
Deconstructing and reconstructing word embedding algorithms

Edward Newell∗ Kian Kenyon-Dean∗ Jackie Chi Kit Cheung
Mila - Québec AI Institute, McGill University

Montreal, Canada
{edward.newell,kiankd}@gmail.com jcheung@cs.mcgill.ca

Abstract

Uncontextualized word embeddings are reli-
able feature representations of words used to
obtain high quality results for various NLP
applications. Given the historical success of
word embeddings in NLP, we propose a ret-
rospective on some of the most well-known
word embedding algorithms. In this work,
we deconstruct Word2vec, GloVe, and oth-
ers, into a common form, unveiling some
of the necessary and sufficient conditions re-
quired for making performant word embed-
dings. We find that each algorithm: (1) fits
vector-covector dot products to approximate
pointwise mutual information (PMI); and, (2)
modulates the loss gradient to balance weak
and strong signals. We demonstrate that
these two algorithmic features are sufficient
conditions to construct a novel word embed-
ding algorithm, Hilbert-MLE. We find that
its embeddings obtain equivalent or better
performance against other algorithms across
17 intrinsic and extrinsic datasets.

1 Introduction

Word embeddings have been established as stan-
dard feature representations for words in most con-
temporary NLP tasks (Kim, 2014; Huang et al.,
2015; Goldberg, 2016). Their incorporation into
larger models – from CNNs and LSTMs for senti-
ment analysis (Zhang et al., 2018), to sequence-to-
sequence models for machine translation (Qi et al.,
2018), to the input layer of deep contextualized em-
bedders (Peters et al., 2018) – enables high quality
performance across a wide variety of problems.

Being the building blocks for many modern NLP
applications, we argue that it is worthwhile to sub-
ject word embedding algorithms to close theoret-
ical inspection. This work can be considered a
retrospective analysis of the ground-breaking word

∗These authors contributed equally.

embedding algorithms of the past, which simulta-
neously offers theoretical insights for how future,
deeper models can be developed and understood.
Indeed, analogous to a watchmaker who curiously
scrutinizes the mechanical components compris-
ing her watches’ oscillators, so too do we aim to
uncover what makes word embeddings “tick”.

It is well-known that word embedding algo-
rithms train two sets of embeddings: the vectors
(“input” vectors) and the covectors (“output”, or,
“context” vectors). However, the covectors tend to
be regarded as an afterthought when used by NLP
practitioners, either being thrown away (Mikolov
et al., 2013b), or averaged into the vectors (Pen-
nington et al., 2014; Levy et al., 2015).

Nonetheless, recent work has found that sepa-
rately incorporating pretrained covectors into down-
stream models can improve performance in specific
tasks. This includes lexical substitution (Melamud
et al., 2015; Roller and Erk, 2016), information
retrieval (Nalisnick et al., 2016), state-of-the-art
metaphor detection (Mao et al., 2018) and genera-
tion (Yu and Wan, 2019), and more (Press and Wolf,
2017; Asr et al., 2018; Değirmenci et al., 2019). In
this work, we contribute an engaged theoretical
treatment of covectors, and later elucidate the dif-
ferent relationships learned separately by vectors
and covectors (§6.5).

Training these vectors and covectors can be done
by a variety of high-performing algorithms: the
sampling-based shallow neural network of SGNS
(Mikolov et al., 2013b), GloVe’s weighted least
squares over global corpus statistics (Pennington
et al., 2014), and matrix factorization methods
(Levy and Goldberg, 2014b; Levy et al., 2015;
Shazeer et al., 2016). In this work, we propose
a framework for understanding these algorithms
from a common vantage point. We deconstruct
each algorithm into its constituent parts, and find
that, despite their many different hyperparameters,
the algorithms collectively intersect upon the fol-

ar
X

iv
:1

91
1.

13
28

0v
1

 [
cs

.C
L

]
 2

9
N

ov
 2

01
9

Figure 1: Abstract depiction of the direction of algo-
rithmic derivation presented in this work, in contrast to
Levy and Goldberg (2014b).

lowing two key design features:

1. vector-covector dot products are learned to
approximate pointwise mutual information
(PMI) statistics in the corpus; and,

2. modulation of the loss gradient, directly or
indirectly, to balance weak and strong signals
arising from the highly imbalanced distribu-
tion of corpus statistics.

Finding these commonalities across algorithms, we
beg the question of whether or not these features
are sufficient for reconstructing a new word embed-
ding algorithm. Indeed, we derive and implement
a novel embedding algorithm, Hilbert-MLE1, by
following these two principles to derive their corre-
sponding global matrix factorization loss function
based on the maximum likelihood estimate of the
multinomial distribution of corpus statistics.

However, due to the infeasibility of matrix factor-
ization objectives for large vocabulary sizes, we fur-
ther derive a local sampling-based formulation by
algebraically deconstructing Hilbert-MLE’s global
objective function. As we abstractly depict in Fig-
ure 1, this derivation can be seen as a mirrored
derivation of that which is presented by Levy and
Goldberg (2014b), who derived the global matrix
factorization for SGNS from the original local sam-
pling formulation (Mikolov et al., 2013b).

We find that Hilbert-MLE produces word em-
beddings that earn equivalent or better performance
against SGNS and GloVe across 17 intrinsic and
extrinsic datasets, therefore demonstrating the suf-
ficiency of the two principles for designing a word
embedding algorithm.

To summarize, this work offers the following
contributions:

• Theoretical deconstruction of the existing
1The name is inspired by the intuitions behind this work

concerning Hilbert spaces, and the maximum likelihood esti-
mate that defines the model’s loss function.

dominant word embedding algorithms toward
two common features (§4);

• Theoretical reconstruction of a novel embed-
ding algorithm, Hilbert-MLE, based solely on
these two features (§5) which algorithmically
derives a sampling-based implementation in a
novel manner (§5.1);

• Empirically demonstrating the sufficiency of
the two common principles for designing a
word embedding algorithm (§6).

2 Fundamental concepts

In this section, we introduce notation and concepts
that we will draw upon throughout this paper. This
includes formally defining embeddings, their vec-
tors and covectors, and pointwise mutual informa-
tion (PMI).

Embedding. In general topology, an embedding
is understood as an injective “structure preserving
map”, f : X → Y , between two mathematical
structures X and Y . A word embedding algorithm
(f) learns an inner-product space (Y) to preserve
a linguistic structure within a reference corpus of
text, D (X), based on the words in a vocabulary,
V . The structure in D is analyzed in terms of the
relationships between words induced by their ap-
pearances in the corpus. In such an analysis, each
word figures dually: (1) as a focal element induc-
ing a local context; and (2) as elements of the local
contexts induced by focal elements. To make these
dual roles explicit, we distinguish two copies of the
vocabulary: the focal words VT (or, terms), and the
context words VC .

An embedding consists of two maps:

VC −→ R1×d VT −→ Rd×1

i 7−→ 〈i| j 7−→ |j〉.

We use Dirac notation to distinguish vectors |j〉,
associated to focal words, from covectors 〈i|, as-
sociated to context words. In matrix notation, |j〉
corresponds to a column vector and 〈i| to a row vec-
tor. Their inner product is 〈i|j〉; this inner product
completely characterizes the learned vector space.
We will later demonstrate that many word embed-
ding algorithms, intentionally or not, learn a vector
space where the inner product between a focal word
j and context word i aims to approximate their PMI
in the reference corpus: 〈i|j〉 ≈ PMI(i, j).

Pointwise mutual information (PMI). PMI is
a commonly used measure of association in com-
putational linguistics, and has been shown to be
consistent and reliable for many tasks (Terra and
Clarke, 2003). It measures the deviation of the
cooccurrence probability between two words i and
j from the product of their marginal probabilities:

PMI(i, j) := ln
pij
pipj

= ln
NNij

NiNj
, (1)

where pij is the probability of word i and word j
cooccurring (for some notion of cooccurrence), and
where pi and pj are marginal probabilities of words
i and j occurring. The empirical PMI can be found
by replacing probabilities with corpus statistics.
Words are typically considered to cooccur if they
are separated by no more than w words; Nij is
the number of counted cooccurrences between a
context i and a term j;Ni,Nj , andN are computed
by marginalizing over the Nij statistics.

3 Word embedding algorithms

We will now introduce the low rank embedder
framework for deconstructing word embedding al-
gorithms, inspired by the theory of generalized low
rank models (Udell et al., 2016). We unify several
word embedding algorithms by observing them all
from the common vantage point of their global loss
function. Note that this framework is only used for
theoretical analysis, not practical implementation.

The global loss function for a low rank embedder
takes the form:

L =
∑

(i,j)∈VC×VT

fij

(
ψ(〈i|, |j〉), φ(i, j)

)
, (2)

and satisfies

∂fij
∂ψij

= 0 at ψij = φij , (3)

where ψ(〈i|, |j〉) is a kernel function, and φ(i, j) is
some scalar function (such as a measure of associ-
ation based on how i and j appear in the corpus);
ψij and φij are abbreviations for the same.

The design variable φij is some function of cor-
pus statistics, and its purpose is to quantitatively
measure some relationship between word i and j.
In apposition, the design variable ψij is a function
of model parameters, and its purpose is to learn a
succinct approximation:

ψij ≈ φij ,

and so represent the relationship measured by φij .
Intuitively, we can think of a low rank embed-
der as trying to directly fit a kernel function of
model parameters ψij to some (statistical) relation-
ship between words φij of our choosing. For ex-
ample, SGNS takes φij := PMI(i, j) − ln k and
ψij := 〈i|j〉, and then learns parameter values that
approximate 〈i|j〉 ≈ PMI(i, j)− ln k.

Though the specific choice of φij varies slightly,
existing low rank embedders generally base φij
on cooccurrence of words within a linear window
w words wide. But it is worth pointing out that
φij can in principle be any pairwise relationship
encoded as a scalar function of corpus statistics.

As for the kernel function ψij , one simple choice
is to take ψij = 〈i|j〉. But the framework allows
any function that is symmetric and positive defi-
nite. This allows the framework to include the use
of bias parameters (e.g. in GloVe) and subword
parameterization (e.g. in FastText).

To understand the range of models encompassed,
it is helpful to see how the framework relates (but is
not limited) to matrix factorization. We can think of
φij and ψij as providing the entries of two matrices:

M := [φij]ij M̂ := [ψij]ij .

For models that take ψij = 〈i|j〉, we can write
M̂ = WV, where W is defined as having row i
equal to 〈i|, and V as having column j equal to |j〉.
Then, the loss function can be rewritten as:

L =
∑

(i,j)∈VC×VT

fij

(
(WV)ij , Mij

)
.

This loss function can be interpreted as matrix re-
construction error, because the constraint in Eq. 3
means that the gradient goes to zero as WV ≈M.

Selecting a particular low rank embedder in-
stance requires key design choices to be made: we
must chose the embedding dimension d, the form
of the loss terms fij , the kernel function ψij , and
the association function φij . Only the gradient of
fij actually affects the algorithm. The derivative of
fij with respect to ψij , which we call the charac-
teristic gradient, helps compare models because it
exhibits the action of the gradient yet is symmet-
ric in the parameters. Thus, we address a specific
embedder by the tuple

(
d,

∂fij
∂ψij

, ψij , φij ,
)

.
In the following subsections, we present the

derivations of ∂fij
∂ψij

, ψij , and φij for each algorithm.
We later (§4) compare the algorithms and summa-
rize their derivations in Table 1.

3.1 SGNS as a low rank embedder

Levy and Goldberg (2014b) provided the impor-
tant result that skip gram with negative sampling
(SGNS) (Mikolov et al., 2013b) was implicitly fac-
torizing the PMI−ln k matrix. However, Levy and
Goldberg did not derive the loss function needed to
explicitly pose SGNS as matrix factorization, and
required additional assumptions for their derivation
to hold. Moreover, empirically, they used SVD on
the related (but different) positive-PMI matrix, and
this did not reproduce the results of SGNS. In other
work, Li et al. (2015), provided an explicit MF for-
mulation of SGNS from a “representation learning”
perspective. This derivation diverges from Levy
and Goldberg’s result, and masks the connection
between SGNS and other low rank embedders. In
this work, we derive the complete global loss func-
tion for SGNS, free of additional assumptions.

The loss function of SGNS is as follows:

L = −
∑

(i,j)∈D2

{
lnσ〈i|j〉+

k∑
`=1

E
[

ln(1−σ〈i′`|j〉)
]}
,

where σ is the logistic sigmoid function,D2 is a list
containing each cooccurrence of a context-word i
with a focal-word j in the corpus, and the expecta-
tion is taken by drawing i′` from the (smoothed) un-
igram distribution to generate k “negative samples”
for a given focal-word. (Mikolov et al., 2013b).

We rewrite this by counting the number of times
each pair occurs in the corpus, Nij , and the number
of times each pair is drawn as a negative sample,
N−ij , while indexing the sum over the set VC×VT :

L = −
∑

(i,j)∈VC×VT

{
Nij lnσ〈i|j〉+N−ij ln(1− σ〈i|j〉)

}
.

We can now observe that the global loss is al-
most in the required form for a low rank embedder
(Eq. 2), and that the appropriate setting for the
model approximation function is ψij = 〈i|j〉. The
characteristic gradient is derived as, using the iden-
tity a ≡ (a+ b)σ(ln a

b):

∂fij
∂ψij

=
∂L
∂〈i|j〉

= N−ij σ〈i|j〉 −Nij(1− σ〈i|j〉)

= (Nij +N−ij)

[
σ
(
〈i|j〉

)
− σ

(
ln
Nij

N−ij

)]
.

This provides that the association function for
SGNS is φij = ln(Nij/N

−
ij), since the derivative

will be equal to zero at that point (Eq. 3). How-
ever, recall that negative samples are drawn ac-
cording to the unigram distribution (or a smoothed
variant (Levy et al., 2015)). This means that
N−ij = kNiNj/N . Therefore, in agreement with
Levy and Goldberg (2014b), we find that:

φij = ln
NijN

NiNjk
= PMI(i, j)− ln k. (4)

3.2 GloVe as a low rank embedder
GloVe (global vectors) was proposed as a method
that strikes a halfway point between local sam-
pling and global matrix factorization, taking the
best parts from both solution methods (Pennington
et al., 2014). Its efficiency came from the fact that
it only performs a partial factorization of the lnNij

matrix, only considering samples where Nij > 0.
We will demonstrate that GloVe is not so different
from SGNS, and that it too implicitly factorizes the
PMI matrix.

GloVe’s loss function is defined as follows:

L =
∑
ij

h(Nij)
(
〈i|j〉+ bi + bj − lnNij

)2
h(Nij) = min

(
1,

(
Nij

Nmax

)α)
,

(5)

where bi and bj are learned bias parameters;
Nmax and α are empirically tuned hyperparame-
ters for the weighting function h(Nij), which has
h(Nij) = 0 when Nij = 0.

GloVe can be cast as a low rank embedder by
using the model approximation function as a kernel
with bias parameters, and setting the association
measure to simply be the objective of the loss func-
tion:

ψij =
[
〈i|1 · · · 〈i|d bi 1

]
·
[
|j〉1 · · · |j〉d 1 bj

]ᵀ
,

and φij = lnNij .

Let us observe the optimal solution to the loss
function, when ∂fij

∂ψij
= 0:

∂fij
∂ψij

= 2h(Nij)
[
〈i|j〉+ bi + bj − lnNij

]
= 0

=⇒ 〈i|j〉+ bi + bj = lnNij .

Multiplying the log operand by 1:

〈i|j〉+ bi + bj = ln

(
NiNj

N

N

NiNj
Nij

)
(6)

= ln
Ni√
N

+ ln
Nj√
N

+ PMI(i, j). (7)

10 5 0 5 10
PMI(i, j)

250k

200k

150k

100k

50k

Nu
m

be
r o

f p
ai

rs
 (i

,j) mean = -0.99A)

0 2 4 6 8
lg Ni

N

2

0

2

4

6

8

b i b i=
lg
N i

N

B)

Figure 2: A) Histogram of PMI(i, j) values, for all
pairs (i, j) with Nij>0, from the corpus described in
§6. B) Scatter plot of GloVe’s learned biases after 10
epochs, using default hyperparameter settings.

On the right side, we have two terms that depend
respectively only on i and j, which are candidates
for the bias terms. Based on this equation alone,
we cannot draw any conclusions. However, em-
pirically the bias terms are in fact very near Ni√

N

and Nj√
N

, and PMI is nearly centered at zero, as can
be seen in Fig. 2. This means that Eq. 7 provides
〈i|j〉 ≈ PMI(i, j).

Analyzing the optimum of GloVe’s loss func-
tion yields important insights. First, GloVe can be
added to the list of low rank embedders that learn a
bilinear parameterization of PMI. Second, we can
see why such a parameterization is advantageous.
Generally, it helps to standardize features of low
rank models (Udell et al., 2016), and this is essen-
tially what transforming cooccurrence counts into
PMI achieves. Thus, PMI can be viewed as a pa-
rameterization trick, providing an approximately
normal target association to be modelled.

3.3 Other algorithms as low rank embedders

We now present additional algorithms that can be
cast as low rank embedders: LDS (Arora et al.,
2016) and FastText (Joulin et al., 2017). The deriva-
tions for SVD (Levy and Goldberg, 2014b; Levy
et al., 2015) and Swivel (Shazeer et al., 2016) as
low rank embedders are trivial, as both are already
posed as matrix factorizations of PMI statistics.

LDS. Arora et al. (2016) introduced an embed-
ding perspective based on generative modelling
with random walks through a latent discourse
space (LDS). While their only experiments were
on analogy completion tasks (which do not corre-
late well with downstream performance (Linzen,
2016; Faruqui et al., 2016; Rogers et al., 2017))
LDS provided a theoretical basis for the surpris-
ingly well-performing SIF document embedding

algorithm soon afterwards (Arora et al., 2017). We
now demonstrate that LDS is also a low-rank em-
bedder.

The low rank learning objective for LDS follows
directly from Corollary 2.3, in Arora et al. (2016):

PMI(i, j) =
〈i|j〉
d

+ γ +O(ε).

∂fij
∂ψij

can be found by straightforward differentia-
tion of LDS’s loss function:

L =
∑
ij

h(Nij)
[

lnNij − ‖〈i|+ |j〉ᵀ‖2 − C
]2
,

where h(Nij) is as defined by GloVe. The
quadratic term is a valid kernel function because:

∂fij
∂ψij

= ‖〈i|+ |j〉ᵀ‖2 = 〈̃i|j̃〉,

where

〈̃i| =
[√

2〈i|1 · · ·
√

2〈i|d 〈i|〈i|ᵀ 1
]
,

˜|j〉 =
[√

2|j〉1 · · ·
√

2|j〉d 1 |j〉ᵀ|j〉
]ᵀ
.

FastText. Proposed by Joulin et al. (2017), Fast-
Text’s motivation is orthogonal to the present work.
It’s purpose is to provide subword-based representa-
tion of words to improve vocabulary coverage and
generalizability of word embeddings. Nonetheless,
it can also be understood as a low rank embedder.

In FastText, the vector for each word is taken as
the sum of embeddings for its character n-grams,
3 ≤ n ≤ 6. Then the vector |j〉 is given by the
feature function |j〉 =

∑
g∈z(j) |g〉, where |g〉 is

the vector for n-gram g, and z(j) is the set of n-
grams in word j. Meanwhile covectors are ac-
corded to words directly, rather than using n-gram
covector embeddings. This provides ψij = 〈i|j〉,
and, by virtue of using the SGNS loss function,
φij = PMI(i, j)− ln k.

4 Deconstructing the algorithms

Table 1 presents a summary of our derivations of
existing algorithms as low rank embedders.

We observe several common features between
each of the algorithms. In each case, ∂fij∂ψij

takes the
form (multiplier) · (difference). The multiplier is
always a “tempered” version of Nij (or NiNj), by
which we mean that it increases sublinearly with
Nij (or NiNj)2.

2In SGNS, N−
ij ∝ NiNj ; Nij and N−

ij are tempered by
undersampling and unigram smoothing.

Model ∂fij
∂ψij

ψij φij 〈i|j〉 ≈

SGNS (Nij +N−ij) ·
[
σ(ψij)− σ(φij)

]
〈i|j〉 lg

Nij
N−
ij

PMI(i, j)− ln k

GloVe 2h(Nij) ·
[
ψij − φij

]
〈i|j〉+ bi + bj lgNij PMI(i, j)

LDS 4h(Nij) ·
[
ψij − φij + C

]
‖〈i|+ |j〉ᵀ‖2 lgNij dPMI(i, j)− dγ

Swivel

√
Nij ·

[
ψij − φij

]
〈i|j〉

PMI(i, j) PMI(i, j)

1 · σ
(
ψij − φij

)
PMI∗(i, j) PMI∗(i, j)

Hilbert-MLE
(
pipj

) 1
τ ·
[
eψij − eφij

]
〈i|j〉 PMI(i, j) PMI(i, j)

Table 1: Comparison of low rank embedders. Final column shows the value of 〈i|j〉 at ∂fij∂ψij
= 0. GloVe and LDS set

fij = 0 when Nij = 0. Swivel takes one form when Nij > 0 (first row) and another when Nij = 0 (second row).
N−
ij is the number of negative samples. For other symbols see: SGNS (Mikolov et al., 2013b), GloVe (Pennington

et al., 2014), LDS (Arora et al., 2016), Swivel (Shazeer et al., 2016).

Furthermore, for each algorithm, φij is equal to
PMI or a scaled log of Nij . Yet, the choice of ψij
in combination with φij provides that every model
is optimized when 〈i|j〉 tends toward PMI(i, j)
(with or without a constant shift or scaling). We
have already seen that the optimum for SGNS is
equivalent to the shifted PMI (§3.1). For GloVe, we
theoretically and empirically showed that incorpo-
ration of the bias terms captures the unigram counts
needed for PMI (§3.2). We observe this property
similarly with regards to LDS’s incorporation of
the L2 norm into its learning objective, where we
suspect that the unigram probability is implicitly
captured in the norms of the respective vectors and
covectors (§3.3).

Therefore, we observe that these embedders con-
verge on two key points: (1) an optimum in which
model parameters are bilinearly related to PMI, and
(2) the weighting of ∂fij

∂ψij
by some tempered form

of Nij (or NiNj). In the next section, we intro-
duce Hilbert-MLE, which is derived based on the
shared principles observed between the algorithms
in Table 1.

5 Reconstructing an algorithm

If the two basic principles that we have identified
are sufficient, then the simplest low rank embedder
should be one that derives from them without any
other assumptions.

We begin with principle (1), which prescribes a
bilinear parameterization of PMI. The definition of
PMI (Eq. 1) provides a log-bilinear parameteriza-

tion of cooccurrence probability, p̂ij , if we presup-
pose that the aim of our model is to approximate
the PMI with vector-covector dot products:

〈i|j〉 ≈ PMI(i, j) = ln
pij
pipj

=⇒ p̂ij = pipje
〈i|j〉.

(8)

In the expression above, p̂ij represents the model’s
estimate of the cooccurrence probability, provided
by the parameterization which includes the uni-
gram probabilities pi and pj .

Accordingly, given the matrix of covectors W
and vectors V, the likelihood of the observed cooc-
currence statistics, D = {Nij}ij , is distributed like
the multinomial, Mult({p̂ij}ij , N):

Pr(D|V,W) = N !
∏
ij

p̂
Nij
ij

Nij !
,

where p̂ij depends on V and W (whose rows and
columns are respectively 〈i| and |j〉) through Eq. 8.
Taking the negative log likelihood as the loss:

L = −
∑
ij

Nij ln p̂ij , (9)

where we have dropped constant terms that do not
affect the gradient.

The unitarity axiom of probability requires that∑
ij p̂ij = 1. Including this constraint with a La-

grange multiplier, we obtain:

L =
(
−
∑
ij

Nij ln p̂ij

)
+ λ

(
1−

∑
ij

p̂ij

)
. (10)

At the feasible optimum, the original loss and con-
straint gradients should balance:

∂L
∂p̂ij

= −Nij

p̂ij
− λ = 0 (11)

=⇒ λp̂ij = −Nij . (12)

Eq. 12 represents |VC×VT | equations, one for each
pair (i, j). Summing these equations together,

λ
∑
ij

p̂ij = −
∑
ij

Nij =⇒ λ = −N. (13)

The constrained loss function is therefore,

L =
(
−
∑
ij

Nij ln p̂ij

)
−N

(
1−
∑
ij

p̂ij

)
. (14)

Reintroducing the bilinear parameterization (Eq. 8),
and dividing through byN to eliminate dependence
on corpus size:

L =
∑
ij

(
pipje

〈i|j〉 − pij〈i|j〉
)
, (15)

where, again, we have dropped constant terms that
do not affect the gradient. Finally by differentiating
we obtain the characteristic gradient:

∂fij
∂ψij

=
∂fij
∂〈i|j〉

= pipj

[
e〈i|j〉 − ePMI(i,j)

]
= p̂ij − pij .

(16)

This yields a loss gradient closely resembling other
members of the low rank embedders. Empirically,
its performance is on par with the other low rank
embedders (see §6).

The multiplier, pipj , determines how errors in fit-
ting individual (i, j) pairs trade off. While it appro-
priately favors fitting statistics with lower standard
error, the signal from rarer pairs will be weak for
any non-divergent learning rate because pipj spans
orders of magnitude. This slows down training.
So, we apply a gradient conditioning measure as is
done for the other low rank embedders: we apply a
temperature parameter, τ , that reduces differences
in magnitude of the multiplier:

∂fij
∂ψij

= (pipj)
1/τ
[
e〈i|j〉 − ePMI

]
(17)

5.1 Solving the objective function
The objective function presented in Equation 15 is
most straightforwardly solved via dense matrix fac-
torization. This can be done relatively efficiently

by using the sharding method presented by Shazeer
et al. (2016) for matrix factorization. Such a so-
lution is acceptable given a small vocabulary size,
but does not scale to large vocabularies, due to the
quadratic dependency. GloVe (Pennington et al.,
2014) handled this problem by only training on
statistics where Nij > 0. Levy and Goldberg
(2014b); Levy et al. (2015) avoided the quadratic
dependency by implementing sparse SVD on the
positive-PMI matrix. However, both of these solu-
tions may be missing out on important information
that can be gained by “noticing what’s missing”
(Shazeer et al., 2016).

Yet, SGNS (Mikolov et al., 2013b) was never
confronted with the vocabulary size problem due
to the fact that it uses local sampling over the cor-
pus. While this yields a linear time complexity on
the corpus size, this is generally preferable to a
quadratic memory complexity on the vocabulary
size. Levy and Goldberg (2014b) derived the global
matrix factorization formulation of SGNS by mov-
ing in the algorithmic direction of local to global.
Conversely, we will now move in the direction of
global to local and derive the local sampling for-
mulation of the Hilbert-MLE loss function.

Locally sampling Hilbert-MLE. Note how if
we differentiate the loss function of Hilbert-MLE
(Equation 15) relative to an arbitrary model param-
eter θ, we obtain a difference between two expecta-
tions:
∂L
∂θ

=
∑
ij

pipje
〈i|j〉∂〈i|j〉

∂θ
−
∑
ij

pij
∂〈i|j〉
∂θ

= E
(i,j)∼p̂ij

[
∂〈i|j〉
∂θ

]
− E

(i,j)∼pij

[
∂〈i|j〉
∂θ

]
.

(18)

In words, the derivative of the loss function is the
difference between the expected value of ∂〈i|j〉

∂θ
when taken under the model distribution on one
hand and under the corpus distribution on the other.

This leads to a remarkably simple training al-
gorithm. Draw a sample of word pairs (i, j) from
the corpus (using a local sampling approach as in
SGNS), and draw a sample of pairs from the model
distribution. Compute E[〈i|j〉] for both samples,
and take their difference. The gradient of the result
estimates the gradient of L.

In the context of autodifferentiation libraries
such as PyTorch (Paszke et al., 2017) it is adequate
to use a simplified loss function L̃,

L̃ = E
(i,j)∼p̂ij

[〈i|j〉]− E
(i,j)∼pij

[〈i|j〉] , (19)

because in the first term, the autodifferential opera-
tor will ignore the appearance of model parameters
in the distribution according to which the expec-
tation E(ij)∼p̂ij is taken, but will recognize model
parameters in the expectation’s operand 〈i|j〉. Thus
∂auto
∂θ L̃ = ∂

∂θL.
Like SGNS, this uses positive samples drawn

from the corpus, balanced against negative samples.
But unlike SGNS, which draws negative samples
according to the (distorted) unigram distribution,
here we draw negative samples from model dis-
tribution p̂ij . This can be done efficiently using
Gibbs sampling, making this a form of contrastive
divergence (Hinton, 2002; Carreira-Perpinan and
Hinton, 2005). To approximately sample a cooccur-
ring pair (i, j) from the model distribution, we start
from a corpus-derived pair, and repeatedly perform
Gibbs sampling steps: randomly fix either i or j
and re-sample the other from the model distribution
conditioned on the fixed variable. E.g. if we fix i,
then we draw a new j from j ∼ p̂(j|i) = pje

〈i|j〉.
Sampling from the conditional distribution can be
done in constant time using an adaptive softmax
(Grave et al., 2017). In theory, the model distri-
bution is approximated after taking many Gibbs
sample steps, but consistent with Hinton’s findings
for contrastive divergence (Hinton, 2002; Carreira-
Perpinan and Hinton, 2005), we find that a single
Gibbs sampling step supports efficient training.

6 Experiments

We provide a simple set of experiments comparing
the two characteristic models for word embeddings
with ours: SGNS and GloVe against Hilbert-MLE.
Our aim in these experiments is simply to verify
the sufficiency of the principles we used to derive
Hilbert-MLE (§5). In other words, we are testing
the following hypothesis: if the principles we have
proposed are sufficient for designing a word embed-
ding algorithm, then Hilbert-MLE should perform
equivalently or better than SGNS and GloVe, which
were proposed with different motivating principles
(Mikolov et al., 2013b; Pennington et al., 2014).

In our experiments, we use a matrix factorization
implementation of Hilbert-MLE as the character-
istic form of the model. During experimentation,
we found that the Gibbs sampling implementation
of Hilbert-MLE (§5.1) performed equivalently, as
expected. We present results on word similarity
(§6.1), analogical reasoning (§6.2), text classifica-
tion (§6.3), and sequence labelling (§6.4).

Our reference corpus combines Gigaword 3
(Graff et al., 2007) with a Wikipedia 2018 dump,
lower-cased, yielding 5.4 billion tokens. We limit
VC and VT to be the 50,000 most frequent tokens in
D. We use a 5-token context window, and d = 300.
We use the released implementations and hyper-
parameter choices of SGNS and GloVe. Our im-
plementation of Hilbert-MLE uses PyTorch to take
advantage of GPU-acceleration, automatic differen-
tiation (Paszke et al., 2017), and the Adam gradient
descent optimizer (Kingma and Ba, 2015). Prac-
tically, Hilbert-MLE was implemented by using
sharding (Shazeer et al., 2016). We use a single 12-
GB GPU, and load 12500× 12500-element shards
to calculate each update. Training embeddings took
less than 3 hours for a 50,000 word vocabulary.

6.1 Word similarity

A word similarity task involves interpreting the co-
sine similarity between embeddings as a measure
of similarity or relatedness between words. Perfor-
mance is computed with the Spearman rank corre-
lation coefficient between the model’s scoring of
all pairs of words versus the gold standard human
scoring. These tasks can reflect the degree of linear
structure captured in the embeddings, which can
provide useful insights into differences between
models. However, they do not always correlate
with performance in downstream tasks (Chiu et al.,
2016; Faruqui et al., 2016).

We used the following word similarity datasets:
Simlex999 (S999) (Hill et al., 2015); Wordsim353
(Finkelstein et al., 2002) divided into similarity
(WS-S) and relatedness (WS-R) (Agirre et al.,
2009); the SemEval 2017 task (SE17) (Camacho-
Collados et al., 2017); Radinsky Mechanical Turk
(RMT) (Radinsky et al., 2011); Baker Verbs 143
(B143) (Baker et al., 2014); Yang Powers Verbs 130
(Y130) (Yang and Powers, 2006); MEN divided
into a 2000-sample development set (MENd) and
1000-sample test set (MENt) (Bruni et al., 2012);
Rare Words (RARE) (Luong et al., 2013). We had
an average of 96% coverage over all word-pairs in
each dataset, excepting RARE; we had 31% cover-
age over RARE, yielding 620 word pairs (i.e., more
samples than SE17, RMT, WS-S/-R, and Y130).
Results are computed on these covered word-pairs.

Word similarity results. Table 2 presents results
across the 10 word similarity tasks. We observe
that Hilbert-MLE obtains the best performance in
5 out of 10 tasks. In particular, Hilbert-MLE ob-

Intrinsic eval. B143 MENd/t RMT RARE SE17 S999 WS-R/-S Y130 Analogy

SGNS .453 .753/.763 .680 .515 .656 .364 .589/.760 .514 .763/.312
GloVe .347 .760/.771 .663 .509 .662 .391 .602/.727 .541 .739/.310
Hilbert-MLE .397 .751/.761 .684 .579 .680 .462 .593/.765 .514 .705/.343

Table 2: Performance on intrinsic evaluation datasets; first 8 columns are on word similarity tasks (§6.1), final
column is analogy tasks (Google analogies/BATS) (§6.2). The best result is in bold.

tains substantially better scores on S999 than the
other models, earning a Spearman correlation co-
efficient of 0.462, an 18% relative improvement
over the next best (SGNS). Note that S999 has
been shown to have a high correlation with per-
formance in extrinsic tasks such as Named Entity
Recognition and NP-chunking, unlike the other
word similarity datasets (Chiu et al., 2016). On the
tasks with worse performance, we observe that the
differences between the three algorithms are rela-
tively marginal. Base on these experiments, and
the ones that follow, we can therefore conclude that
our hypothesis (§6) is valid.

6.2 Analogical reasoning

We performed intrinsic evaluation of our embed-
dings using standard analogy tasks (e.g., “man” is
to “woman” as “king” is toX). We evaluated on the
Google Analogy dataset (Google) (Mikolov et al.,
2013a) and the Balanced Analogy Test Set (BATS)
(Gladkova et al., 2016). We observed 86% and 69%
coverage of the words in each dataset, respectively.
Preliminary experiments using 3CosAdd and 3Cos-
Mul (Levy and Goldberg, 2014a) as selection rules,
showed 3CosMul was always superior, consistent
with the findings of Levy and Goldberg.

Analogy results. Table 2 presents results on the
two analogy datasets in the final column. Hilbert-
MLE performs somewhat worse than the other
models on the Google Analogy dataset. However,
there has been a considerable amount of work find-
ing that performance on these tasks does not nec-
essarily provide a reliable judgment for embed-
ding quality (Faruqui et al., 2016; Linzen, 2016;
Rogers et al., 2017). Indeed, we can see that per-
formance on the Google Analogy dataset does not
correspond with performance on the other larger
analogy dataset (BATS), where Hilbert-MLE gets
the best performance.

Classification IMDB AGNews

SGNS .910 ± .001 .812 ± .003
GloVe .905 ± .001 .807 ± .003
Hilbert-MLE .911 ± .002 .812 ± .003

Table 3: Classification results when using a BiLSTM-
max encoder. Best is bold.

Seq. labelling Semcor WSJ Brown

Baseline .6126 .8905 .9349
SGNS .6638 .9615 .9762
GloVe .6550 .9609 .9750
Hilbert-MLE .6663 .9617 .9767

Table 4: Sequence labelling results when using a BiL-
STM. Best is bold.

6.3 Text classification

We performed extrinsic evaluation for classifica-
tion tasks on two benchmark NLP classification
datasets. First, the IMDB movie reviews dataset for
sentiment analysis (Maas et al., 2011), divided into
train and test sets of 25,000 samples each. Second,
the AGNews news classification dataset, as divided
into 8 approximately 12,000-sample classes (such
as Sports, Health, and Business) by Kenyon-Dean
et al. (2019); here, we separate 30% of the samples
as the final test set. On each, we separate 10% of
the training set for validation tuning.

We use a standard BiLSTM-max sequence en-
coder for these tasks (Conneau et al., 2017). This
model produces a sequence representation by max-
pooling over the forward and backward hidden
states produced a bidirectional LSTM. This repre-
sentation is then passed through a MLP before final
prediction. We found that validation performance
was optimized with a 1-layer 128-d BiLSTM, fol-
lowed by a 512-d MLP using a ReLU activation,
a minibatch size of 64, dropout rate of 0.5, and
normalizing the embeddings before input. We use
a learning rate of 0.001 with Adam, and divide the
learning rate by a factor of 10 if validation perfor-

mance does not improve in 3 epochs, similar to
Conneau et al. (2017); we schedule the learning
rate in the same way for sequence labelling (§6.4).

Classification results. In Table 3 we present the
test set results from our classification experiments.
We trained each BiLSTM-max 10 times with dif-
ferent random seeds for weight initialization and
present the mean test accuracy plus/minus the
standard deviation. These results show that each
embedding model is similar, although GloVe is
slightly worse than the others. Meanwhile, SGNS
and Hilbert-MLE perform approximately the same,
obtaining high quality results on both tasks.

6.4 Sequence labelling

Our final extrinsic evaluations are sequence la-
belling tasks on three datasets. The first task is
supersense tagging (SST) (Ciaramita and Altun,
2006) on the Semcor 3.0 corpus (Miller et al.,
1993). SST is a coarse-grained semantic sequence
labelling problem with 83 unique labels; we re-
port results using the micro-F-score without the
O-tag score due to the skew of label distribution, as
is standard (Alonso and Plank, 2017; Changpinyo
et al., 2018). We divide Semcor into a 70-30%
train-test split, and use 10% of the training set for
validation tuning. The second task is syntactic part-
of-speech tagging (POS); we use the Penn Tree-
Bank Wall Street Journal corpus (WSJ) (Marcus
et al., 1993) and the Brown corpus (as distributed
by NLTK3). For the WSJ, we use the given 44-tag
tagset, and for Brown we map the original tags to
the 12-tag “universal tagset” (Petrov et al., 2012).
We use sections 22, 23, and 24 of the WSJ corpus
as its test set, and separate out 30% of the sentences
in Brown as its test set.

On each dataset, we train a standard sequence
labelling model inspired by Huang et al. (2015): a
2-layer, 128-d bidirectional LSTM, using a mini-
batch size of 16, and a dropout rate of 0.5. Interest-
ingly, we found that normalizing the embeddings
substantially reduced validation performance, so
we keep them in their original form.

Sequence labelling results. To accompany our
results in Table 4, we include results from a trivial
most-frequent-tag baseline. This baseline returns
that the tag of a token is the most frequently occur-
ring tag for that token within the training set. In
SST it is standard to include results from a most-

3https://www.nltk.org/book/ch02.html

Argmaxi Top most similar embeddings

|i〉 · |cat〉 kittens, cats, kitten, poodle
〈i|cat〉 burglar, siamese, schrödinger
|i〉 · |money〉 funds, monies, billions, cash
〈i|money〉 laundering, launder, extort
|i〉 · |cuba〉 cubans, cuban, anti-castro
〈i|cuba〉 gooding, guantanamo, havana

Table 5: Qualitative analysis of the difference between
the embedding recovery between vectors and vectors
(|i〉 · |j〉) versus between vectors and covectors (〈i|j〉).

frequent-supersense baseline, being inspired from
the tradition of word sense disambiguation, which
uses the most-frequent-sense baseline.

The results for the BiLSTMs are the mean test
set score across 10 different runs with different
random seeds for weight initialization. The low
standard deviations were approximately the same
for each model. As in the classification tasks,
we find that the embeddings produced by each
model obtain very similar results. Nonetheless,
we observe that Hilbert-MLE offers marginal im-
provements over the others. Note that our perfor-
mance on WSJ and Brown is expected since we use
vanilla BiLSTMs that do not include any hand engi-
neered character- or context-based features. Indeed,
Huang et al. report results of 96.04% on the WSJ
with their vanilla BiLSTM, which suggests that our
embeddings possess strong syntactic properties.

6.5 Qualitative analysis

We provide a final set of qualitative results in Ta-
ble 5. Here, we use the vectors and covectors
trained by the Hilbert-MLE model used in our
experiments. These results elucidate the differ-
ence between using vector-vector similarity versus
vector-covector dot product similarity (results are
practically the same when using cosine similarity).
The vector-vector similarity is well known as a way
to measure semantic similarity between two con-
cepts captured in word embeddings. As expected,
we see recoveries like “cat” is similar to “kitten”,
“money” with “funds”, etc.

However, when we instead obtain the most simi-
lar covector to the corresponding vector, the results
are dramatically different. We see that the vector
for “cat” is most similar to covectors for words
with which it forms multi-word expressions: “cat
burglar”, ”siamese cat”, ”schrödinger’s cat”. We
see that “cuba” is most similar to the covector for

https://www.nltk.org/book/ch02.html

“gooding” – this is because Cuba Gooding Jr. is
a famous American actor whose Wikipedia page
appears in our corpus. Indeed, the vector-covector
recoveries are directly correlated to the PMIs be-
tween the terms in the corpus.

Overall, we see that vector-vector dot prod-
ucts recover semantic similarity, while vector-
covector dot products recover co-occurrence sim-
ilarity. Melamud et al. (2015) and Asr and Jones
(2017) discuss these different statistical recoveries
as paradigmatic (target-to-target) and syntagmatic
(target-to-context) recoveries, respectively. How-
ever, to our knowledge, previous work has not ex-
plicitly explained the reason for these two different
types of recoveries; i.e., because the learning objec-
tive for word embeddings is to approximate PMI.
Therefore, these results qualitatively demonstrate
exactly what our hypothesis anticipates: the dot
product between trained vectors and covectors ap-
proximates the PMI between their corresponding
words in the original corpus.

7 Discussion

In the past, probabilistic distributional semantic
models for creating word embeddings surpassed
the traditional count-based models (Turney and
Pantel, 2010) that preceded them, which was well-
established by Baroni et al. (2014). At the same
time, models like Word2vec (SGNS), GloVe, and
SVD of PPMI (Mikolov et al., 2013a,b; Penning-
ton et al., 2014; Levy et al., 2015) offered strong
improvements (in terms of performance and effi-
ciency) over other probabilistically-motivated em-
bedding models (Collobert and Weston, 2008;
Mnih and Hinton, 2009; Turian et al., 2010; Mnih
and Kavukcuoglu, 2013).

Today, NLP seems to be orienting toward deep
contextualized models (Peters et al., 2018; Devlin
et al., 2018). Nonetheless, pretrained word em-
beddings are still highly relevant. Indeed, they
have been used recently to greatly assist solving
problems in materials science (Tshitoyan et al.,
2019), biomedical text mining (Zhang et al., 2019),
and law (Chalkidis and Kampas, 2019). More-
over, word embeddings are used in dynamic meta-
embeddings to obtain state-of-the-art results (Kiela
et al., 2018), are used as inputs to ELMO (Peters
et al., 2018), and are crucial in memory-constrained
NLP contexts (such as in mobile devices, which
cannot store large deep neural networks (Shu and
Nakayama, 2017)).

We believe a robust understanding of the “shal-
low” (or, non-deep), uncontextualized embedding
models presented in this work is a prerequisite for
informed development of deeper models. In this
work, we advanced the theoretical understanding
of word embeddings by proposing the low rank em-
bedder framework. Cast under this framework, the
similarities between many existing algorithms be-
come apparent. After isolating two key principles
shared by the low rank embedders—a probabilis-
tically informed bilinear parameterization of PMI
and a “tempered” gradient conditioning measure—
we demonstrate that these ideas are sufficient to
derive Hilbert-MLE, a model that is simpler yet has
performance that is equivalent or better than the
other models. This provides a parsimonious expla-
nation for the success of the low rank embedders,
demonstrating that many idiosyncratic features of
other embedders are unnecessary.

The design parameters of our framework have
not yet been fully explored. Our framework could
be used to model more complex linguistic phenom-
ena, by following the blueprint provided by our
derivation of Hilbert-MLE. Moreover, based on
our findings concerning the importance of covec-
tors in parameterizing the model’s approximation
of PMI, we believe that methods such as retrofitting
(Faruqui et al., 2015), subword-based embedding
decomposition (Stratos, 2017), and dynamic meta-
embedding (Kiela et al., 2018) could benefit by in-
corporating covectors into their modelling designs.
As well, similar to how the theoretical basis of
LDS (Arora et al., 2016) was the grounding for the
widely-used SIF document embedding algorithm
(Arora et al., 2017), we believe that the theoreti-
cal basis provided in this work can inform future
development of document embedding techniques.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca, and Aitor Soroa. 2009.
A study on similarity and relatedness using dis-
tributional and wordnet-based approaches. In
Proceedings of the 2009 Annual Conference
of NAACL-HLT, pages 19–27. Association for
Computational Linguistics.

Héctor Martínez Alonso and Barbara Plank. 2017.
When is multitask learning effective? semantic
sequence prediction under varying data condi-
tions. In Proceedings of the 15th Conference

of the European Chapter of the Association for
Computational Linguistics (EACL), volume 1,
pages 44–53.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu
Ma, and Andrej Risteski. 2016. A latent variable
model approach to pmi-based word embeddings.
Transactions of the Association for Computa-
tional Linguistics, 4:385–399.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma.
2017. A simple but tough-to-beat baseline for
sentence embeddings. International Conference
on Learning Representations.

Fatemeh Torabi Asr and Michael N Jones. 2017.
An artificial language evaluation of distributional
semantic models. CoNLL 2017, page 134.

Fatemeh Torabi Asr, Robert Zinkov, and Michael
Jones. 2018. Querying word embeddings for
similarity and relatedness. In Proceedings of
the 2018 Conference of NAACL-HLT, Volume 1
(Long Papers), pages 675–684.

Simon Baker, Roi Reichart, and Anna Korhonen.
2014. An unsupervised model for instance level
subcategorization acquisition. In Proceedings of
the 2014 Conference on Empirical Methods in
Natural Language Processing, pages 278–289.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. DonâĂŹt count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceed-
ings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1:
Long Papers), pages 238–247.

Elia Bruni, Gemma Boleda, Marco Baroni, and
Nam-Khanh Tran. 2012. Distributional seman-
tics in technicolor. In Proceedings of the 50th
annual meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 136–145. Association for Computational
Linguistics.

Jose Camacho-Collados, Mohammad Taher Pile-
hvar, Nigel Collier, and Roberto Navigli. 2017.
Semeval-2017 task 2: Multilingual and cross-
lingual semantic word similarity. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 15–26.

Miguel A Carreira-Perpinan and Geoffrey E Hinton.
2005. On contrastive divergence learning. In
Aistats, volume 10, pages 33–40. Citeseer.

Ilias Chalkidis and Dimitrios Kampas. 2019. Deep
learning in law: early adaptation and legal word
embeddings trained on large corpora. Artificial
Intelligence and Law, 27(2):171–198.

Soravit Changpinyo, Hexiang Hu, and Fei Sha.
2018. Multi-task learning for sequence tagging:
An empirical study. In Proceedings of the 27th
International Conference on Computational Lin-
guistics, pages 2965–2977.

Billy Chiu, Anna Korhonen, and Sampo Pyysalo.
2016. Intrinsic evaluation of word vectors fails
to predict extrinsic performance. In Proceedings
of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 1–6.

Massimiliano Ciaramita and Yasemin Altun. 2006.
Broad-coverage sense disambiguation and infor-
mation extraction with a supersense sequence
tagger. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 594–602.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
Deep neural networks with multitask learning.
In Proceedings of the 25th International Con-
ference on Machine Learning, pages 160–167.
ACM.

Alexis Conneau, Douwe Kiela, Holger Schwenk,
Loïc Barrault, and Antoine Bordes. 2017. Super-
vised learning of universal sentence representa-
tions from natural language inference data. In
Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing,
pages 670–680.

Selin Değirmenci, Aydın Gerek, and Murat Can
Ganiz. 2019. Waste not: Meta-embedding of
word and context vectors. In International Con-
ference on Applications of Natural Language to
Information Systems, pages 393–401. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith.
2015. Retrofitting word vectors to semantic lexi-
cons. In Proceedings of the 2015 Conference of
NAACL-HLT, pages 1606–1615.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Ras-
togi, and Chris Dyer. 2016. Problems with eval-
uation of word embeddings using word similar-
ity tasks. In Proceedings of the 1st Workshop
on Evaluating Vector-Space Representations for
NLP, pages 30–35.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Ma-
tias, Ehud Rivlin, Zach Solan, Gadi Wolfman,
and Eytan Ruppin. 2002. Placing search in con-
text: The concept revisited. ACM Transactions
on information systems, 20(1):116–131.

Anna Gladkova, Aleksandr Drozd, and Satoshi
Matsuoka. 2016. Analogy-based detection of
morphological and semantic relations with word
embeddings: what works and what doesn’t. In
Proceedings of the NAACL-HLT Student Re-
search Workshop, pages 8–15.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal
of Artificial Intelligence Research, 57:345–420.

David Graff, J Kong, K Chen, and K Maeda. 2007.
English gigaword third edition ldc2007t07. Web
Download. Philadelphia: Linguistic Data Con-
sortium.

Edouard Grave, Armand Joulin, Moustapha Cissé,
Hervé Jégou, et al. 2017. Efficient softmax ap-
proximation for gpus. In Proceedings of the 34th
International Conference on Machine Learning-
Volume 70, pages 1302–1310. JMLR. org.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. Computational
Linguistics, 41(4):665–695.

Geoffrey E Hinton. 2002. Training products of
experts by minimizing contrastive divergence.
Neural computation, 14(8):1771–1800.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tag-
ging. arXiv preprint arXiv:1508.01991.

Armand Joulin, Edouard Grave, and Piotr Bo-
janowski Tomas Mikolov. 2017. Bag of tricks
for efficient text classification. European Associ-
ation for Computational Linguistics 2017, page
427.

Kian Kenyon-Dean, Andre Cianflone, Lucas Page-
Caccia, Guillaume Rabusseau, Jackie Chi Kit
Cheung, and Doina Precup. 2019. Clustering
oriented representation learning with attractive-
repulsive loss. AAAI Workshop: Network Inter-
pretability for Deep Learning.

Douwe Kiela, Changhan Wang, and Kyunghyun
Cho. 2018. Dynamic meta-embeddings for im-
proved sentence representations. In Proceedings
of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1466–
1477.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Pro-
ceedings of the 2015 International Conference
on Learning Representations.

Omer Levy and Yoav Goldberg. 2014a. Linguis-
tic regularities in sparse and explicit word rep-
resentations. In Proceedings of the eighteenth
conference on computational natural language
learning, pages 171–180.

Omer Levy and Yoav Goldberg. 2014b. Neural
word embedding as implicit matrix factorization.
In Advances in Neural Information Processing
Systems, pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015.
Improving distributional similarity with lessons
learned from word embeddings. Transactions of
the Association for Computational Linguistics,
3:211–225.

Yitan Li, Linli Xu, Fei Tian, Liang Jiang, Xiaowei
Zhong, and Enhong Chen. 2015. Word embed-
ding revisited: a new representation learning and
explicit matrix factorization perspective. In Pro-
ceedings of the 24th International Conference on
Artificial Intelligence, pages 3650–3656. AAAI
Press.

Tal Linzen. 2016. Issues in evaluating semantic
spaces using word analogies. In Proceedings of
the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 13–18.

Thang Luong, Richard Socher, and Christopher
Manning. 2013. Better word representations
with recursive neural networks for morphology.
In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning,
pages 104–113.

Andrew L Maas, Raymond E Daly, Peter T Pham,
Dan Huang, Andrew Y Ng, and Christopher
Potts. 2011. Learning word vectors for senti-
ment analysis. In Proceedings of the 49th an-
nual meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies (Volume 1: Long Papers), pages 142–150.
Association for Computational Linguistics.

Rui Mao, Chenghua Lin, and Frank Guerin. 2018.
Word embedding and wordnet based metaphor
identification and interpretation. In Proceedings
of the 56th Annual Meeting of the Association
for Computational Linguistics. Association for
Computational Linguistics (ACL).

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large an-
notated corpus of english: The penn treebank.
Computational linguistics, 19(2):313–330.

Oren Melamud, Omer Levy, and Ido Dagan. 2015.
A simple word embedding model for lexical sub-
stitution. In Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language
Processing, pages 1–7.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. Proceedings of
the 2013 International Conference on Learning
Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013b. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in neural information
processing systems, pages 3111–3119.

George A Miller, Claudia Leacock, Randee Tengi,
and Ross T Bunker. 1993. A semantic concor-
dance. In Proceedings of the Workshop on Hu-
man Language Technology, pages 303–308.

Andriy Mnih and Geoffrey E Hinton. 2009. A
scalable hierarchical distributed language model.
In Advances in neural information processing
systems, pages 1081–1088.

Andriy Mnih and Koray Kavukcuoglu. 2013.
Learning word embeddings efficiently with
noise-contrastive estimation. In Advances in
neural information processing systems, pages
2265–2273.

Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and
Rich Caruana. 2016. Improving document rank-
ing with dual word embeddings. In Proceedings
of the 25th International Conference Companion
on World Wide Web, pages 83–84. International
World Wide Web Conferences Steering Commit-
tee.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differenti-
ation in PyTorch. In Neural Information Pro-
cessing Systems 2017 Workshop on Automatic
Differentiation.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 conference on Empirical Methods in Natu-
ral Language Processing, pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contextual-
ized word representations. In Proceedings of
the 2018 Conference of NAACL-HLT, Volume 1
(Long Papers), volume 1, pages 2227–2237.

Slav Petrov, Dipanjan Das, and Ryan McDonald.
2012. A universal part-of-speech tagset. In Pro-
ceedings of the Eighth International Conference
on Language Resources and Evaluation (LREC-
2012).

Ofir Press and Lior Wolf. 2017. Using the output
embedding to improve language models. EACL
2017, page 157.

Ye Qi, Devendra Sachan, Matthieu Felix, Sar-
guna Padmanabhan, and Graham Neubig. 2018.
When and why are pre-trained word embeddings

useful for neural machine translation? In Pro-
ceedings of the 2018 Conference of NAACL-HLT,
Volume 2 (Short Papers), pages 529–535.

Kira Radinsky, Eugene Agichtein, Evgeniy
Gabrilovich, and Shaul Markovitch. 2011. A
word at a time: computing word relatedness us-
ing temporal semantic analysis. In Proceedings
of the 20th international conference on World
Wide Web, pages 337–346. ACM.

Anna Rogers, Aleksandr Drozd, and Bofang Li.
2017. The (too many) problems of analogical
reasoning with word vectors. In Proceedings of
the 6th Joint Conference on Lexical and Com-
putational Semantics (* SEM 2017), pages 135–
148.

Stephen Roller and Katrin Erk. 2016. PIC a differ-
ent word: A simple model for lexical substitution
in context. In Proceedings of the 2016 Confer-
ence of the NAACL-HLT, pages 1121–1126.

Noam Shazeer, Ryan Doherty, Colin Evans, and
Chris Waterson. 2016. Swivel: Improving em-
beddings by noticing what’s missing. arXiv
preprint arXiv:1602.02215.

Raphael Shu and Hideki Nakayama. 2017. Com-
pressing word embeddings via deep com-
positional code learning. arXiv preprint
arXiv:1711.01068.

Karl Stratos. 2017. Reconstruction of word em-
beddings from sub-word parameters. In Pro-
ceedings of the First Workshop on Subword and
Character Level Models in NLP, pages 130–135.

Egidio Terra and Charles LA Clarke. 2003. Fre-
quency estimates for statistical word similarity
measures. In Proceedings of the 2003 Confer-
ence of NAACL-HLT - Volume 1, pages 165–172.
Association for Computational Linguistics.

Vahe Tshitoyan, John Dagdelen, Leigh Weston,
Alexander Dunn, Ziqin Rong, Olga Kononova,
Kristin A Persson, Gerbrand Ceder, and Anub-
hav Jain. 2019. Unsupervised word embeddings
capture latent knowledge from materials science
literature. Nature, 571(7763).

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word representations: a simple and gen-
eral method for semi-supervised learning. In

Proceedings of the 48th annual meeting of the As-
sociation for Computational Linguistics, pages
384–394. Association for Computational Lin-
guistics.

Peter D Turney and Patrick Pantel. 2010. From
frequency to meaning: Vector space models of
semantics. Journal of artificial intelligence re-
search, 37:141–188.

Madeleine Udell, Corinne Horn, Reza Zadeh,
Stephen Boyd, et al. 2016. Generalized low rank
models. Foundations and Trends R© in Machine
Learning, 9(1):1–118.

Dongqiang Yang and David Martin Powers. 2006.
Verb similarity on the taxonomy of WordNet.
Masaryk University.

Zhiwei Yu and Xiaojun Wan. 2019. How to avoid
sentences spelling boring? towards a neural ap-
proach to unsupervised metaphor generation. In
Proceedings of the 2019 Conference of NAACL-
HLT, Volume 1 (Long and Short Papers), pages
861–871.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wi-
ley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 8(4):e1253.

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei
Lin, and Zhiyong Lu. 2019. Biowordvec, im-
proving biomedical word embeddings with sub-
word information and mesh. Scientific data,
6(1).

