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Abstract

Understanding aspect-oriented systems, without appro-
priate tool support, is a difficult and a recognized prob-
lem in the research community. Surprisingly, little has been
done to help developers understand the impact of the static
crosscutting constructs of AspectJ on base programs. Ques-
tions of interest to developers such as: which statements in
a base program are affected by a given inter-type declara-
tion, or how has the behavior of the affected statements been
modified, are still outstanding. This paper presents analy-
sis techniques for inferring the impact of the static cross-
cutting constructs of AspectJ on base programs, and tools
for visualizing the results of the analysis; thus improving
the comprehension of AspectJ systems and guarding against
unintended modifications. Our analyses are implemented
as extensions to the AspectBench compiler, and integrated
in the Eclipse IDE as a plugin. We present experiments on
several open source systems to investigate the effectiveness
and suitability of our analysis techniques and tools.

1 Introduction

Aspect-oriented programming (AOP) languages intro-
duced constructs for modularizing crosscutting concerns in
units called aspects [5, 8, 12], and support for combining
aspects with object-oriented programs to produce a final
system. AspectJ [8, 10], a widely used Java implementa-
tion of AOP, provides both dynamic constructs, called ad-
vice, and static constructs, called inter-type declarations.
Advice modify the behavior of the classes they crosscut,
while inter-type declarations modify their static structure.
Although powerful, the use of these constructs raises new
challenges to program comprehension [11]. In particular,
the oblivious nature of these constructs combined with the
polymorphic features of object-oriented languages makes
reasoning about the structure and behavior of AspectJ sys-
tems a lot more difficult without appropriate tool support.
Simple modifications such as introducing a new method

to a class from an aspect may impact untouched areas of
the base application in unintended ways. Failure to imme-
diately identify and resolve such unintended impacts may
compromise the structure or state of the base application.

Several tools for generating and visualizing the impact
of AspectJ advice on a base program have been proposed in
the literature [6, 13, 14, 17]. For instance, given a before
advice (i.e., a piece if code to run before a specified point in
the execution of a base program), the AspectJ Development
Tools (AJDT) of Eclipse [3, 6] will identify all the locations
in the base program affected by the advice — helping devel-
opers to reason about the behavior of their application in the
presence of aspects. Surprisingly, little attention has been
given to the impact of inter-type declarations on base pro-
grams. For instance, a single inter-type declaration, such as
declare parents: classX extends classY which
makes classY the new parent of classX, may significantly
modify the inheritance hierarchy of several other classes in
a base program, even altering the method dispatch patterns
of call sites or even field references, sometimes adversely.
However, not even AJDT — the state-of-the-art for under-
standing AspectJ systems, supports reasoning about the im-
pact of such static constructs on base programs. Conse-
quently, major questions of interest to developers such as:
which locations in a base program are affected by a static
crosscutting construct, or how have references to methods
or fields in the base program been impacted by static cross-
cutting constructs, must be manually determined — a pro-
cedure made tedious and error prone because of the oblivi-
ous nature of aspects.

To address these challenges, we studied the interaction
patterns between the static crosscutting constructs of As-
pectJ and base programs, and categorized aspects into three
groups — based on their impact on the state (i.e., fields)
and behavior (i.e., methods) of a base program. We imple-
mented a set of static analysis techniques to automatically
identify these interaction patterns, and provide an Eclipse
plugin, called ITDVisualiser,1 for visualizing the results of
the analyses and for reasoning about the impact of static

1ITDVisualiser is available at: www.cs.mcgill.ca/∼eduala/itd-tool/



constructs on base programs. Our approach not only iden-
tifies the fields and methods in the base program affected
by aspects, but also provides an explanation of how each
statement was impacted. Tools such as ITDVisualiser are
necessary not only for program comprehension, but also as
a first line of defense against the misuse of static crosscut-
ting constructs, since developers would immediately iden-
tify unintended modifications and make adjustments where
necessary. We make the following specific contributions:

• We provide a classification of the interaction patterns
between the static crosscutting constructs of AspectJ
and base programs.

• We present analysis techniques capable of identifying
the interaction patterns automatically, and tools that
implement our analyses with visualization and reason-
ing support of the results in an IDE.

• We provide an evaluation of the effectiveness and suit-
ability of the analysis techniques and tools using five
open source AspectJ systems.

This paper is organized as follows. We discuss the chal-
lenges developers face when reasoning about the impact of
static constructs on base programs in Section 2. Our analy-
sis techniques for identifying the impact of aspects on base
programs is presented in Section 3, and a tool implementa-
tion of the analysis is presented in Section 4. We present an
evaluation of our tool in Section 5, discuss related work in
Section 6, and conclude the paper in Section 7.

2 Motivation

AspectJ provides several constructs for modifying the
structure of existing Java applications. For our purpose, we
focus on the construct for modifying the inheritance hier-
archy (i.e., declare parents), and those for introducing
new methods or fields to Java classes (i.e., inter-type
declarations) since the use of these could modify the
state or behavior of the base application. Understanding the
extent of the impact of these constructs on a base program
is difficult, and their use, without appropriate tool support,
risk the introduction of unintended behavior in a system.
We use the sample application in Figure 1 to highlight some
of the challenges these constructs pose to program compre-
hension. Our application has five classes: Shape, Line,
Rectangle, Square, and Main – the driver of our appli-
cation. We have placed all the call sites — the locations
from which methods are called — within the main method
of the class Main for convenience; in practice these would
be anywhere in the application.

abstract class Shape{
protected int xPos, yPos;
protected Color myColor = Color.blue;

public void setColor(Color color){
myColor = color;

}

public void move(int x, int y){
//move shape & update GUI

}

public abstract void draw();
}

class Line extends Shape{
public void draw(){

// draw line
}

public void move(int x, int y){
// move line & update GUI

}
}

class Rectangle extends Shape{
public void draw(){

// draw rectangle
}

}

class Square extends Shape{
public void draw(){

// draw rectangle
}

}

class Main{
static void main(String[] args){
Square square = new Square();
Rectangle rect = new Rectangle();
SystemColor color = getSystemColor();
square.setColor(color);
square.draw(); rect.draw();
square.move(40,80);
rect.move(40,60);
}

static SystemColor getSystemColor(){
// get default system color

}

}

Figure 1. Sample Base Application



IDEs such as Eclipse2 provide features for naviga-
tion and searches, including navigating to the declara-
tion of a selected element, and support for searching all
the references to a selected element. This makes rea-
soning about the structure and behavior of our applica-
tion, without static crosscutting aspects, not too diffi-
cult. In our case, a developer would infer that the call
sites rect.move(40,60) and square.move(40,80)

would be dispatched to Shape.move(int,int) since
move(int,int) is not redefined in either Rectangle or
Square. Similarly, the call square.setColor(color)
would be dispatched to Shape.setColor(Color), and all
references to the field myColor in our application refers to
Shape.myColor. Reasoning about the behavior of these
same elements in the presence of static crosscutting aspects
is not as straight forward. Specifically, the oblivious nature
of aspects, the presence of multiple aspects, and the subtyp-
ing feature of object-oriented languages, Java in our case,
makes program comprehension particularly difficult.

Reasoning in the Presence of Obliviousness: Aspects
by nature are oblivious — that is, base programs are
completely unaware of their existence. Thus, devel-
opers can no longer rely on the traditional navigation
and search features of Eclipse to understand the be-
havior or structure of a system.3 For instance, con-
sider the aspect in Figure 2(a), IntroduceToRectangle,
that introduces the method move(int,int) and the
field myColor of type Color to the class Rectangle,
as the only aspect in the system. This simple mod-
ification has changed the method dispatch of the call
site rect.move(40,60) from Shape.move(int,int)

to Rectangle.move(int,int), and all references
to myColor in Rectangle from Shape.myColor to
Rectangle.myColor. However, none of the existing nav-
igation and search features of Eclipse can identify these ma-
jor changes; they still report the call rect.move(40,60)
as referring to Shape.move(int,int), and myColor

as referring to Shape.myColor. The base program is
completely unaware that the class Rectangle now has
move(int,int) and myColor as part of its interface. As
noted by Kiczales and Mezini [9, p3], one “...cannot know
the complete interfaces of modules in a [AspectJ] system
until we have a complete system configuration...”. Such
incomplete knowledge of the aspects in a system by the
base program makes program comprehension error-prone
and difficult.

2www.eclipse.org
3The AspectJ compiler is implemented as an extension of the Eclipse

Java compiler, but the Java model from which the Eclipse navigation and
search features are built is not extended. As such, the navigation and search
features of Eclipse cannot “see” modifications made by static crosscutting
constructs [3].

aspect IntroduceToRectangle{
public void Rectangle.move(int x,int y){
// move rectangle & update GUI
}

public Color Rectangle.myColor = Color.yellow;
}
(a)Introduce a public method move(int,int) and

a field myColor of type Color to Rectangle.

aspect ModifyHierarchyOfSquare{
declare parents: Square extends Rectangle;

}
(b)Modify the parent of Square from Shape

to Rectangle

Figure 2. Sample AspectJ aspects I

Reasoning in the Presence of Multiple Aspects: Even
with complete knowledge of the aspects in a system, rea-
soning about call sites or field references in a base program
is still challenging since the actual targets of an element may
be due to the impact of a combination of two or more static
crosscutting aspects. Let us now assume that our system
has both aspects defined in Figure 2. Reasoning in isolation
(i.e., one aspect at a time) about the impact of these aspects
on our base application would produce an incomplete and
erroneous picture in certain cases. For instance, if we con-
sider only the ModifyHierarchyOfSquare aspect that
modifies the parent of Square from Shape to Rectangle,
we would conclude that the call square.move(40,80)
will be dispatched to Shape.move(int,int) since
Square now extends Rectangle and, based on our
isolated knowledge, Rectangle does not redefine the
method move(int,int). This view is obviously erro-
neous since Rectangle now redefines move(int,int)

because of the IntroduceToRectangle aspect, thus,
the call square.move(40,80) is actually dispatched to
Rectangle.move(int,int). As demonstrated by our
trivial example, the impact on a base program may be from
a combination of multiple static crosscutting aspects. Rea-
soning about such impacts manually is cognitively chal-
lenging, and highlights the need for tools that reflect the
complete picture.

aspect IntroduceToShape{
public void Shape.setColor(SystemColor color)
{
//do something

}
}

Figure 3. Sample AspectJ aspect II



Figure 4. An overview of the AOP approach. An AspectJ compiler combines the base program with
the aspects to produce a final system (woven program). Our impact analysis, implemented as an
extention to the AspectBench Compiler (abc), outputs visualization data made available through the
ITDVisualiser plugin views.

Reasoning in the Presence of Subtyping: Overloading
methods based on argument types may break code in classes
untouched by a modification task. This occurs when the
arguments of an introduced method are subtypes of the
respective arguments of the overloaded method, and also
more specific to the arguments of call sites in a base
program. For instance, consider the aspect in Figure 3
which introduces the method setColor(SystemColor

color) to the class Shape. Observe that the
method Shape.setColor(SystemColor color) over-
loads the method Shape.setColor(Color color), and
that the class java.awt.SystemColor is a subtype of
java.awt.Color. This modification would change the
dispatch of the call site square.setColor(color), in
class Main, from Shape.setColor(Color color) to
Shape.setColor(SystemColor color) since the ar-
gument color, of type SystemColor, is more specific to
setColor(SystemColor color). Identifying such sub-
tle impacts, without the right tool, is almost impossible
since the root cause is not even part of the base application.

Our Solution: Understanding the impact of static crosscut-
ting aspects is far from easy as demonstrated by our trivial
sample application. To address the identfied challenges, we
developed a tool that automatically classifies static crosscut-
ting aspects based on their impact on the state and behavior
on the base program. We have identified the following in-
teraction patterns:

• Lookup impact: this interaction pattern represents
static constructs that modify the method dispatch pat-
tern of one or more call sites in a base program.

• Shadowing impact: this interaction pattern represents
static constructs that modify the references to one or
more fields in a base program.

• Orthogonal: this interaction pattern represents static
constructs that have no impact on either the field ref-

erences or method dispatch patterns of statements in a
base program.

Some aspects can have both lookup and shadowing im-
pacts on statements in the base program. Given an aspectJ
application (base program and aspects, see Figure 4), our
tool automatically classifies the aspects, and provide sup-
port for visualizing and reasoning about their impact on the
base program. This way developers can have a complete
picture, and better comprehend the current structure and
behavior of the application. We present the analyses tech-
niques and algorithms of our approach in the next section of
this paper.

3 Analysis Techniques

To identify the interaction patterns between static con-
structs and base programs, and to determine changes to field
references or method dispatch patterns, our analysis needs
to know the structure of the application both before and after
the aspects have been woven into a base program. To obtain
this information, we implemented our analysis as part of the
AspectBench Compiler (abc) [2]. abc is a complete imple-
mentation of AspectJ, with support for extending both the
pre-weaving and post-weaving phases of the aspect weav-
ing process (see Figure 4), and for obtaining information
about the aspects in a system. The pre-weaving phase gives
the structure of the code before the aspects are applied. The
post-weaving phase provides us with complete knowledge
of the structural modifications caused by the aspects, ad-
dressing the “Reasoning in the Presence of Obliviousness”
and “Reasoning in the Presence of Multiple Aspects” prob-
lems identified above. Our analysis techniques could be re-
garded as a diff between the post-weaving structure (i.e.,
woven code) and the pre-weaving structure (i.e., original
code) of a system, with emphasis on changes to field refer-
ences and method dispatch patterns.



3.1 Lookup Impact Analysis

To cause a change to the method dispatch of a call
site, a static construct must satisfy two requirements:
first, the modification made by the construct must have a
polymorphic-impact (i.e., overload or redefine) on one or
more methods in the base program; secondly, the methods
affected must be referenced by statements in the base pro-
gram. Our lookup impact analysis technique is therefore a
two step process:

Step 1 [Is there a polymorphic-impact?]: To answer
this question, we first identify classes in the base pro-
gram affected by either an inter-type method declara-
tion (IMD), or a declare parents (DP) construct of As-
pectJ. We obtain the list of static constructs from abc,
and perform Class Hierarchy Analysis [15] on the wo-
ven code to identify the set of affected classes (hence-
forth referred to as shortlisted-classes) for each static cross-
cutting construct. The set of shortlisted-classes for an
IMD construct is made up of the target-class of the
introduction and all the subtypes of the target-class.
For instance, the set of shortlisted-classes for the IMD,
Rectangle.move(int x,int y){...}, from Figure 2,
is {Rectangle, Square} since Rectangle is the target-
class and Square is a subtype of Rectangle because of
the ModifyHierarchyOfSquare aspect. The set of
shortlisted-classes of a DP construct (such as declare

parents: TypePattern extends Type) is made up
of all the classes in the base application whose name
matches TypePattern and their corresponding subtypes.

Given the shortlisted-classes for each construct, we can
now verify cases of polymorphic-impact. For an IMD, such
as ReturnType OnType.methodName(P1,P2, ...),
the newly introduced method, methodName(P1,P2,

...), has a polymorphic-impact on the base code if it
overloads a method in class OnType based on the argument
types (P1,P2, ...), or redefines an inherited method. If
the introduced method neither overload nor redefines an
existing method, we safely conclude that the IMD has no
polymorphic-impact on the base program, and thus, it is
classified as being orthogonal to the base code.

Observe that the overloaded or redefined method
will serve as the previous method dispatch of calls to
methodName(P1,P2, ...) with run-time receiver type
OnType. In certain cases, the introduced method may over-
load or redefine more than one method. In such cases, we
identify the previous method dispatch of the overloaded or
redefined method using the most-specific method concept
of the Java Language Specification (JLS). According to the
JLS, a method mi is considered most-specific to the newly
introduced method methodName(P1,P2, ...) than an-
other method mj if the argument types of mi are subtypes

of the respective argument types (P1,P2, ...) of the intro-
duced method.

The DP construct permits a class to extend either its sib-
lings or its siblings sub-classes. This restriction implies a
class can only be moved down the hierarchy, and thus, may
only inherit new methods, but cannot lose methods. If a
class X extends a sibling or a sibling’s sub-class Y, the newly
inherited methods in X is the set of the non-private methods
in the class Y, both declared and inherited. We treat each
newly inherited method by the class X as an IMD, and pro-
ceed as above to verify cases of polymorphic-impacts. The
output of step 1 is the polymorphic-impact information for
each construct that details the impacted classes and the sig-
nature of the polymorphically impacted methods.

Step 2 [Which call sites in the base program are affected,
and how?]: Not every polymorphic-impacted class would
immediately result in an impact in the base program. This is
because to cause changes to method dispatch, and thus im-
pact the base program, the method overloaded or redefined
by a construct must be referenced at one or more call sites
in the program. The second step of the lookup impact anal-
ysis examines call sites in the program to identify changes
to method dispatch patterns.

The polymorphic nature of object-oriented languages,
and Java in particular, makes it difficult to resolve the run-
time target of call sites at compile time. Notwithstanding,
static analysis techniques can be used to generate a precise
call graph good enough for our purpose — inferring a pre-
cise set of potential targets for a given call site. For our pur-
pose, a call graph is a set of nodes and edges with one node
for each method, mi, in the application, one node for each
call site, ci, in the application, and an edge from c i to mi, if
ci may call mi. We used the Soot framework [16] to gen-
erate the call graph. The call graph construction algorithm
begins with a conservative call graph generated using Class
Hierarchy Analysis. It then uses Rapid Type Analysis [15]
and Points-to Analysis [7] to improve the precision of the
call graph by eliminating the unlikely targets of a call site.

Once the polymorphic-impact information and a precise
call graph of the application are known, we then proceed to
determine the method dispatch changes of the affected call
sites. Assuming the declared type of object is OnType, the
call site object.methodName(param1,...) is consid-
ered affected if OnType.methodName(param1,...) is
in the set of the polymorphic-impacted methods. The out-
going edge(s) of the affected call sites in the precise call
graph gives us the new method dispatch. A static construct
in the polymorphic-impact set that affects one or more call
sites is classified as having a lookup impact; otherwise, we
consider the construct as being orthogonal to the base pro-
gram.



3.2 Shadowing Impact Analysis

For a shadowing impact to occur in a class C, the mod-
ifications made by static constructs must introduce a field
with the same name and type as a field inherited by C from
a superclass. Two of the static constructs of AspectJ are
capable of causing shadowing impact: the inter-type field
declaration (IFD) and the declare-parents-extends declara-
tion (DPED). Our analysis examines the classes affected by
these constructs to confirm the presence or absence of shad-
owing impacts.

Does an IFD cause a shadowing impact? An IFD has
the form “Type TargetClass.foo”; that is, it intro-
duces a new field named foo of type Type into the class
TargetClass. To determine cases of shadowing impact,
our analysis examines the class hierarchy of TargetClass
in the original code, looking for a superclass with a field
named foo of type Type. If no such superclass is found,
our analysis classifies the IFD as being orthogonal to the
base program. If, on the other hand, we encounter a su-
perclass, SuperC, of the TargetClass with a field named
foo, and if the TargetClass has a reference to foo, we
classify the IFD as having a shadowing impact on the base
program. Our analysis reports SuperC.foo as the previous
target to references to foo within the TargetClass, and
TargetClass.foo as the current target.

The shadowing impact on the TargetClass may also
be propagated to some of its subclasses; that is, to sub-
classes with references to the field foo, but that do not re-
define foo. Our analysis further examines the subclasses
of TargetClass, and generates a similar report for each
affected subclass.

Does a DPED cause a shadowing impact? A
DPED construct, declare parents: TargetClass

extends NewParent, modifies the immediate parent of
the TargetClass from a previous class, OldParent, to a
new class, NewParent. Since DPED permit TargetClass
to only extend a sibling or its siblings’ sub-classes,
TargetClass can only inherit, but not lose, fields. To
cause a shadowing impact on a field named foo, referenced
within TargetClass, the following two conditions must
be satisfied:

1. An existing, but older, superclass of the TargetClass
— that is, a superclass of the TargetClass before
the inter-type extends declarations are woven into the
base program — has a field named foo, inherited and
referenced within the TargetClass.

2. A new superclass of the TargetClass— that is, a su-
perclass newly introduced after the inter-type extends
declarations are woven into the base program — also
has a field named foo, of the same type as in (1).

Since, the TargetClass was moved down the hier-
archy, the foo in the new super class will shadow the
foo in the older superclass.

To verify these conditions, our analysis begins by first
identifying the fields newly inherited by the TargetClass.
These include all non-private fields declared in classes
along the path between the old parent (exclusive) and the
new parent (inclusive) of TargetClass. Our use of abc
enables us to easily obtain both the old and new parent by
extending the pre-weaving and post-weaving phases of abc.

We then traverse the path from the old parent to the
new parent recording all fields declared in classes along the
path and inherited by the TargetClass. In case a class
down in the path declares a field having the same name and
type as a field declared in a class above it, and both fields
are inheritable by the target class, only the field declared
in the class further down in the path is recorded. Each
recorded field is then treated as a newly introduced field
on the TargetClass, and our analysis proceeds similarly
as that of the IFD to determine the presence or absence of
shadowing impact.

4 Visualization Tools

We have implemented the lookup and shadowing im-
pact analysis as an Eclipse plug-in called ITDVisualiser.
To identify and reason about the impact of static constructs
on a base program, such as the program from Figure 1, a
developer would right-click on the AspectJ project in the
Package Explore view of Eclipse, and select the ITDVi-
sualiser tool from the context menu. ITDVisualiser will
prompt the developer for the main class of the application
(required to construct the precise call graph) and the source
code directory, and then runs the lookup and shadowing im-
pact analysis. The ITDVisualiser tool makes three contribu-
tions to facilitate reasoning about the behavior of systems
with static constructs: the impact marker identifies state-
ments whose behavior have been modified by one or more
static constructs, the views display the results of the lookup
and shadowing analysis, and the bi-directional navigation
feature provides support for navigation from the affected
source code to the views, and vice versa (see Figure 5).

The lookup impact view displays static cross-
cuts that have modified one or more call sites in
the base program. For instance, the developer is
informed that the inter-type method declaration
Shape.setColor(SystemColor) (Figure 5 (A)),
of the aspect aop.IntroduceToShape has modified
the call site square.setColor(color) in the class
base.Main from Shape.setColor(java.awt.Color)

to Shape.setColor(java.awt.SystemColor).
Similarly, the developer can observe from this



Figure 5. The lookup and shadowing impact features of the ITDVisualiser Eclipse plugin. The impact
marker identifies statements in the base code whose behavior has been modified by a static cross-
cutting construct.

view that the declare parents construct Square

extends Rectangle (Figure 5 (B)), of the as-
pect aop.ModifyHierarchySquare has mod-
ified the call site square.move(20,40) in
base.Main from base.Shape.move(int,int) to

base.Rectangle.move(int,int).

The shadowing impact view displays constructs that have
modified references to fields in the base program. For
instance, the developer can observe from this view that
the inter-type field declaration Rectangle.myColor (Fig-



ure 5 (C)), of the aspect aop.IntroduceToRectangle
has modified all the references to the field myColor

in classes base.Rectangle and base.Square from
base.Shape.myColor to base.Rectangle.myColor.

The ITDVisualiser plug-in also supports navigation from
the views to the source code, and vice versa, for reason-
ing about the impact of aspects. For instance, a developer
can click on any node in the views to see the correspond-
ing source code. Conversely, clicking on the impact marker
next to an affected statement will expand the corresponding
aspect in the view. The current version of the ITDVisualiser
plug-in filters out static constructs that are orthogonal to the
base program to avoid information overload.

5 Evaluation

In this section, we provide an experience report aimed at
evaluating the effectiveness of ITDVisualiser to identify the
interaction patterns between static constructs and base pro-
grams, and to enhance program comprehension in the pres-
ence of static crosscutting. To provide initial evidence of the
usefulness of ITDVisualiser, we needed AspectJ systems
with at least one static crosscutting construct. Our search
yielded the systems in Table 1 which lists, for each sys-
tem, the number of non-commented lines of code (#SLOC),
classes (#classes), aspects (#aspects), advice (#advice), and
inter-type declarations (#ITDs). The ITDs are further break-
ing down into inter-type field declarations (fields), inter-
type method declarations (methods), and declare parents
declarations (parents). For instance, the ProdLine system
has 33 field declarations, 42 method declarations, and 4 de-
clare parents declarations, for a total of 79 ITDs. DCM
is a system for verifying the Law of Demeter, ProdLine is
an implementation of the product line of graph algorithms
using AOP techniques, exptree6 is an AOP version of the
expression tree program, observer illustrates how the Sub-
ject/Observer design pattern can be implemented with as-
pects, and bean is a system that enforces bound properties
for Point objects in a Java beans context. These systems
come from the Sable AspectJ benchmarks4 and the Eclipse
AspectJ examples5. Although small in size, these systems
represent a wide array of applications of AspectJ, and have
been used by other researchers for similar studies [1, 18].

For each system, we:

• Manually identified all its static crosscutting con-
structs,

• Manually identified the interaction patterns between
each construct and the corresponding base program,
and classify the construct as having either a lookup,
shadowing, or orthogonal impact on the system,

4http://www.sable.mcgill.ca/benchmarks/
5http://www.eclipse.org/aspectj/doc/released/progguide/examples.html

• Ran ITDVisualiser on each system, and evaluated its
effectiveness to correctly identify the expected interac-
tion patterns for each static construct.

The results of our experiment is summarized in Table 2: the
number of manually identified lookup impacts is shown in
column two (#lookup-manual), the number of lookup im-
pacts identified by ITDVisualiser is shown in column three
(#lookup-tool), the number of manually identified shadow-
ing impacts is shown in column four (#shadowing-manual),
the number of shadowing impacts identified by ITDVisu-
aliser is shown in column five (#shadowing-tool), column
six (orthogonal?) states whether or not the aspects are or-
thogonal to the base program, and column seven (C&A)
shows the minimum number of classes and aspects we had
to manually examined to verify the presence or absence of
impact.

In general, the ITDVisualiser tool was as effective as the
manual effort in identifying the correct interaction patterns
between the static constructs and the subject systems. The
ITDVisualiser identified 16 lookup impacts, and 0 shadow-
ing impacts in the ProdLine system; 27 lookup impacts, and
0 shadowing impacts in the DCM system; 4 lookup impacts,
and 0 shadowing impacts in the exptree6 system; and no
lookup or shadowing impact in both the bean and observer
systems. To manually verify the interaction patterns and
impacts in ProdLine, we had to examine 20 of its 21 classes
and aspects since inter-type declarations are heavily used,
79 ITDs in total. Similarly, 28 of the 34 classes and aspects
of the DCM system had to be examined to verify impact.
The difficulty to manually reason about the impact of such
large number of ITDs on base programs further underscores
the need for tools such as ITDVisualiser.

Both the ITDVisualiser and our manual investigation re-
vealed no shadowing impacts in the systems we studied in
spite of the heavy use of inter-type field declarations, 37
in total. This is a good thing since shadowing impacts are
generally an indication of bugs. A report such as this will
either give developers confidence that their use of field dec-
larations have not shadowed existing fields in a system, or
assist them to immediately identify and fix cases of field
shadowing.

The lookup impacts in all the subject systems were
caused by cases of method overriding. We encountered no
cases of method overriding based on subtypes. The reason
for this may be that lookup impacts caused by method over-
riding based on subtypes usually leads to bugs, and since
these benchmarks are well tested, such problematic impacts
may have been identified and eliminated. Notwithstand-
ing, the ITDVisualiser tool was able to identify all the non-
buggy impacts, and is therefore reasonable to assume that
it will equally identify problematic shadowing and lookup
impacts when used in future AOP development.



Table 1. Description of the subject systems
#ITDs

Systems SLOC #classes #aspects #advice fields methods parents total

ProdLine 1345 9 11 15 33 42 4 79
DCM 3435 30 4 8 0 1 1 2
exptree6 327 7 5 4 1 25 1 27
bean 276 2 1 2 1 5 1 7
observer 268 6 2 1 2 7 2 11

Table 2. A summary of the types of impact of aspects on the subject systems
Systems #lookup-manual #lookup-tool #shadowing-manual #shadowing-tool orthogonal? C&A

ProdLine 16 16 0 0 NO 20
DCM 27 27 0 0 NO 28
exptree6 4 4 0 0 NO 11
bean 0 0 0 0 YES 2
observer 0 0 0 0 YES 6

6 Related Work

This paper builds on previous works related to the in-
teraction patterns between aspects and base programs, and
change impact analysis for AspectJ. We review these related
works in this section of the paper.

Interaction patterns between aspects and base pro-
grams: Rinard et al. [13] identified four interaction patterns
between advice (i.e., the dynamic constructs of AspectJ)
and base programs, and developed analysis techniques ca-
pable of automatically recognizing these patterns. They
classified an advice as either being an augmentation (in
which the entire code of the method affected by an advice
always executes), a narrowing (in which the entire code of
the method affected by an advice either executes, or none
of the code is executed), a replacement (in which the entire
code of the method affected by an advice is never executed),
or a combination of the preceding three. Similarly, Clifton
et al. [4] classified advice as either being a observers or an
assistant. Observers have purely observational interactions
with the methods they affect, whereas assistants can change
the specification of the methods they interact with. The sim-
ilarity between our work and that of both Renard et al. and
Clifton et al. is that we all provide a set of criteria for classi-
fying the interaction patterns between aspects and base pro-
gram. However, theirs is exclusively focused on dynamic
constructs, whereas our work deals with static constructs,
and is therefore complementary to theirs.

The AspectJ Development Tools (AJDT) [6] of Eclipse
provide extensive visualization support for understanding
the impact of advice on base program; however, very
limited support is provided for the static crosscutting
constructs. For instance, given the construct declare

parents: classX extends classY, the Cross Refer-

ences view and side bar annotations of AJDT communi-
cates the obvious — that classX now extends the classY.
AJDT does not communicate the actual impact of such hi-
erarchy modification on statements in the base program.
ITDVisualiser complements AJDT by identifying the state-
ments in a base application affected by each inter-type dec-
laration, and by providing an explanation for the potential
change in the behavior of the application.

Change Impact analysis in AspectJ: Zhang et al. [18]
studied change impact analysis for AspectJ systems. Their
approach is based on atomic changes and aspect-aware call
graphs. Atomic changes capture the semantic differences
between two versions vi and vi+1 of an AspectJ program
— that is, all the edit operations required to obtain version
vi+1 of a program from version vi. Their aspect-aware call
graph algorithm is similar to ours — the call graph is con-
structed from the woven code — with one difference: ad-
vice are treated as methods and included in the call graph.
Zhang et al. developed static analysis techniques which use
the atomic changes and the aspect-aware call graph to iden-
tify program fragments and test cases affected by a modi-
fication tasks. Storzer et al. [14] also proposed the use of
call graphs to identify test cases affected by static cross-
cuts given two different versions an application, but have
yet to provide an implementation their ideas. Zhao [19] pro-
posed an approach which used static slicing and an aspect-
oriented dependence graph to identify statements affected
by changes to an AspectJ program, but have yet to imple-
ment such a static slicer for AspectJ. The works of Zhang
et al. and Storzer et al. are concerned with regression test
selection, and is therefore coarse grain with little explana-
tion of the changes in the behavior of the base program. Our
approach is concerned with the interaction patterns between
static constructs and base programs, is fine grain (all state-



ments affected by static crosscutting constructs are identi-
fied), and also provide possible reasons for the changes in
the behavior and state of statements in the base program.

7 Conclusions

Simple structural modifications such as adding a new
method or field from an aspect to an object-oriented ap-
plication might adversely distort the behavior or state of a
system. Inherent properties of aspect and object-oriented
languages such as obliviousness and subtype polymorphism
makes reasoning about the behavior of these systems dif-
ficult and error prone. There is therefore the need for
tools capable of identifying points of interaction between
aspects and base applications, and explaining the corre-
sponding interaction patterns in order to facilitate program
comprehension. This paper addressed this challenge for
the static crosscutting constructs of AspectJ — an aspect-
oriented language for Java. We have identified patterns
of interactions between static constructs and base appli-
cations, and have developed a static analysis and visual-
ization tool called ITDVisualiser to automatically identify
these patterns. Our analyses not only identifies statements
in a base program whose behavior have been modified by
static constructs, but also provide possible explanations for
the change in behavior. Our experience with ITDVisualiser
indicates that it performs as well as manual classification
in identifying the interaction patterns between aspects and
base programs. Tools such as ITDVisualiser are necessary
not just for program comprehension, but also as a safety net
against unintended aspect-induced structural modifications.
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