1, JεKJρ3K∆′2 ` JεKJρ3 ◦ ρ2KC ⇐ JεKJρ3 ◦ ρ2 ◦ ρ1KU

Note that JεKJρ3 ◦ ρ2K([C/X]Jρ1KT ) = [(JεKJρ3 ◦ ρ2KC)/X](JεKJρ3 ◦ ρ2 ◦ ρ1KT ) by properties of substitution

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` [JεKJρ3 ◦ ρ2KC] (JεKJρ3K
−−→
Pat)⇐ ΠeX:(JεKJρ3 ◦ ρ2 ◦ ρ1KU). (JεKJρ3 ◦ ρ2 ◦ ρ1KT ) 〉 JεKJρ3KS by t-spi

∆i, JεKJρ3K∆2; JεKJρ3KΓ2 ` JεKJρ3K([Jρ2KC]
−−→
Pat))⇐ JεKJρ3 ◦ ρ2 ◦ ρ1K(ΠeX:U. T ) 〉 JεKJρ3KS by properties of substitution

which is what we wanted to show.

Case F : Θ; ∆ ` −→pat : ΠiX:U. T  Π∆1; Γ1.(Jρ1KC)
−−→
Pat 〉 S/Θ1; ρ1

genHole (?Y : ∆.U) = C

Θ, ?Y :∆.U ; ∆ ` −→pat : [C/X]T  Π∆′; Γ′.
−−→
Pat/Θ′; ρ 〉 S by assumption

Θ, ?Y :∆.U ; ∆ ` C ⇐ U by genhole invariant

∆i, JεKJρr ◦ ρ1K∆ ` JεKJρr ◦ ρ1KC ⇐ JεKJρr ◦ ρ1KU applying substitutions ε, ρrandρ1

noting that ∆1 = Jρ1K∆,∆′1
∆i, JεKJρrK(Jρ1K∆,∆′1) ` JεKJρr ◦ ρ1KC ⇐ JεKJρr ◦ ρ1KU by weakening

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` JεKJρrK
−−→
Pat⇐ JεKJρr ◦ ρ1K[C/X]T 〉 JεKJρrKS by i.h. (3)

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` JεKJρrK
−−→
Pat⇐ [JεKJρr ◦ ρ1KC/X](JεKJρr ◦ ρ1KT ) 〉 JεKJρrKS by properties of substitution

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` [JεKJρr ◦ ρ1KC] JεKJρrK
−−→
Pat⇐ ΠiX:JεKJρr ◦ ρ1KU. (JεKJρr ◦ ρ1KT ) 〉 JεKJρrKS by t-spi

∆i, JεKJρrK∆1; JεKJρrKΓ′ ` JεKJρrK[Jρ1KC]
−−→
Pat⇐ JεKJρr ◦ ρ1K(ΠiX:U. T ) 〉 JεKJρrKS by properties of substitution

which is what we wanted to show
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