
AO Challenge, Part II:

Lessons Learnt from Implementing a Reusable

Aspect Framework

Ekwa Duala-Ekoko and Jörg Kienzle

School of Computer Science,
McGill University,

Montreal, QC H3A 2A7, Canada
Ekwa.Duala-Ekoko,Joerg.Kienzle@mcgill.ca

Abstract. Writing a set of reusable aspects that can be used in isolation
and in combination is a highly complex task. In this paper we identify a
set of key features required for implementing reusable aspects frameworks
with complex aspect dependencies and interactions based on our ex-
perience implementing AspectOptima, a language independent, aspect-
oriented framework that provides runtime support for transactions. By
showing details of our implementation in AspectJ, we demonstrate how
reusability and con�gurability, although not directly supported by As-
pectJ, can be achieved by means of aspect design patterns. Where ap-
propriate, we suggest potential language improvements that address the
encountered limitations. Finally, we present performance measures that
compare our aspect-oriented solution to a purely object-oriented one,
and highlight the impact of language support for reusability and con�g-
urability on performance.

1 Introduction

Aspect-orientation [7] has been accepted as a powerful technique for modulariz-
ing crosscutting concerns during software development in so-called aspects. From
the beginning, programmers have also taken advantage of the advanced modu-
larization o�ered by aspect-oriented programming techniques to improve code
reusability. Experience has shown that aspect-oriented programming is success-
ful in modularizing even very application-independent, general concerns such as
distribution [23], concurrency [4,16], persistency [23,20] and failures [16]. The
implementation of these concerns can be reused in several base applications by
binding the reusable aspects to speci�c application elements. This binding is,
however, sometimes tricky. The degree of reusability that can be achieved de-
pends on the expressiveness of the aspect-oriented programming language.

Aspect-oriented frameworks such as [15,18,3] used aspects to modularize well-
de�ned low-level concerns, and then combined them in di�erent ways to im-
plement higher-level concerns. The complexity of writing such aspect-oriented
frameworks with individually reusable aspects is exponentially more di�cult

Owner
Text Box
Technical Report number SOCS-TR-2007.1, School of Computer Science, McGill University, February 2007.



because of the fact that aspects are used in combination with each other. De-
pendencies between aspects raise the question of how to express inter-aspect re-
lationships such as aspect con�gurations and aspect ordering. Since the correct
con�guration or ordering of aspects is often application-dependent, mechanisms
must be devised that allow an application developer to specify the desired be-
havior. However, unwanted and undesired interactions among aspects have to be
prevented, and functional dependencies between aspects have to be respected.

This paper aims at investigating the properties of aspect-oriented program-
ming languages that enable the development of reusable aspect-oriented frame-
works. To illustrate our ideas, we present our experience in implementing the
aspect-oriented framework AspectOptima � a language independent framework
consisting of a set of ten base aspects (each one providing a well-de�ned reusable
functionality) that can be assembled in di�erent con�gurations to provide run-
time support for transactions. Section 2 brie�y describes transactional systems,
and then presents a summary of the design of AspectOptima. We then identify
eight key language features necessary for implementing aspect-oriented frame-
works in section 3. We analyze how these features are supported in the program-
ming language AspectJ in section 4, and illustrate the use of these features by
presenting some details of our implementation of AspectOptima in section 5.
Section 6 presents an in-depth discussion of the encountered limitations of As-
pectJ and suggests potential language improvements. We show performance mea-
sures that illustrate the performance of our aspect implementation compared to
a purely object-oriented implementation, and the performance impact of di�er-
ent aspect-oriented language constructs for achieving reusability in section 7.
Section 8 comments on related work, and the last section presents a conclusion
and future work.

2 Design Summary of AspectOptima

2.1 Transactions and Transactional Objects

A transaction groups together an arbitrary number of operations on transac-
tional objects, guaranteeing the so-called ACID properties: Atomicity (either all
operations are executed, or none is), Consistency(guarantees that the execu-
tion of a transaction will not erroneously corrupt the application state), Iso-
lation (concurrently running transactions don't interfere with each other) and
Durability [12](guarantees that the results of a committed transaction can be
re-established in the event of failures).

When a process or thread that works inside a transaction calls a method on
a transactional object, the transaction support middleware must take control
and perform certain actions to ensure that the ACID properties can be guaran-
teed. Traditionally, this is done by applying concurrency control and recovery
strategies. Concurrency control can be pessimistic (for instance, using locks)
or optimistic (for instance, using time-stamps). Recovery can be done in-place
(i.e., by checkpointing � saving the state of an object � and, in case of a roll-



back, restoring the state of transactional objects), or using deferred-update (i.e.,
by creating local copies of the state of transactional objects for each transaction).

2.2 The Ten Low-Level Aspects of AspectOptima

[15] describes the design of AspectOptima, an aspect-oriented framework that
provides the ACID properties for transactional objects. The framework de�nes
ten low-level aspects that can each be applied to an object to provide a well-
de�ned reusable functionality. The aspects are brie�y described below:

• AccessClassi�ed: The AccessClassi�ed aspect classi�es each method
that an object de�nes according to how its execution a�ects the object's
state: each method is classi�ed as a read, write or update method.

• Named: The Named aspect associates a name with an object that can
be used as a unique means of identi�cation.

• Shared: The Shared aspect ensures multiple readers/single writer access
to objects � all modi�cations made to the state of a shared object are
performed in mutual exclusion.

• Copyable: The Copyable aspect provides functionality to duplicate an
object, or replace an object's state with the state from another object.

• Serializable: A serializable object knows how to read its state from and
write its state to di�erent devices requiring varying data representation
formats, e.g. a �le or a network connection. The Serializable aspect is
an incarnation of the Serializer pattern described in [21].

• Versioned: A Versioned object can encapsulate multiple copies � ver-
sions � of its state. Versions are linked to views, one of which is desig-
nated the main view. A thread can subscribe to a view, and any method
call made subsequently by the thread is directed to the associated ver-
sion.

• Tracked: The Tracked aspect provides the functionality to monitor ob-
ject access in a generic way. It allows a thread to de�ne a region (using
begin and end operations) in which object accesses are monitored. At
any given time, the thread can obtain all read or modi�ed objects for
the current region.

• Recoverable: The Recoverable aspect makes it possible to store the
state of an object at a given time, and later restore it, if needed. This
functionality is sometimes also called �establishing a checkpoint�.

• AutoRecoverable: The AutoRecoverable aspect provides region-based
recovery. It allows a thread to de�ne a region within which recover-
able objects are automatically checkpointed before any modi�cations
are made to their state.

• Persistent: Persistent objects are objects whose state survives program
termination. To achieve this, persistent objects know how to write their
state to a non-volatile storage device.



2.3 Aspect Dependencies and Interference in AspectOptima

The ten low-level aspects presented in the previous subsection exhibit complex
dependencies. For instance, AutoRecoverable depends on the functionality pro-
vided by Recoverable to establish the checkpoints, which in turn depends on
Versioned to keep a backup copy of an object's state, which in turn uses Copy-
able to duplicate an object. The left hand side of the UML diagram shown in
Fig. 1 illustrates the dependency relationships among the low-level aspects.

AccessClassified Named Copyable

Serializable<<i>> Tracked <<i>> Versioned

Persistent

<<i>> Shared

Recoverable

AccessClassified NamedCopyable

Serializable<<i>> Tracked <<i>> Versioned

<<i>> AutoRecoverable

Persistent

<<i>> Shared

Recoverable

Dependencies Interference<<i>> AutoRecoverable

Fig. 1. Aspect Dependencies and Interferences

Some of the aspects also interfere with each other, i.e. they have to modify
their behavior in the presence of the interfering aspect in order to provide cor-
rect service. For instance, Serializable should not serialize an object's state if it
is shared and another thread is currently modifying its state. Persistent, for in-
stance, must make sure that, when saving a Recoverable object, it also saves the
backup version, if there is one. The interference dependencies between aspects
are depicted on the right side of Fig. 1.

Some aspects only provide functionality when explicitly asked to. The func-
tionality of others is triggered implicitly when the object to which they have
been applied to is used. The aspects that have to intercept calls to their objects
are marked with the stereotype < <i> > (for interceptors) in Fig. 1.

2.4 Composing Concurrency Control and Recovery Strategies

[15] describes the composition of several concurrency control and recovery strate-
gies using di�erent combination of the low-level aspects. For space reasons we
only present one particular strategy here: Pessimistic Lock-Based Concurrency
Control with In-Place Update.

It is implemented in the aspect LockBased, which relies on the fact that
all lockbased transactional objects are also AccessClassi�ed, Named, Copyable,
Serializable, Shared, Versioned, Tracked, Recoverable, AutoRecoverable and Per-
sistent1. The aspects also assume that the transaction runtime creates a tracked

1 The functionality provided by Persistent is not used in this section. Persistency is
mostly required at commit time of a transaction as shown in section 5.5.



zone, a recoverable zone and a new view when a transaction begins, and ends
the zones and the view when a transaction commits or aborts. Fig. 2 illustrates
the interaction between these aspects. The sequence diagram depicts how a call
to a transactional object � TAObject � is intercepted, and how the individual
aspects collaborate to provide the desired functionality.

LockBased AccessClas Tracked Named AutoRec Shared TAObject

op(..)
getKind(op)

op(..) getName()

op(..)

establish()

Recoverable

setDeferred(false)

Versioned Copyable

newVersion()

replaceState()

op(..)

op(..)
getKind(op)

op(..)

getKind(op)

getKind(op)

Fig. 2. Aspect Interactions for LockBased Objects

Lock-based protocols use locks to implement permissions to perform opera-
tions. When a thread invokes an operation (i.e., op(..) in Fig. 2) on a transac-
tional object on behalf of a transaction, LockBased intercepts the call, forcing
the thread to obtain the lock associated with the operation. The kind of lock
� read, write or update � is chosen based on the information provided by Ac-
cessClassi�ed. Before granting the lock, LockBased veri�es that this new lock
does not con�ict with a lock held by a di�erent transactions in progress. If a
con�ict is detected, the thread requesting the lock is blocked and has to wait
for the release of the con�icting lock. Otherwise, the lock is granted. LockBased
then makes sure that in-place update has been selected for this object by calling
Recoverable, and allows the call to proceed.

The order in which locks are granted to transactions imposes an execution
ordering on the transactions with respect to their con�icting operations. Two-
phase locking [8] ensures serializability by not allowing transactions to acquire
any lock after a lock has been released. This implies in practice that a transaction
acquires locks during its execution (1st phase), and releases them at the end once
the outcome of the transaction has been determined (2nd phase).

To release all acquired locks when a transaction ends, all transactional ob-
jects that are accessed during a transaction have to be monitored. To this end,



LockBased depends on Tracked to intercept the call and record the access. Ob-
viously, an object should be tracked only after a lock has been granted.

Next, LockBased depends on AutoRecoverable to intercept the call and to
checkpoint the state of the transactional object, if necessary, before it is modi�ed.
Since we are using in-place update, Versioned then directs the operation call to
the main copy of the object. Finally, Shared intercepts the call and makes sure
that no two threads running in the same transaction are modifying the object's
state concurrently. After the method has been executed, Shared releases the
mutual exclusion lock. The transactional lock, however, is held until the outcome
of the transaction is known.

3 Language Requirements for Implementing Aspect

Frameworks

Based on our experience implementing AspectOptima, we identi�ed eight key
features that an aspect-oriented language has to provide in order to support the
implementation of reusable aspect-oriented frameworks:

• Aspect Packaging:
In order to support clear structuring and modularization, and to improve
readability and maintainability, it should be possible to package the
implementation of a aspect in such a way that the module contains
all the code needed to implement the functionality. Proper packaging
ensures that an aspect is used as a whole, which simpli�es aspect binding
and con�guration, and hence provides a basis for safe reuse.

• Separate Aspect Binding:
In order to support reusability, aspects should not contain explicit bind-
ings to application elements. The aspect binding is written at a later
time by the application developer that wants to apply the functionality
o�ered by a reusable aspect to parts of his application.

• Inter-Aspect Con�gurability:
In order to support safe reuse, a developer that needs a functionality
o�ered by one aspect should not have to explicitly deal with aspect de-
pendencies, i.e. when deploying an aspect A, all aspects that A depends
on should be automatically deployed as well. Aspects have to be able
to express their dependence on other aspects. In AspectOptima, for ex-
ample, Versioned can only be applied to objects that are also Copyable.

• Inter-Aspect Incompatibility:
In order to support safe reuse, a developer of an aspect framework should
be able to specify that certain combinations of aspects are illegal. Some
aspects should never be applied to the same object. For example, Lock-
Based can not be applied to objects that use some other form of con-
currency control, e.g. MultiVersion.

• Inter-Aspect Ordering:
In order to support reuse, a developer of an aspect A should be able to
specify the order in which the aspects that A depends on are applied.



In AspectOptima, for example, the aspect LockBased has to make sure
that Tracked records the object access only after a lock has been ac-
quired. Likewise, a developer that wants to use functionality provided
by an aspect framework should be able to specify the ordering of func-
tionally independent aspects when they are applied to the same part of
the application.

• Per-Object (Per-Instance) Aspects:
In order to support �ne-grained reuse, support for per-object aspects
is required. In AspectOptima, for instance, an application program-
mer might want to use di�erent implementations of ACID for di�erent
objects of the same class. It should therefore be possible to associate
LockBased, MultiVersion and Optimistic to objects, not to classes.

• Dynamic Aspects:
In order to support �exible reuse, support for dynamic aspects is re-
quired, i.e., it should be possible to apply aspects to and remove aspects
from objects at runtime. In AspectOptima, for example, in multi-version
concurrency control, the Shared aspect should be removed from a version
of a transactional object when it becomes read-only.

• Thread-Aware Aspects
In order to support �exible reuse in multi-threaded applications, it
should be possible to activate aspects on a per-thread basis. In As-
pectOptima, several aspects provide functionality based on the context
of the current thread. For instance, Tracked only tracks object accesses
if the current thread has previously started a tracked zone. AutoRe-
coverable only checkpoints objects if the current thread is within an
auto-recoverable zone.

4 Analysis of Language Support in AspectJ

This section describes how some of the features required to implement reusable
aspect-oriented frameworks, although not directly supported, were achieved in
our AspectJ [14] implementation of AspectOptima.

AspectJ is an aspect-oriented extension of Java [11]. It encapsulates cross-
cutting behaviors in a class-like construct called an aspect. Similar to a Java
class, an aspect can contain both data members and method declarations, but it
cannot be explicitly instantiated. AspectJ introduces four new concepts relevant
to this work: join points, pointcuts, advice, and inter-type declarations.

Join points are well-de�ned points in the execution of a program. These
include method and constructor calls or executions, �eld accesses, object and
class initialization, and others. Our implementation of AspectOptima uses only
method call and execution join points.

A pointcut is a construct used to designate a set of join points of interest and
to expose to the programmer the context in which they occur, such as the current
executing object (this(ObjectIdenti�er)), the target object of a call or execution
(target(ObjectIdenti�er)) and the arguments of the a method call (args(..)).



IntroductionContainer
(class or interface)

<<aspect>>
IntroductionLoader

<<introduction&advice>>

ApplicationClass
(class or interface)

<<aspect>>
ContainerConnector

<<bind>>

Fig. 3. Abstract Introduction Idiom

An advice de�nes the actions to be taken at the join point(s) captured by
a pointcut. It consists of standard Java code. AspectJ supports three types of
advice: before, after and around. The before advice runs just before the captured
join point; the after advice runs immediately after the captured join point; the
around advice surrounds the captured join point and has the ability to augment,
bypass or allow its execution.

Finally, inter-type declarations allow an aspect to de�ne methods and �elds
for other classes and interfaces, and for modifying the inheritance hierarchy.

4.1 Aspect Packaging, Separate Aspect Binding and Inter-Aspect
Con�gurability

In AspectJ, the abstract introduction idiom (also known as indirect introduc-
tion) [13] can be used to achieve aspect packaging, separate aspect binding and
inter-aspect con�gurability. The abstract introduction idiom allows us to �collect
several extrinsic properties from di�erent perspectives within one unit and defers
the binding to existing objects�. In order words, the target classes of the static
and dynamic crosscutting behavior of an aspect can remain are unknown until
weave-time. The strategy has three participants (see also Fig. 3):

• Introduction container : a construct used as the target for the inter-type
member declarations.

• Introduction loader : the aspect that introduces crosscutting behaviors
and ancestors to the introduction container.

• Container connector : the aspect used for connecting the introduction
container to the base application classes.

The introduction container serves a dual purpose in the context of our im-
plementation. First, it enables the aspects to be reused in di�erent contexts;
second, it helps in identifying the classes to which the crosscutting behavior of
an aspect should be applied.

The introduction container can either be a class or an interface in AspectJ.
Since multiple inheritance is not supported in Java, our implementation can
not use a class as introduction container: it would prohibit several aspects to be
applied to the same application object. Consequently, dummy interfaces are used
as the introduction container for each of the aspects. For instance, the interface
IShared is associated with the aspect Shared, IAutoRecoverable is associated with
AutoRecoverable, and so on. Each of the AspectOptima aspects, playing the role
of the introduction loader aspect, is then implemented to apply its functionality



to all the classes that implement its associated interface (e.g., the Shared aspect
is applied to all classes that implement the IShared interface).

In order to achieve aspect packaging, the interface, the aspect and the utility
classes, if needed, are bundled together in the same Java package.

Since all AspectOptima aspects declare dummy interfaces, individual aspect
binding can be achieved using the declare parents construct of AspectJ. The �rst
aspect in Fig. 4 brands the Account class as IShared ; hence, the crosscutting
behavior of the Shared aspect is applied to all instances of the Account class.

public aspect Binding {
declare parents: Account implements IShared; }

public aspect AutoRecoverable{
declare parents: IAutoRecoverable implements IRecoverable, IAccessClassi�ed;}

Fig. 4. Separate Aspect Binding and Inter-Aspect Con�gurability in AspectJ

Inter-aspect con�gurability is achieved by having the associated interface of
an aspect implement the interfaces of the aspects it depends on. For instance,
the AutoRecoverable aspect declares IAutoRecoverable to implement IAccess-
Classi�ed and IRecoverable as illustrated in the second aspect of Fig. 4. Hence,
an AutoRecoverable object is by default Recoverable and AccessClassi�ed. This
technique makes reuse very easy and safe. Application developers do not have to
modify their base classes to apply aspects to them and can not forget to deploy
low-level aspects whose functionality is needed by a higher level aspect.

4.2 Inter-Aspect Ordering

Inter-aspect ordering is supported in AspectJ by the declare precedence con-
struct. Fig. 5 illustrates how the LockBased aspect speci�es its execution order
relative to that of the aspects it depends on.

public aspect LockBased {
declare precedence: LockBased,AutoRecoverable,Tracked,Versioned,Shared; }

Fig. 5. Inter-Aspect Ordering in AspectJ

4.3 Inter-Aspect Incompatibility

Inter-aspect incompatibility can be speci�ed in AspectJ by writing two contra-
dicting precedence declarations. Fig. 6 illustrates how to declare that the Lock-
Based aspect should never be applied to the same join points as theMultiVersion
or Optimistic aspects.



public aspect Incompatibility {
declare precedence: LockBased, MultiVersion, Optimistic;
declare precedence: Optimistic, MultiVersion, LockBased; }

Fig. 6. Inter-Aspect Incompatibility Speci�cation in AspectJ

4.4 Per-Object Aspects, Dynamic Aspects and Thread-Aware
Aspects

AspectJ does not support per-object aspects, dynamic weaving or thread-aware
aspects. However, per-object aspect can be simulated by introducing a boolean
�eld into each advised object. At each pointcut occurrence, the �eld is checked
to verify that the aspect is actually enabled (see subsection 5.3).

Likewise, thread-aware aspects can be simulated by instantiating the Java
class ThreadLocal, which allows a programmer to associate any data structure
with a thread. Each aspect that needs to be thread-aware can associate a boolean
�eld with a thread, which is checked at runtime to determine if the aspect should
execute its functionality or not (see subsection 5.4).

5 AspectJ Implementation of AspectOptima

In this section, we present a detailed description of the implementation of some of
the AspectOptima aspects in AspectJ. Due to space constraints, only the aspects
necessary to discuss the encountered AspectJ limitations, namely AccessClassi-
�ed, Copyable, Shared, Tracked and LockBased, are presented. The interested
reader is referred to [5] for a complete description of the implementation.

5.1 Implementation of AccessClassi�ed

It is currently not possible in AspectJ to statically determine if a method po-
tentially reads, writes or updates the �elds of an object. Therefore, our imple-
mentation of AccessClassi�ed relies on the application developer to tag every
method of an object with marker annotations, such as the Read annotation de-
�ned in Fig. 7. The annotation has a runtime retention policy (retained by the
virtual machine so that it can be read re�ectively at runtime), can be inherited
(annotations on superclasses are automatically inherited by subclasses) and has
to be applied to methods.

The AccessClassi�ed implementation aspect shown in Fig. 7 introduces a
method getKind(String) to every IAccessClassi�ed object that examines these
annotations by re�ection at runtime and classi�es each operation accordingly.
Non-annotated methods are treated as modi�er operations to guarantee system
consistency.

A di�erent implementation strategy that automatically determines the access
kind at runtime by tentatively executing the method and by intercepting all �eld
modi�cations is presented in [5].



@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@Inherited public @interface Read {}

public aspect AccessClassi�ed {
public enum Kind {READ, WRITE, UPDATE);
boolean found = false;
public Kind IAccessClassi�ed.getKind(String methodName)
throws MethodNotAnnotatedException, MethodNotFoundException{
for (Method m : this.getClass().getMethods()) {
if((methodName.trim()).equalsIgnoreCase(m.getName())) {
found = true;
if (m.isAnnotationPresent(Read.class)) return READ;
else if (m.isAnnotationPresent(Write.class)) return WRITE;
else return UPDATE;

}
}
if (!found) throw new MethodNotFoundException(".."); } }

Fig. 7. AspectJ Implementation of AccessClassi�ed

public aspect Copyable {
public void ICopyable.replaceState(Object source) {
try {
// �eld-by-�eld deep copy of the state (inherited, declared and introduced)

} catch (SourceClassNotEqualDestinationClass e) {}
}
public Object ICopyable.clone(){
// deep cloning using Java re�ection
return deepCopyOfOriginalObject; } }

Fig. 8. AspectJ Implementation of Copyable

5.2 Implementation of Copyable

The Copyable aspect (see Fig. 8) introduces state replacement and cloning func-
tionality to all classes that implement the ICopyable interface. The method
replaceState enables an object to replace its state with that of another object
of the same class. The clone method duplicates an object. The actual copy-
ing/cloning heavily uses the Java re�ection API. The lengthy code is not shown
for space reasons.

5.3 Implementation of Shared

The implementation of the Shared aspect is presented in Fig. 9. Shared depends
on the method classi�cation provided by AccessClassi�ed to determine the kind
of lock to be acquired. The declare parents construct used in line 2 illustrates
inter-aspect con�guration by declaring all Shared objects to be AccessClassi�ed
as well.



1 public aspect Shared {
2 declare parents: IShared implements IAccessClassi�ed;
3 public boolean IShared.Enabled = true;
4 private boolean IShared.getEnabled() { return Enabled; }
5 static boolean isEnabled(IShared object) { return object.getEnabled(); }
6 private Lock IShared.threadLock = new Lock();
7 private Lock IShared.getSharedLock() { return threadLock; }
8 pointcut methodExecution(IShared ishared): target(ishared) &&

execution(public * IShared+.*(..));
9 Object around(IShared shared) : methodExecution(shared) &&

if(isEnabled(shared)) {
10 Kind accessType = shared.getKind(getMethodName(thisJoinPoint));
11 if (accessType == READ) shared.getSharedLock().getReadLock();
12 else if (accessType == WRITE) shared.getSharedLock().getWriteLock();
13 else shared.getSharedLock().getUpdateLock();
14 Object obj = proceed(shared);

// release previously acquired lock...
20 return obj; } }

Fig. 9. AspectJ Implementation of Shared

Lines 3-5 de�ne a boolean �eld and two methods for supporting runtime dis-
abling and enabling of advice on a per-object basis. The if(isEnabled(shared))
pointcut modi�er on line 9 checks the �eld before executing the functionality
provided by Shared.

Lines 6-7 allocate a lock for each Shared object. The pointcut on line 8 makes
sure that all public method calls to a Shared object are intercepted. The around
advice on line 9 obligates every thread executing a method on a Shared object to
acquire the appropriate lock before proceeding. On line 10, the kind of operation
is determined by calling the functionality o�ered by AccessClassi�ed. Line 11 to
13 obtain the corresponding lock. After the operation is executed (line 14), the
lock is released again (code not shown for space reasons).

5.4 Implementation of Tracked

Fig. 10 presents an implementation of the Tracked aspect. It depends on the
AccessClassi�ed aspect to distinguish between read, write and update opera-
tions, and on the Named aspect to avoid tracking di�erent copies of the same
transactional object (see line 2). InheritableThreadLocal, a class provided by
the standard Java API, is used to associate a thread with a zone. The Zone
class is a simple helper class that maintains three hash tables to keep track of
read, written and updated objects. The code of the Zone class is not shown
due to space constraints. Tracked zones are requested by executing the aspect
method beginTrackedZone(), and terminated by executing the aspect method
endTrackedZone() (see lines 9 - 12)2.

2 For space reasons, the code dealing with joining and leaving, as well as nested zones
has been omitted.



1 public aspect Tracked {
2 declare parents: ITracked implements INamed, IAccessClassi�ed;
3 private static InheritableThreadLocal myZone = new InheritableThreadLocal();
4 pointcut methodCall(ITracked track) : target(track) &&

call(public * ITracked+.*(..));
5 before(ITracked track) : methodCall(track) && if(myZone.get() != null) {
6 Kind type = track.getKind(getMethodName(thisJoinPoint.toShortString()));
7 String myName = ((ITracked)thisJoinPoint.getTarget()).getName();
8 ((Zone)myZone.get()).recordAccess(track, type, myName);

}
9 public static synchronized void beginTrackedZone(){
10 if (myZone.get() == null) myZone.set(new Zone());

}
11 public static synchronized void endTrackedZone() {
12 myZone.set(null);

} }

Fig. 10. Implementation of Tracked

The pointcut at line 4 makes sure that all public method calls to tracked
objects are intercepted. The before advice (lines 5 - 10) only executes if the call
is made from within a tracked zone thanks to the if pointcut modi�er. Line 6
shows how Tracked calls getKind, a functionality provided by AccessClassi�ed.
Likewise, line 7 calls getName, a functionality provided by Named, to obtain the
object's identity. Finally, line 8 records the access in the zone object.

5.5 Implementation of LockBased

The LockBased aspect provides support for pessimistic lock-based concurrency
control with in-place update (Fig. 11). To accomplish this, it depends on the
following aspects: AccessClassi�ed (to determine the appropriate transactional
lock to acquire for a given transaction), Shared (to prevent threads within a
transaction from concurrently modifying an object's state), AutoRecoverable (to
gather undo information in case a transaction aborts), Tracked (to keep track
of the transactional objects that participate in a transaction) and Persistent (to
store the state of the object on stable storage when a transaction commits). The
inter-aspect con�guration is done using the declare parents statement of line 2.

The execution order of these aspects is crucial. An unspeci�ed ordering could
result in bad performance, deadlock or in the worst case even break the ACID
properties. The desired execution order is: LockBased, AutoRecoverable, Tracked,
Versioned and Shared. LockBased �rst has to acquire the transactional lock and
set the update strategy to in-place before AutoRecoverable executes, the object
is then Tracked, the operation directed to the main version by Versioned, and
mutual exclusion to the state of the object ensured by Shared as shown in Fig. 2.
This ordering is con�gured using the declare precedence statement in line 3.

Lines 4 and 5 allocate an instance of TransactionalLock for each lockbased ob-
ject. The TransactionalLock class is a helper class that implements transaction-



aware read/write locks. The acquire method suspends the calling thread if some
other transaction is already holding the lock in a con�icting mode.

The pointcut in line 6 makes sure that all public method calls to a LockBased
object are intercepted. The before advice �rst queries the current transaction in
line 8 (details on transaction life cycle management are out of the scope of this
paper). In line 10, the functionality of AccessClassi�ed is used to classify the
operation that is to be invoked. Line 11 attempts to acquire the transactional
lock for the current transaction in the corresponding mode. If successful, line 12
sets the update strategy by using functionality provided by Recoverable.

Unlike Shared, LockBased follows the two-phase locking protocol, and there-
fore holds on to the transactional locks until the outcome of the transaction is
known. In case of transaction commit, LockBased performs the two-phase com-
mit protocol. The �rst phase is done by the before advice on lines 13 - 15. It
obtains all modi�ed objects of the transaction by using the functionality pro-
vided by Tracked, and saves all pre- and post-states to stable storage using the
functionality provided by Persistent. The second phase is handled by the after
advice in lines 16 - 22. It discards the checkpoints of all modi�ed objects us-
ing the functionality provided by Recoverable, saves their �nal states to stable
storage using the functionality of Persistent, and then releases the transactional
locks of all accessed objects.

The after advice on lines 22 - 26 handles transaction abort. It �rst rolls
back all changes made to modi�ed objects using the functionality provided by
Recoverable and then releases the transactional locks.

5.6 Using AspectOptima

Line 1 of Fig. 12 shows how a programmer can declare an application class,
in this case the class Account, and apply the LockBased aspect to it by sim-
ply declaring the class to implement ILockBased. The getBalance and credit

methods are classi�ed as read or update operations using the marker annotations
of AccessClassi�ed in line 3 and 4.

6 Encountered AspectJ Limitations

This section provides an in-depth discussion of the encountered AspectJ limita-
tions, possible work-around solutions, and suggestions for improvements to the
AspectJ language features, where appropriate.

6.1 Weak Aspect-to-Class Binding

An object in an AspectJ environment has several types of methods: those in-
herited from super classes and super interfaces, those declared by the class, and
those introduced by aspects through direct or indirect introductions. As ex-
plained in section 4.1, our implementation achieves aspect reusability, separate



1 public aspect LockBased {
2 declare parents: ILockBased implements

IAccessClassi�ed, IShared, IAutoRecoverable, ITracked, IPersistent;
3 declare precedence: LockBased, AutoRecoverable, Tracked, Versioned, Shared;
4 private TransactionalLock ILockBased.lock = new TransactionalLock();
5 private TransactionalLock ILockBased.getLock() { return lock; }
6 pointcut methodCall(ILockBased lb) : target(lb) &&

call(public * ILockBased+.*(..));
7 before (ILockBased lb) : methodCall(lb) {
8 Transaction t = getCurrentTransaction();
9 if (t != null) {
10 Kind accessType = lb.getKind(getMethodName(thisJoinPoint.toShortString()));
11 lb.getLock().acquire(t, accessType);
12 lb.setDeferred(false);

} }
13 before (Transaction t) : call(public void Transaction.commit()) && target(t) {
14 for (ILockBased lb : Tracked.getModi�edObjects()) {
15 lb.saveState();

} }
16 after (Transaction t) : call(public void Transaction.commit()) && target(t) {
17 for (ILockBased lb : Tracked.getModi�edObjects()) {
18 lb.discardCheckpoint(); lb.saveState(); }
20 for (TransactionalLock l : Tracked.getAccessedObjects()) {
21 l.releaseLock(t);

} }
22 after (Transaction t) : call(public void Transaction.abort()) && target(t) {
23 for (ILockBased lb : Tracked.getModi�edObjects()) {
24 lb.restoreCheckpoint(); }
25 for (TransactionalLock l : Tracked.getAccessedObjects()) {
26 l.releaseLock(t);

} } }

Fig. 11. AspectJ Implementation of LockBased

aspect binding and inter-aspect con�gurability by using the abstract introduc-
tion idiom [13]. Extrinsic static crosscutting behavior is collected in dummy
interfaces and these interfaces are later bound to application classes using the
declare parents construct. For instance, declaring an Account class as implement-
ing ICopyable introduces two additional public operations: replaceState and
clone into every Account object.

Unfortunately, Copyable interferes with Shared, in the sense that it should
not be possible to copy or clone an object while it is being modi�ed. Assuming
that the previous Account class also implements IShared (such as, for instance,
required by the LockBased aspect), it seems logical to assume that the call
and execution of Account.replaceState(..) will be captured by the point-
cuts call(public * IShared+.*(..)) and execution(public * IShared+.*(..)) of the
Shared aspect, since the method replaceState is de�ned for the Account class.
This is unfortunately not the case. The actual call and execution join points are



1 public class Account implements ILockBased {
2 private �oat balance;
3 @Read public �oat getBalance() { return balance; }
4 @Update public void credit(�oat amount) {balance += amount; } }

Fig. 12. A Lockbased Account

1 placeholder PCopyable {
2 public void clone() {...}
3 public void replaceState(Object o) {...}
}

4 aspect Copyable {
5 apply PCopyable to Account; }

Fig. 13. Proposed �placeholder� Construct

call(ICopyable.replaceState(..)) and execution(ICopyable.replaceState(..)), respec-
tively. AspectJ performs weak aspect-to-class binding, i.e. it associates the call
and the execution join points of indirectly introduced methods with the intro-
duction container, and not with the application class. As a result, Shared does
not intercept calls to replaceState, which may lead to state inconsistencies if a
thread executes a write or update operation while a di�erent thread tries to copy
the state of the object. This de�ciency is not unique to AspectOptima � any
two aspects that interfere and work at the granularity of methods could su�er
from the weak aspect-to-class binding problem.

In our case, a possible work-around is to declare the ICopyable interface as
implementing IShared . In this case, the replaceState and clone method calls
are intercepted by Shared as desired. An unfortunate side e�ect though is that
Copyable is not individually reusable anymore: all Copyable objects are now also
Shared , even if the application is single-threaded. This proposed work-around can
not solve the problem for circularly interfering aspects.

Language Improvement Suggestion: The weak aspect-to-class binding prob-
lem could be overcome by adding a new class-like construct to AspectJ that we
called a placeholder. A placeholder can de�ne �elds and methods, but these
members should not be structurally bound to the placeholder. Its functionality
should exclusively be to hold static crosscutting behavior that, at weave time,
is bound to the target class it is applied to. A placeholder should not be instan-
tiable, should never have a superclass, superinterface or be part of an inheritance
hierarchy.

Fig. 13 shows a potential declaration of PCopyable, a placeholder to be used
in the implementation of the Copyable aspect. Lines 1-3 de�ne the placeholder
and the replaceState and clone methods. Line 5 suggests a new construct for
binding the �elds and methods of a placeholder to the target class, in this case
Account. As opposed to indirect introduction, this direct introduction associates
the call and execution join points of �elds and methods with the target class.
As a result, the use of an interface as an introduction container is no longer



necessary. However, in order to use polymorphic calls, an interface declaration
for Copyable is still needed.

The placeholder concept may sound much like mixins [22], but it is fundamen-
tally di�erent. In mixins, the call and execution of a mixin method is delegated to
the mixin class, not the target class, and hence the weak aspect-to-class binding
problem can occur.

6.2 Re�ection/Superclass Method Execution Dilemma

To guarantee mutual exclusion, Shared must intercept every method invocation
on a shared object. AspectJ provides two pointcuts for intercepting the call and
execution of a method: call(MethodPattern) and execution(MethodPattern).

The method call pointcut can intercept non-re�ective calls to declared and
inherited methods of an object, but not re�ective calls, i.e. calls using the Java re-
�ection API. For instance, the pointcut call(public * SavingAccount.*(..)) would
intercept the method call SavingAccount.debit(..) but not debit.invoke

(SavingAccountObject, ..) - a conscious design decision made by the AspectJ
team not to �delve into the Java re�ection library to implement call semantics�
[24].

The method execution pointcut is typically used to address this de�ciency.
This pointcut can intercept the execution (both re�ective and non-re�ective) of
declared and �overridden-inherited� methods of an object, but unfortunately not
the execution (both re�ective and non-re�ective) of �non-overridden-inherited�
methods, because in this case the execution join point occurs in the super class.
For instance, the pointcut execution(public * SavingAccount.*(..)) intercepts
both the re�ective and non-re�ective execution of SavingAccount.debit(..),
but not SavingAccount.getBalance(), assuming that the getBalance method
is de�ned in Account and not overridden in the child class SavingAccount.

Composing the call and execution pointcuts with an or operator is not a
feasible solution either, because re�ective invocations of getBalance can still
not be intercepted.

One possible work-around is to require the application programmer to man-
ually override all the inherited methods from a super class in the subclass, in
which case the execution pointcut can be used to capture all calls. This solution
is however undesirable: the code reuse bene�ts of inheritance are diminished,
methods introduced by aspects can not be handled without introducing explicit
dependencies of the base on the aspect, and there is always the danger that an
application programmer forgets to override some of the methods.

Another work-around is to use a pointcut that explicitly names the super
class: target(SavingAccount) && execution(public * Account+.*(..)). This point-
cut intercepts the execution of the methods of an Account object when the
target is SavingAccount. It intercepts both re�ective and non-re�ective execu-
tions of SavingAccount.getBalance() and SavingAccount.debit(..). It also
correctly excludes the execution of operations on other subclasses of account, e.g.
CheckingAccount. Unfortunately this solution is application speci�c and cannot



be reused in a generic context. In order to write the pointcut, the exact superclass
and target subclass have to be known.

The only fully generic and reusable solution for the aspect Shared would be
to write: target(IShared) && execution(public * *.*(..)). This pointcut always
works, but can result in a signi�cant performance overhead as illustrated in
section 7.3.

Language Improvement Suggestion: We propose the addition of an in-
heritance conscious method execution pointcut: superexecution(MethodPattern).
Given a class with no superclasses, this pointcut behaves exactly as the ex-
ecution(MethodPattern) pointcut (i.e., it intercepts both re�ective and non-
re�ective execution of declared methods). When used on a class with super-
classes, it automatically overrides all non-overridden inherited methods, in our
case getBalance(), within the body of the target class, in our case SavingAc-
count , with dummy methods that simply call the method in the superclass. It
then applies the standard execution(MethodPattern) pointcut to the class. This
ensures that the execution join points of non-overridden inherited methods oc-
cur in the target subclass, eliminating the re�ection/superclass method execution
dilemma problem.

6.3 Lack of Support for Explicit Inter-Aspect Con�gurability and
Incompatibility

The aspects in AspectOptima exhibit complex aspect dependencies and interfer-
ences. AspectJ has no construct that enables developers to express inter-aspect
con�gurations. Ideally, an aspect should be able to express the need for function-
ality o�ered by other aspects, or adjust its functionality if interfering aspects are
applied to the same joinpoint. Also, it should be possible to specify incompatible
aspect con�gurations.

Our AspectJ implementation achieves rudimentary inter-aspect con�gura-
bility by declaring dummy interfaces for each aspect. Aspects express the de-
pendency on other aspects by having their associated interface implement the
interfaces of the aspects they depend on using the declare parents construct (see,
for example, line 2 of Fig. 11). However, this does not guarantee that the aspects
are applied to the same join points.

Language Improvement Suggestion: We propose the addition of a new
declare dependencies construct to AspectJ, which would allow inter-aspect con-
�gurability to be expressed as proposed in Fig. 14. The desired e�ect of this line
of code is that AccessClassi�ed, Shared, AutoRecoverable and Tracked should be
applied to all the join points picked out by LockBased. However, general applica-
tions might require more �ne-grained control over join points in case of complex
aspect con�gurations. Ideally, an aspect should be able to selectively decide to
what pointcuts each of the aspects it depends on is to be applied, and on the
order in which the advice are to be executed.



declare dependencies:
LockBased requires AccessClassi�ed, Shared, AutoRecoverable, Tracked;

Fig. 14. Proposed �declare dependencies� Construct

6.4 Lack of Support for Per-Object Aspects

In systems with many objects, such as in transactional systems, the ability to
selectively apply di�erent aspects to di�erent objects of the same class is crucial.
For instance, one might want to use pessimistic concurrency control for heavily
used Account objects, and use optimistic concurrency control for less frequently
used instances of the Account class. Unfortunately, AspectJ does not permit a
developer to selectively decide to which instances of a class an aspect should be
applied to.

However, the if(BooleanExpression) pointcut of AspectJ can be used to sim-
ulate per-object aspects. An aspect can introduce a �eld into the target class,
and then test for speci�c values of that �eld in the pointcut. For example, an
enumeration �eld usage could be introduced into the Account class, with possi-
ble values of heavy and normal. The if pointcut could inspect the value of the
usage �eld to decide if an advice is to be applied to the object or not.

6.5 Lack of Support for Runtime Disabling and Enabling of
Pointcuts

Aspects are statically deployed in AspectJ ; i.e., the crosscutting behavior spec-
i�ed in an aspect is applied to the base application at weave-time and cannot
be undone at runtime. This is a limitation for multi-version concurrency control
strategies that store histories of old states of objects. After an object's state has
been committed to history, it does not need to be AutoRecoverable and Shared
anymore, since only read transactions are going to access the object's state in
the future. To maximize system performance, it should be possible to disable
the AutoRecoverable and Shared aspect for this object.

As shown in the implementation of Shared, the if(BooleanExpression) point-
cut of AspectJ can be used to simulate runtime disabling and enabling of aspects,
but results in a loss of performance (see section 7.2).

Language Improvement Suggestion: There are already AspectJ -like pro-
gramming languages, e.g. JBossAOP, that support dynamic weaving of aspects
as a whole. One could imagine an even more �ne-grained language feature that
would allow enabling and disabling of pointcuts. For instance, each AspectJ as-
pect could de�ne two static methods enablePointcut(PointcutPattern) and
disablePointcut(PointcutPattern) that would support runtime enabling and
disabling of named pointcuts that match the pattern PointcutPattern. For in-
stance, the call Shared.aspectOf(obj).disablePointcut(methodExecution)



OO-read OO-update AO-read AO-update

Time (seconds) 382.897 447.284 1871.734 1945.0231

Overhead (factor) 1 1 4.88 4.35

Table 1. Comparing Object-Oriented and Aspect-Oriented Performance

would disable the method execution interception speci�ed by the Shared aspect
for the object obj - eliminating/reducing the performance overhead.

7 Performance Analysis

We conducted several performance measurements on our implementation of As-
pectOptima in order to determine the performance of aspect-oriented frame-
works, and the performance impact that the lack of support of the key language
features presented in section 3 can have. All our experiments were run on a
3GHz Intel-based laptop with 512MB of RAM running Windows XP home edi-
tion, Eclipse 3.2.0, Java 1.5 and AspectJ 1.5.2. The measurements were obtained
using the Eclipse Test and Performance Tools Platform [6].

All measurements execute operations on a simple bank account class that
encapsulates a balance �eld and provides the methods int getBalance() and
deposit(int).

7.1 Aspect-Oriented Implementation vs. Object-Oriented
Implementation

This subsection compares the performance of a purely object-oriented implemen-
tation of lock-based concurrency control with our aspect-oriented implementa-
tion LockBased. To perform the object-oriented measurements, we wrote a wrap-
per class for the bank account class that overrides getBalance and deposit, ex-
ecuting the same functionality as LockBased and the ten low-level aspects before
forwarding the call to the actual account.

The performance measurements are given in Table 1. We performed 50,000
getBalance (read) operations, and 50,000 deposit (update) operations. The
overall slowdown of the aspect-oriented implementation is around 1490 seconds,
which represents 30 ms per operation, i.e., a slowdown for read operations by a
factor of 4.88 and for update operations by a factor of 4.35.

The fact that the aspect-oriented implementation is slower is not surprising.
Each of the low-level aspects is individually reusable and does not know about
the speci�c context in which it is used. This independence makes it impossible
to share runtime information among aspects. For instance, LockBased has to
query the access kind of the method to be called from AccessClassi�ed. But
so does AutoRecoverable, Tracked and Shared (see Fig. 2). The object-oriented
implementation however can optimize and call AccessClassi�ed only once.

Although a certain slowdown due to reusability can not be avoided, it is
foreseeable that the slowdown will become less signi�cant thanks to advances



not shared shared & not enabled shared shared & enabled

Time (seconds) 0.586430 8.755212 54.023821 63.328594

Overhead (factor) 1 15 92 108

Table 2. Performance Overhead due to Lack of Dynamic Aspects

in compiler and weaving technology. For instance, LockBased, AutoRecoverable,
Tracked and Shared all apply to the same joinpoint. An advanced weaver might
be able to detect this situation and perform context-dependent optimizations.

7.2 Performance Impact of Simulating Per-Object Aspects

The need for per-object aspects and dynamic aspects, i.e. runtime disabling and
re-enabling of aspects, is motivated by the multi-version concurrency control
example. Once an object's state is committed, it is inserted into the history,
and is subsequently only ever accessed by read-only transactions. Hence, the
functionality provided by the Shared aspect is not needed anymore, since no
transaction will ever modify that particular version of the object's state in the
future. In AspectJ it is not possible to disable the pointcut de�ned in the Shared
aspect at runtime. An if(BooleanExpression) pointcut modi�er has to be used
to simulate the disabling as shown in lines 3-5 and 9 of Fig. 9. Since the AspectJ
rules forbid the use of non-static function calls within the boolean expression,
an additional static version of the getEnabled() method that simply forwards
the call to the target object had to be created.

To measure the performance overhead incurred, we performed three experi-
ments, in which the read-only operation getBalance was called 1,000,000 times.
The results of the experiment are presented in Table 2.

The �rst column shows the time spent inside getBalance for a standard bank
account object. The third column shows the time spent inside getBalance in
case the bank account object is shared. This includes the call to AccessClassi�ed
and the acquisition of the read lock. Obviously, the time spent in the method
is considerably bigger � in our case by a factor of 92. The overhead of the if

pointcut modi�er is apparent in the second and the last column. They show
the time it takes to check if the shared aspect is enabled for a particular bank
account object. Our experiments show a slowdown of 8.2 seconds (a factor of
15!) when shared is disabled, and a slowdown of 9.3 seconds when it is enabled.

An aspect-oriented environment that supports dynamic aspects can there-
fore achieve signi�cantly better performance. Of course, the actual activation
/ deactivation of aspects at runtime might also be costly. However, very often
activation and deactivation are rare events, and their overhead can be safely
ignored. In the case of multi-version concurrency control, the Shared aspect is
deactivated once and for all when the object's state is inserted into the history
of states.



targeted read targeted update generic read generic update

Time (seconds) 40.210723 29.900585 65.503984 52.767678

Overhead (factor) 1 1 1.63 1.76

Table 3. Comparing Application-Speci�c and Reusable Pointcuts

7.3 Performance Impact of Writing Reusable Pointcuts

The last experience we conducted aimed at evaluating the performance loss
incurred in AspectJ due to having to work around the re�ection/super class
execution dilemma. In section 6.2 we described that with a targeted call pointcut
we can not handle re�ective calls, whereas with a targeted execution pointcut
we can not handle executions of methods de�ned in the super class. The only
way to achieve full functionality and reusability is to write a generic pointcut
that intercepts all public method executions occurring in the application and
dynamically check for the speci�c target at runtime.

To evaluate the performance loss we again ran 1,000,000 getBalance and
deposit operations on a shared bank account object, once using the targeted,
application-speci�c execution pointcut target(SavingAccount) && execution(public
* Account+.*(..), and once with the generic, reusable execution pointcut tar-
get(IShared) && execution(public * *.*(..)). The results are presented in Table 3.

The table shows that read operations are slower than update operations. This
results from the fact that acquiring a read lock takes in general more time than
acquiring a write lock.

The results also show that the slowdown resulting from a generic pointcut is
not too signi�cant: less than a factor of 2. This result must however be interpreted
carefully. The performance loss measured here is the loss that is incurred due to
the generic pointcut when calling a Shared object. But the generic pointcut will
slow down every public method execution in the system, regardless of whether
the object is shared or not, and therefore results in huge runtime overhead for
an application with many calls to methods of non-shared objects.

8 Related Work

In [17], Mezini et al. identi�ed several de�ciencies of AspectJ 's join point inter-
ception model, namely:

• Lack of support for sophisticated mappings: the authors demonstrate
with examples that the mapping from aspect abstractions to base classes
via the declare parents construct is e�ective only when each aspect ab-
straction has a corresponding base class.

• Lack of support for reusable aspect bindings: the authors argue that
the aspect-to-class binding achieved via the declare parents construct
strongly binds an aspect to a particular base class; hence, such bindings
cannot be e�ectively reused.



• Lack of support for aspectual polymorphism: this limitation is compara-
ble to the lack of support for per-object association of aspects identi�ed
in this paper. The paper argued that it is not possible in AspectJ to
determine at runtime whether an aspect should be applied or not, or
which implementation of the aspect to apply.

The authors then proposed a new aspect-oriented programming tool called Cae-
sarJ [1] to address these de�ciencies. CaesarJ is based on Aspect Collaboration
Interfaces (ACI). In ACIs, the aspect implementation is decoupled from the as-
pect binding in independent, indirectly connected modules. CaesarJ relies on a
new type called a weavelet to compose the implementation and the binding of the
aspect to form the �nal system. Di�erent weavelets can combine an aspect bind-
ing with di�erent aspect implementations, or a particular aspect implementation
with di�erent aspect bindings; making both the aspect bindings and implementa-
tions independently reusable. As opposed to AspectJ, compiling these weavelets
with the base application does not have any e�ect on the execution of the appli-
cation. This is because the weavelets must be explicitly deployed to activate their
pointcuts and advice. The weavelets can be deployed statically or dynamically;
hence, the support for runtime deployment of aspects on a per-object basis.

JBossAOP [3] is an aspect-oriented programming environment similar to As-
pectJ. It supports both per-object aspects and dynamic aspects, i.e., the ability
to unregister existing advice bindings � pointcuts � and deploy new bindings
at runtime. This dynamism is accomplished using the �prepare� statement of
JBossAOP, which instruments target join points so that pointcuts and advice
can later be applied at runtime. Initial experiments show that JBossAOP also
su�ers from the weak aspect-to-class binding problem. This is not surprising,
since the implementation of reusable static crosscutting behavior in JBossAOP
is achieved using mixins. Hence, the call and execution join points of introduced
methods are associated with the mixin class, not the target class.

Cunha et al. [4] explore the possibility of implementing reusable aspects
for concurrent programming in AspectJ. The authors illustrate how abstract
pointcut interfaces and annotations can be used to implement one-way calls,
synchronization barriers, reader/writer locks, schedulers, active objects and fu-
tures. The paper also compares the performance overhead and reusability of
conventional object-oriented implementations with their own aspect-oriented im-
plementations. The authors conclude that the AspectJ implementation is more
reusable and pluggable, but incurs a noticeable performance overhead. The au-
thors also highlight that AspectJ has a limitation in acquiring local join point
information in concrete aspects: when a superaspect de�nes an abstract pointcut,
the subaspects can not change the pointcut's signature.

The work of Cunha et al. di�ers from ours in the amount of e�ort required
to reuse aspects in di�erent contexts. In their case, developers must provide con-
crete pointcuts for each of the abstract pointcuts, which can be error-prone if
not done correctly. Conversely, the declare parents construct used by our As-
pectOptima implementation to bind the aspects to application classes is safe:
the correct pointcuts are hardcoded in the aspects.



Rashid et al. [19] have worked extensively on techniques which apply AOP
concepts to database systems. In [20] the authors explore the possibility of as-
pectizing and implementing a reusable aspect-oriented framework for persistence
in AspectJ.

The work of Fabry et al. [9,10] applies AOP concepts to advanced transaction
models, e.g. nested and long running transactions. They proposed a general-
purpose aspect language called KALA for modularizing the concerns of advanced
transaction models into aspects.

9 Conclusions and Future Work

Based on the experience gained while implementing AspectOptima, we iden-
ti�ed in this paper a set of eight important key features required for imple-
menting reusable aspect-oriented frameworks with complex aspect dependencies
and interactions: aspect packaging, separate aspect binding, inter-aspect con�g-
urability, inter-aspect incompatibility, inter-aspect ordering, per-object aspects,
dynamic aspects and thread-aware aspects. We then showed how the implemen-
tation of AspectOptima in AspectJ revealed several limitations of the language,
discussed possible work-around solutions, and suggested language improvements
where appropriate. Finally we analyzed the performance overhead of aspect-
oriented frameworks compared to a purely object-oriented implementation, and
highlighted the impact that appropriate language support for reuse can have on
performance.

We believe that studies such as this one are essential to discover key language
features of aspect-oriented programming languages, and evolve aspect-oriented
languages to even better modularize crosscutting concerns, improve maintain-
ability and, most importantly, provide powerful and elegant ways of reusing
crosscutting concerns.

We intend to extend our evaluation of AOP languages using AspectOptima
in two areas. First, we intend to conduct a similar evaluation of CaesarJ and
JBossAOP using AspectOptima. Once completed, we shall provide a compara-
tive study of the language support provided by these three AOP languages nec-
essary for implementing the key features identi�ed by AspectOptima. Secondly,
we intend to explore the feasibility of the new language features suggested in this
work, and where possible implement them as an extension in the AspectBench
Compiler[2].

10 Acknowledgments

The authors would like to thank Samuel Gélineau and Güven Bolükbasi, as well
as the software engineering students and the members of the Sable research lab
at McGill for their feedback on the implementation of AspectOptima. This re-
search was partially supported by the Natural Sciences and Engineering Research
Council of Canada.



References

1. Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview
of caesarJ. Transactions on Aspect-Oriented Software Development, 3880:135�173,
2006.

2. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-
nifer Lhoták, Ondrej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: an extensible aspectj compiler. In AOSD '05: Proceedings
of the 4th international conference on Aspect-oriented software development, pages
87�98, New York, NY, USA, 2005. ACM Press.

3. Bill Burke, Austin Chau, Marc Fleury, Adrian Brock, Andy Godwin, and Harald
Gliebe. JBoss aspect-oriented programming, February 2004.

4. Carlos A. Cunha, Joao L. Sobral, and Miguel P. Monteiro. Reusable aspect-oriented
implementations of concurrency control patterns and mechanisms. In Proceedings
of the 5th International Conference on Aspect-Oriented Software Development -
AOSD 2006, March 20 - 24, 2006, pages 134 � 145. ACM Press, March 2006.

5. Ekwa Duala-Ekoko. Evaluating the Expressivity of AspectJ in Implementing a
Reusable Framework for the ACID Properties of Transactional Objects - Master
Thesis, School of Computer Science, McGill` University, August 2006.

6. Eclipse Development Team. Test and Performance Tools Platform.
http://www.eclipse.org/tptp/, December 2006.

7. Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl Lieberherr, and Harold Ossher.
Discussing aspects of aop. Communications of the ACM, 44(10):33�38, October
2001.

8. K. P. Eswaran, Jim Gray, R. A. Lorie, and I. L. Traiger. The notion of consistency
and predicate locks in a database system. Communications of the ACM, 19(11):624
� 633, November 1976.

9. Johan Fabry and Thomas Cleenewerck. Aspect-oriented domain speci�c languages
for advanced transaction management. In International Conference on Enterprise
Information Systems 2005 (ICEIS 2005) proceedings, pages 428�432. Springer-
Verlag, 2005.

10. Johan Fabry and Theo D'Hondt. KALA: Kernel Aspect Language for Advanced
Transactions. In SAC '06: Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 1615�1620. ACM Press, 2006.

11. James Gosling, Bill Joy, and Guy L. Steele. The Java Language Speci�cation. The
Java Series. Addison Wesley, Reading, MA, USA, 1996.

12. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Mateo, California, 1993.

13. Stefan Hanenberg and Rainer Unland. Parametric introductions. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development -
AOSD'2003.

14. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersen, Je�rey Palm, and
William G. Griswold. An overview of AspectJ. In 15th European Conference
on Object�Oriented Programming (ECOOP'2001), pages 327 � 357, June 18�22,
2001, Budapest, Hungary, 2001.

15. Jörg Kienzle and Samuel Gélineau. AO Challenge: Implementing the ACID Proper-
ties for Transactional Objects. In Proceedings of the 5th International Conference
on Aspect-Oriented Software Development - AOSD 2006, March 20 - 24, 2006,
pages 202 � 213. ACM Press, March 2006.



16. Jörg Kienzle and Rachid Guerraoui. AOP - Does It Make Sense? The Case of
Concurrency and Failures. In 16th European Conference on Object�Oriented Pro-
gramming (ECOOP'2002).

17. Mira Mezini and Klaus Ostermann. Conquering aspects with caesar. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development -
AOSD'2003.

18. Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Gerard Florin, Fabrice
Legond-Aubry, and Laurent Martelli. Jac: an aspect-based distributed dynamic
framework. Software Practice and Experience, 34(12):1119�1148, 2004.

19. Awais Rashid. Aspect-Oriented Database Systems. Springer-Verlag, 2004.
20. Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In Proceedings

of the 2nd International Conference on Aspect-Oriented Software Development -
AOSD'2003, March 2003.

21. Dirk Riehle, Wolf Siberski, Dirk Bäumer, Daniel Megert, and Heinz Züllighoven.
Serializer. In Pattern Languages of Program Design 3, pages 293�312. Addison-
Wesley, 1998.

22. Arno Schmidmeier, Stefan Hanenberg, and Rainer Unland. Known concepts imple-
mented in AspectJ. In Boris Bachmendo, Stefan Hanenberg, Stephan Herrmann,
and Günter Kniesel, editors, 3rd Workshop on Aspect-Oriented Software Devel-
opment (AOSD-GI) of the SIG Object-Oriented Software Development, German
Informatics Society, March 2003.

23. Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribution
and persistence aspects with AspectJ. In Proceedings of the 17th ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages
174�190. ACM Press, 2002.

24. Xerox Corporation. Frequently Asked Questions about AspectJ. Available at
http://www.eclipse.org/aspectj/doc/released/faq.html, May 2006.




