
How to Verify a Model Transformation does its Job?
Levi Lúcio†, Hans Vangheluwe† Eugene Syriani†‡ and Maris Jukss†

†McGill University, Montréal, Canada ‡University of Alabama, USA

Problem Statement

The NECSIS (Network on Engineering Complex Software Intensive Systems for Automotive Systems) initiative is a collaboration between
several Canadian universities, General Motors of Canada, IBM and Malina software. It is aimed at researching Model Driven Engineering
methodologies and tools for increasing productivity when developing automotive software. Our work concentrates on the study of the role of
model transformations in this scenario, in particular on their correction. Model transformations are ubiquitous in software development,
some examples are data format interchange tools, language translators, small compilers or small language interpreters. Most of the times in
industrial settings these tools are defined in an implicit fashion. By treating model transformations as first-class citizens of the development
toolchain and verifying they are correct, we aim at increasing the reusability of quality software and thus increasing productivity.

Verifying tranformations for language translators, small compilers (terminating transformations) [1, 2]

Idle

Playing
turn off

turn on
turn off

play

stop

Idle

Playing
turn off

turn on
turn off

play

stop

Paused

resumepause

semantics preserving
transformation

Property example:
 " the enhanced player will still reach the play state "

Applicable when:
 partial model structure can be preserved;

Languages:
 same source and target languages;

Implementation:
 by restricting transformations by construction,
 for one particular formalism;

moviePlayer :
Player

stop:
Button

play:
Button

entertainment :
CarSystem

frontConsole :
PhysicalSpace

movieplayer :
Player

entertainment :
CarSystem

frontConsole :
PhysicalSpace

syntactic mapping
transformation

Property example:
 " all movie players in the car will become
 attached to a console "

Applicable when:
 transformations are too large or fragmented
 to be directly understood;

Languages:
 same or different source and target languages;

Implementation:
 by proving the transformation implements the
 required mapping between source and target
 language patterns.

Verifying tranformations for language interpreters (general case non-terminating transformations) [3]

Idle

Playing
turn off

turn on
turn off

play

stop

Idle

Playing
turn off

turn on
turn off

play

stop

Idle

Playing
turn off

turn on
turn off

play

stop

...

turn on play ...

semantics by transformation

Property example:
 " the player will reach the play state "

Applicable when:
 the semantics of the model are rule based
 and those rules are implemented by
 transformation;
Languages:
 same source and target languages;

Implementation:
 by transforming the transformation
 itself into an analyzable formalism.

Model transformations in automotive software

The power window case study Identified domain specific languages

I Environment Description Language:
for describing interactions between the
power window and humans;

I Plant Description Language:
for describing the hardware configuration
of a power window;

I Controller Description Language:
for describing the logical operation of the
power window hardware components;

I Deployment Platform Language:
for describing the whole infrastructure.

Identified transformations

I for verification:
e.g. Control DL

→ Petri Nets
I for simulation:

e.g. Plant DL → Causal Block Diagrams
I for composition:

e.g. Env. DL + Ctrl. DL + Plant DL
→ Petri Nets

I for deployment:
e.g. Control DL + Plant DL

→ Deployment DL

Conclusions & Future Work

The problem of verifying model transformations is not yet
sufficiently well studied, or even well defined. We are studying the
problem from two – ideally converging – directions: (1) what are
the usable properties of model transformations and what
techniques can be used to verify them; (2) what transformations
and respective interesting properties emerge from industrial
practice. We have started working on these two directions. Having
identified transformations in the power window case study, we will
now work on their properties’ verification.

Bibliography

[1] J. Padberg, M. Gajewsky, and C. Ermel. Refinement versus
verification, Technical report, Technische Universität Berlin, 1997.

[2] L. Lúcio, B. Barroca, V. Amaral. A Technique for Automatic
Validation of Model Transformations, Proceedings of the MoDELS
2010 Conference, Springer, pp. 136-150.

[3] Juan de Lara, Hans Vangheluwe. Automating the
transformation-based analysis of visual languages, Formal Asp.
Comput. vol. 22(3-4) 2010, pp. 297-326.

http://msdl.cs.mcgill.ca/ levi@cs.mcgill.ca, hv@cs.mcgill.ca, esyriani@cs.ua.edu

http://msdl.cs.mcgill.ca/

