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1 First Tutorial

During this �rst tutorial, we try to give several worked out examples of proofs.
More importantly, we will cover some of the most common methods of proof. As
these techniques are rather indispensable, it is a good idea for us to give as many
detailed examples as possible.

1.1 Proof by Induction

When it comes to mathematical induction, I think that the best way to understand
the concept is to work out examples. Nonetheless, it is important to understand
the logic behind this method. Say we have a statement P (n), depending onn ∈ N,
that we wish to prove. More precisely, let’s assume we want to show that P (n)
is true for all n ≥ 1. For example, P (n) could be the proposition

“5n − 1 is divisible by 4”.

In any case, our (hoped for) proof by induction should include the following:

(i) �e base case. �at is, we should check that P (n) is true for the “base value”
n = 1.

(ii) �e inductive step. Here, we assume that P (n) is true for some n ≥ 1. Using
this assumption, we then try to prove that P (n + 1) is also true.

If we can establish both these parts, we will have proven that P (n) holds true for
all n ≥ 1. Why? Since we know that P (1) is true by our base case, the inductive
step with n = 1 ensures that P (1 + 1) = P (2) is also true. But then, the inductive
step would again imply that P (2 + 1) = P (3) is true, and so on.

Having given this explanation, we are ready to give some detailed examples
in which the technique of mathematical induction proves to be very useful.

Proposition 1.1. For all integers n ≥ 4, one has 2n < n!.

Proof. We proceed by induction on n ≥ 4. Since we want to prove a statement
for all n ≥ 4, our base case should be verifying the case n = 4.

Base case. For n = 4 we manually verify the claim:

24 = 16 < 24 = 4!.
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�at is, the statement 2n < n! is valid when n = 4. �is completes our base case.

Inductive step. Now we make the induction hypothesis. For some n ≥ 4 let us
assume that

2n < n!. (1.1)

We want to show that the statement also holds for n+1. More precisely, we want
to prove the following inequality:

2n+1 < (n + 1)!

based o� of the information in (1.1). By the inductive hypothesis (1.1), we have

(n + 1)! = (n + 1) · n!
(1.1)
> (n + 1) · 2n .

Because n ≥ 4, we also get (n+1) ≥ 5 ≥ 2. Using this together with the equation
above yields

(n + 1)! > (n + 1) · 2n ≥ 2 · 2n = 2n+1.

�is completes the inductive step. �

Proposition 1.2. 5n − 1 is divisible by 4 for all n ∈ N.

Proof. Since we wish to prove a claim for all n ≥ 1, we should take n = 1 as the
base case.

Base case. Clearly, 51 − 1 = 4 which is certainly divisible by 4. Hence, the base
case is true.

Inductive step. Assume that 5n − 1 is divisible by 4 for some n ≥ 1 (this is the
inductive hypothesis). We must show that 5n+1− 1 is also divisible by 4. But, this
is easily seen by writing

5n+1 − 1 = 5 · 5n − 1 = 5n + 5n + 5n + 5n︸               ︷︷               ︸
4 times

+ (5n − 1)

= 4 · 5n + (5n − 1).

Clearly, 4 · 5n is divisible by 4. By the induction hypothesis, so is 5n − 1. Hence,
4 must be a divisor of their sum, which is equal to 5n+1 − 1 by the calculations
above. �
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1.2 Sets, Functions, and Direct Proofs

Informally, a set should be understood as an unambiguous collection of objects.
For example, N = {1, 2, 3, . . . } is the set of all natural numbers. Given two sets
X and Y , a function f : X → Y is a rule which assigns to each x ∈ X a unique
element f (x ) ∈ Y . Note that we do not require that f be described by an explicit
formula here.

De�nition 1.1 (Image & Pre-image). Let X and Y be sets and f : X → Y a
function. For any set A ⊆ X , we de�ne

f (A) := {
f (x ) : x ∈ A}

which is a subset of Y . �is set f (A) is called the image of A under f . Similarly,
given B ⊆ Y , the pre-image of B under f is the set

f −1(B) := {
x ∈ X : f (x ) ∈ B}

.

�at is, f −1(B) consists of those x ∈ X that f takes to B.

Remark 1.1. �e notation f −1 should not be confused with the inverse function
of f , which in general does not exist. Even when f does not have an inverse
function, we can still make sense of f −1(B)!

In practice one o�en has to deal with a large collection of sets. For such
purposes, the concept of an index set is very useful. Informally, an index set I
is a set that operates as the labeling scheme for a family of sets. By way of an
example, consider for each x ∈ R the singleton set {x }.1 �en, we may want to
consider the set of all these singletons, i.e.

Σ :=
{
{x } : x ∈ R

}
.

Here, Σ is a set whose elements are those sets {x } with x ∈ R. However, when
dealing with more complicated sets, this notation rapidly becomes cumbersome
and awkward. Instead, we could use the more general concept of an index set.
De�ning Ax := {x } for x ∈ R, the set Σ can instead be wri�en as {Ax }x∈R. Here,
the real line R serves as our index set.

1Here, R denotes the real number line (−∞,∞).
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�e concepts of unions and intersections carry over nicely when dealing with
index sets. Let I be an index set and {Xα }α∈I be an indexed family of sets2, we
de�ne: ⋃

α∈I

Xα := {x : there exists α ∈ I such that x ∈ Xα } ,⋂
α∈I

Xα := {x : x ∈ Xα for all α ∈ I } .

Finally, let us recall a piece of notation: given a set X and a subset A ⊆ X , we
denote by Ac the set X \A. �at is,

Ac := {x ∈ X : x < A} .

Especially, we have X = A ∪ Ac with A ∩ Ac = ∅. It should also be noted that
Ac depends on the “parent set” X . Equipped with these concepts, we are ready
to introduce de Morgan’s laws:

�eorem 1.3 (de Morgan’s Laws). Let X be a set and let {Xα }α∈I be an indexed
family of subsets of X , i.e. Xα ⊆ X for each α ∈ I . �en,

*
,

⋃
α∈I

Xα
+
-

c

=
⋂
α∈I

X c
α , (1.2)

*
,

⋂
α∈I

Xα
+
-

c

=
⋃
α∈I

X c
α . (1.3)

Proof. We begin by establishing (1.2). Here, we have the following two inclusions
to demonstrate:

*
,

⋃
α∈I

Xα
+
-

c

⊆
⋂
α∈I

X c
α and

⋂
α∈I

X c
α ⊆

*
,

⋃
α∈I

Xα
+
-

c

.

(1) Let x ∈ (
⋃
α∈I Xα )

c be given. By de�nition, this means that x < ⋃
α∈I Xα .

Consequently, x < Xα for each α ∈ I .3 Put otherwise, we have x ∈ X c
α

for every α ∈ I . �erefore, x ∈ ⋂
α∈I X

c
α . Hence, we have proven that

(
⋃
α∈I Xα )

c
⊆

⋂
α∈I X

c
α .

2Remember, this only means that we have associated to each α ∈ I a set Xα . �at is, we are
using the elements of I to label theXα ’s. �is is particularly general because, as we shall see later
on, some sets are so large that they cannot be systematically enumerated!

3Indeed, if x were an element of some Xα , it would also have to be an element of ⋃
α ∈I Xα .
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(2) For the reverse inclusion, let x ∈ ⋂
α∈I X

c
α . By de�nition, this implies that

x ∈ X c
α for every α ∈ I . Equivalently,

x < Xα for each index α ∈ I .

Now, x ∈ ⋃
α∈I Xα implies x ∈ Xα for some α . Since this contradicts the

above, we must have x <
⋃
α∈I Xα . By de�nition, this is simply the state-

ment x ∈ (
⋃
α∈I Xα )

c. It follows that ⋂
α∈I X

c
α ⊆ (

⋃
α∈I Xα )

c.

�is completes the proof of (1.2). Next, we turn our a�ention to (1.3). As above,
we have two inclusions to prove:

(1) Fix a point x ∈ (
⋂
α∈I Xα )

c and note that, by de�nition, x < ⋂
α∈I Xα .

Hence, there must exist an index α ∈ I such that x < Xα . Otherwise, we
would have x ∈ Xα for all α ∈ I whence x ∈

⋂
α∈I Xα – which is a clear

contradiction. Now, since x < Xα for some α ∈ I , we also have x ∈ X c
α

for this same α . In particular, x ∈ ⋃
α∈I X

c
α . �is proves the inclusion

(
⋂
α∈I Xα )

c
⊆

⋃
α∈I X

c
α .

(2) Conversely, let x ∈ ⋃
α∈I X

c
α be given. By de�nition of the union, this

means that x ∈ X c
α for some α ∈ I . �at is, x < Xα for some index α .

Consequently, we cannot have x ∈
⋂
α∈I Xα . Hence, x ∈ (

⋂
α∈I Xα )

c. We
have therefore shown that ⋃

α∈I X
c
α ⊆ (

⋃
α∈I Xα )

c.

With this, (1.3) has been established. �

Proposition 1.4. Let X and Y be sets and f : X → Y a function. Let I be an index
set and suppose that {Vα }α∈I is an indexed family of subsets of Y . �en,

f −1 *
,

⋃
α∈I

Vα+
-
=

⋃
α∈I

f −1(Vα ).

Proof. �ere are two inclusions to be shown:

f −1 *
,

⋃
α∈I

Vα+
-
⊆

⋃
α∈I

f −1(Vα ) and
⋃
α∈I

f −1(Vα ) ⊆ f −1 *
,

⋃
α∈I

Vα+
-
.

We begin by establishing the former. Let x ∈ f −1 (
⋃
α∈I Vα ) be given. By de�ni-

tion, this means that
f (x ) ∈

⋃
α∈I

Vα .
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Again, by de�nition, there exists an index α ∈ I such that f (x ) ∈ Vα . From this, it
follows that x ∈ f −1(Vα ). �is implies that x ∈ ⋃

α∈I f
−1(Vα ). �e �rst inclusion

has thus been proven.
Conversely, let x ∈ ⋃

α∈I f
−1(Vα ). �ere then exists an index α ∈ I such that

x ∈ f −1(Vα ). By de�nition of the set f −1(Vα ), this is simply the statement that
f (x ) ∈ Vα . Hence,

f (x ) ∈
⋃
α∈I

Vα

so that x ∈ f −1 (
⋃
α∈I Vα ). �is veri�es the second inclusion and the proof is

complete. �

Proposition 1.5. Let X ,Y and Z be sets. Suppose that

f : X → Y and д : Y → Z

are functions. �en, for every A ⊆ Z , we have

(д ◦ f )−1(A) = f −1
(
д−1(A)

)
.

Here, д ◦ f denotes the composite function x 7→ д( f (x )).

Proof. First, observe that the se�ing of the problem makes sense because д ◦ f is
a function X → Z . Let x ∈ (д ◦ f )−1(A) be given. �is is to say that

(д ◦ f ) (x ) = д( f (x )) ∈ A.

Hence, f (x ) ∈ д−1(A). But this implies that x ∈ f −1(д−1(A)). �is veri�es the
inclusion

(д ◦ f )−1(A) ⊆ f −1(д−1(A)).

Conversely, �x x ∈ f −1(д−1(A)). It follows that

f (x ) ∈ д−1(A) =⇒ д( f (x )) ∈ A.

Put otherwise, (д ◦ f ) (x ) = д( f (x )) ∈ A. �us, x ∈ (д ◦ f )−1(A). Since x was
arbitrary, it follows that

f −1(д−1(A)) ⊆ (д ◦ f )−1(A).

�
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Here are some extra (solved) problems that we may not have the time to cover
during the tutorials:

Proposition 1.6. For any sets A and B, we have

(A \ B) ∪ (B \A) = (A ∪ B) \ (A ∩ B).

Remark 1.2. Given setsA and B, the symmetric di�erence ofA and B is de�ned
by the equation:

A M B := (A \ B) ∪ (B \A).

A M B consists of all elements that belong to A or B, but not both.

Proof. We have two inclusions to prove:

(A \ B) ∪ (B \A) ⊆ (A ∪ B) \ (A ∩ B)

(A ∪ B) \ (A ∩ B) ⊆ (A \ B) ∪ (B \A).

(1) We begin with the �rst inclusion. Let x ∈ (A \ B) ∪ (B \ A) so that it
belongs to (A \ B) or (B \ A). Without loss of generality, we can assume
that x ∈ A \ B.4 �en, x ∈ A but x < B. �is means that

x ∈ A ∪ B and x < A ∩ B.

Hence, x ∈ (A ∪ B) \ (A ∩ B).

(2) Conversely, let x ∈ (A ∪ B) \ (A ∩ B). �is simply means that

x ∈ A ∪ B and x < A ∩ B.

Without loss of generality, we can assume that x ∈ A. Since x < A ∩ B,
we cannot have x ∈ B. �at is, x < B. �is implies that x ∈ A \ B. More
generally,

x ∈ (A \ B) ⊆ (A \ B) ∪ (B \A).

�is completes the proof. �

4Otherwise, x ∈ B \A. In this case, we just relabel A as B and B as A!
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1.3 More Examples of Induction

Depending on much time was le�, we may not have touched upon all (if any) of
the following problems. Nonetheless, it is probably useful to try these out.

Proposition 1.7. �ere holds

3 + 11 + · · · + (8n − 5) = 4n2 − n

for all n ∈ N.

Proof. For n ∈ N, the proposition/statement depending on n we wish to prove is
the equality

3 + 11 + · · · + (8n − 5) = 4n2 − n.

Since we wish to prove the above for all n ≥ 1, our base case should be n = 1.

Base case. We verify directly that the statement is true for n = 1:

3 = 8 · 1 − 5 = 4 · 12 − 1.

Inductive step. Our induction hypothesis will be that the statement is true for
some n ≥ 1. Our job is then to show that the claim holds for n+ 1. �e induction
hypothesis means that for this n:

3 + 11 + · · · + (8n − 5) = 4n2 − n. (1.4)

We now deduce that:

3 + 11 + · · · + (8(n + 1) − 5) = 4(n + 1)2 − (n + 1).

First, our inductive hypothesis in (1.4) gives

3 + 11 + · · · + (8(n + 1) − 5) = 3 + 11 + · · · + (8n − 5)︸                       ︷︷                       ︸
=4n2−n by (1.4)

+(8(n + 1) − 5)

= 4n2 − n + 8(n + 1) − 5
= 4n2 + 7n + 3.

On the other hand,

4(n + 1)2 − (n + 1) = 4
(
n2 + 2n + 1

)
− n − 1

= 4n2 + 8n + 4 − n − 1
= 4n2 + 7n + 3.
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�us,

3 + 11 + · · · + (8(n + 1) − 5) = 4n2 + 7n + 3 = 4(n + 1)2 − (n + 1).

�is completes the inductive step. �

Lemma 1.8. 2n + 1 ≤ 2n for all integers n ≥ 3.

Proof. �is looks like something we should try to prove with induction.

Base case. With n = 3, we check directly that

2(3) + 1 = 7 < 8 = 23.

�is means that the base case is true.

Inductive step. Suppose that the statement is true for some n ≥ 3; we must prove
that it is also true for n + 1. Namely, our induction hypothesis is:

2n + 1 ≤ 2n . (1.5)

We want to show that 2(n + 1) + 1 ≤ 2n+1. First, write

2(n + 1) + 1 = 2n + 2 + 1 = (2n + 1) + 2
(1.5)
≤ 2n + 2. (1.6)

In the last step, we used the induction hypothesis (1.5) to get 2n + 1 ≤ 2n. Since
n ≥ 3, it is clear that 2 ≤ 2n. �erefore, (1.6) implies that

2(n + 1) + 1 ≤ 2n + 2 ≤ 2n + 2n = 2 · 2n = 2n+1.

�is completes the inductive step and the claim is proven. �

Using this proposition, we prove a far more interesting identity.

Proposition 1.9. If n ≥ 5 is an integer, then n2 < 2n.

Proof. Since we are asked to prove an equality involving integers, it is a good
idea to try and use mathematical induction. We start with the base case n = 5.

Base case. With n = 5 we check that

52 = 25 < 32 = 25.
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Hence, the claim holds for n = 5.

Inductive step. Suppose the claim is true for n ≥ 5, we must show that is is also
true for n + 1. Our inductive hypothesis is therefore the following:

n2 < 2n . (1.7)

Using this, we must show that

(n + 1)2 < 2n+1.

Using the induction hypothesis (1.7), we calculate

(n + 1)2 = n2 + 2n + 1
(1.7)
< 2n + (2n + 1). (1.8)

Because n ≥ 5 ≥ 3, we can apply the previous lemma to (1.8) above. Doing so
gives (2n + 1) ≤ 2n whence

(n + 1)2 < 2n + (2n + 1) ≤ 2n + 2n = 2 · 2n = 2n+1.

�is completes the inductive step. �

2 Second Tutorial

We would �rst like to recall some notions regarding functions. If X and Y are
sets, a bijection from X to Y is a function f : X → Y satisfying each of the
following properties:

(i) f is injective, i.e. f (x ) = f (x′) implies x = x′;

(ii) f is surjective, i.e. for every y ∈ Y there exists x ∈ X such that f (x ) = y.

Put otherwise, a function f : X → Y is a bijection if and only if for every y ∈ Y
there exists a unique point x ∈ X such that f (x ) = y.

Example 2.1. �e function f : R → R given by f (x ) = x2 is not a bijection
because it is neither injective nor surjective. Certainly, injectivity fails because
f (−1) = 1 = f (1). Surjectivity does not hold because there does not exist x ∈ R
such that f (x ) = −1.

13



Even so, we must be careful as a function that is not surjective can become
surjective if we restrict its range. Consider the function

f : R→ [0,∞), f (x ) = x2.

�is is the same function as in the previous example, but with a “smaller” range.
Although the function is still not injective (f (−1) = f (1)), it is surjective! Indeed,
given y ∈ [0,∞), we have that f (

√
y) = y. Similarly, a function can become

injective when we restrict its domain. Certainly, the function

f : [0,∞) → [0,∞), f (x ) = x2

is actually a bijection.

2.1 Properties of Functions

�e concept of an inverse function arises naturally when discussing bijective
functions. If X and Y are sets and f : X → Y is a bijection, there exists for
each y ∈ Y a unique point x with the property that f (x ) = y. �erefore, we can
construct a function f −1 : Y → X by simply de�ning f −1(y) := x . �is map f −1

is called the inverse function of f .
�e following property of the inverse function is almost immediate from the

de�nition we have just given above:

Proposition 2.1. Let X and Y be sets and f : X → Y a bijection. Let f −1 be the
inverse of f , as de�ned above. �en,

(1) ( f −1 ◦ f ) (x ) = x for all x ∈ X ;

(2) and ( f ◦ f −1) (y) = y for all y ∈ Y .

Proof. �e claim in (1) follows at once from the de�nition of f −1. We therefore
need only verify (2). Giveny ∈ Y , there exists (since f is bijective) a unique point
x ∈ X such that f (x ) = y. But, by de�nition of f −1, we must have f −1(y) = x .
Hence, ( f ◦ f −1) (y) = f ( f −1(y)) = f (x ) = y. �

Of course, the next result is also to be expected:

Proposition 2.2. LetX and Y be sets and f : X → Y a bijection. Let f −1 : Y → X
be the inverse function of f . �en, f −1 is a bijection Y → X .

14



Proof. We �rst check that f −1 is surjective. �is amounts to showing that for
every x ∈ X , there exists y ∈ Y with the property that f −1(y) = x . Given x ∈ X ,
we simply take y = f (x ) ∈ Y . �en, the previous result tells us that

f −1(y) = f −1( f (x )) = x .

�erefore, f is surjective. To prove injectivity we assume that f −1(y) = f −1(y′)
for some y,y′ ∈ Y . We want to show that this forces y = y′. To this end, we
“apply” the function f to both sides of the equality f −1(y) = f −1(y′). Doing so
gives

f ( f −1(y)) = f ( f −1(y′)) =⇒ y = y′

by virtue of (2) in Proposition 2.1. Hence, f −1 is injective. �

Proposition 2.3. Let A,B and C be sets, and let f : A → B and д : B → C be
functions. �ere hold the following:

(1) if f and д are injective, then so is д ◦ f ;

(2) if д ◦ f is injective, then so is f ;

(3) if f and д are surjective, then so is д ◦ f ;

(4) if д ◦ f is surjective, then so is д.

Proof.

(1) Let a,a′ ∈ A and suppose that (д ◦ f ) (a) = (д ◦ f ) (a′); our goal is to
prove that a = a′. Now, this equation is equivalent to д( f (a)) = д( f (a′)).
Because д is injective, this implies f (a) = f (a′). But, f is also injective!
Consequently, it follows that a = a′.

(2) Suppose that д ◦ f is injective and let a,a′ ∈ A be such that f (a) = f (a′).
We want to deduce that a = a′. Let us now apply the function д to both
sides of the equality f (a) = f (a′). Doing so gives

(д ◦ f ) (a) = д( f (a)) = д( f (a′)) = (д ◦ f ) (a′).

Because д ◦ f is injective, it follows that a = a′. We conclude that f is
injective.
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(3) Let f and д both be surjective. For any point c ∈ C , we can choose b ∈ B
such that д(b) = c . Since f is surjective, there exists a ∈ A with the
property that f (a) = b. �en,

(д ◦ f ) (a) = д( f (a)) = д(b) = c .

(4) If д ◦ f is surjective, given any point c ∈ C there exists a ∈ A such that
(д ◦ f ) (a) = c . �is is simply the statement that д( f (a)) = c . Taking
b := f (a) ∈ B, we see that д(b) = c . Hence, д is surjective.

�

Remark 2.1. Despite the above, there do exist functions f and д such that
(i) f is not surjective;

(ii) д is not injective;
(iii) and д ◦ f is a bijection.

Indeed, let E denote the set of all even natural numbers {2, 4, 6, . . . , }. Consider
the functions:

f : E→ N, f (n) = n,

д : N→ E, д(n) =



n if n is even
2n if n is odd.

Clearly, f is injective but not surjective. Because д(1) = д(2) = 2, we see that д
is not injective. But, д ◦ f is simply the identity map

д ◦ f : E→ E, (д ◦ f ) (n) = n

which is a bijection (check this yourself).
Proposition 2.3 has many corollaries, some of which are listed below.

Corollary 2.4. Composition to the right or le� by an injection or a surjection does
not a�ect the injectivity or surjectivity of a bijection, respectively. Namely, the fol-
lowing properties hold:

(1) LetA,B andC be sets. Suppose that f : A→ B is a function and д : B → C is
a bijection. �en, д ◦ f is injective whenever f is. Moreover, д ◦ f is surjective
whenever f is.
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(2) Let A,B and C be sets. Suppose that f : A→ B is a bijection and д : B → C
a general function. �en, д ◦ f is injective whenever д is. Furthermore, д ◦ f
is surjective if д is.

Proof. Let us prove (1). First, note that д is both injective and surjective. If f
is injective, then д ◦ f is injective by part (1) of the previous problem. If f is
surjective, then so is д ◦ f (by part (3) of the last problem). Part (2) is veri�ed in
a similar way. We leave the details as an exercise to the reader. �

Similarly, we can deduce the following.
Corollary 2.5. Let A,B and C be sets and f : A→ B, д : B → C functions. If any
two of f ,д and д ◦ f are bijective, then so is the third.

Proof. If f and д are bijective, then parts (1) and (3) of Proposition 2.3 tell us that
д ◦ f is also a bijection. Suppose that f and д ◦ f are bijections. �en, f has an
inverse function f −1. By Proposition 2.2, this inverse is also a bijection. Finally,
part (1) of Corollary 2.4 implies that

д = д ◦ ( f ◦ f −1) = (д ◦ f ) ◦ f −1

is bijective. Similarly, f can be shown to be bijective wheneverд andд◦ f are. �
�eorem 2.6. Let X and Y be sets and f : X → Y a function. �en, f is injective
if and only if there exists a function (called a le�-inverse) д : Y → X such that

д ◦ f : X → X

satis�es (д ◦ f ) (x ) = x for all x ∈ X .

Proof. Suppose that f is injective. If y ∈ f (X ), then there exists a unique point
x ∈ X such that y = f (x ). Let us call this unique point f −1(y). De�ne a function

д : Y → X , д(y) :=



f −1(y), if y ∈ f (X ),

x0, if y < f (X ).

Here, x0 ∈ X is any �xed point. Let x ∈ X be given; we want to verify that

(д ◦ f ) (x ) = д( f (x )) = x .

Clearly, y = f (x ) belongs to f (X ). By de�nition of the function д,

д( f (x )) = д(y) = f −1(y) = x .

Conversely, suppose that such a function д exists. �e composition д ◦ f is then
equal to the identity map h(x ) = x on X . �us, д ◦ f is an injection X → X . By
part (2) of Proposition 2.3, we see that f is injective. �
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Using a similar argument, one can prove the following:

Exercise 2.1. Let X and Y be sets and let f : X → Y be a function. �en, f is
surjective if and only if there exists a function д : Y → X (called a right-inverse)
such that

( f ◦ д) (y) = y

for all y ∈ Y .

2.2 Cauchy-Schwarz and the Triangle Inequality

�e remaining problems for this tutorial are meant to serve as extra examples that
use some of what you’ve proven in the �rst assignment. As an added bonus, we
will be proving inequalities that you will probably �nd to be useful throughout
your entire mathematical career. At the very least, the �rst inequality should
help you in Advanced Calculus and Honours Analysis 2.

Let us recall Problem 4 in your �rst assignment, which states that
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(2.1)

for all n ∈ N and all aj ,bj ∈ R. In fact, this implies that

n∑
j=1

ajbj ≤

�������

n∑
j=1

ajbj

�������
≤

*.
,

n∑
j=1

a2
j
+/
-

1/2
*.
,

n∑
j=1

b2
j

+/
-

1/2

. (2.2)

Let x = (x1, . . . ,xn ) be a point in Rn for n ≥ 1. �e norm of this point x is de�ned
via the equation

‖x ‖ :=
(
x2

1 + · · · + x
2
n

)1/2
≥ 0 (2.3)

If y = (y1, . . . ,yn ) is another point in Rn, we de�ne the dot product of x and y
according to the formula

x · y = x1y1 + · · · + xnyn . (2.4)

�is is an example of what is o�en called an inner product. Returning to the
equation above, we see that

x · x = x2
1 + · · · + x

2
n ≥ 0.
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Note that ‖x ‖2 = x · x whence ‖x ‖ =
√
x · x . �is relationship means that the

norm ‖x ‖ is induced by the dot product in Rn (this very important topic will be
further explored in Honours Analysis 4). For now, we can at least give a proof of
the triangle inequality:

�eorem 2.7 (Triangle Inequality). For any n ≥ 1, one has x + y ≤ ‖x ‖ + y
for all vectors x ,y ∈ Rn.

Proof. By our earlier observations,

x + y2
= (x + y) · (x + y) =

n∑
j=1

(xj + yj )
2

=

n∑
j=1

x2
j + 2

n∑
j=1

xjyj +
n∑
j=1

y2
j

= ‖x ‖2 + 2
n∑
j=1

xjyj + y2 .

Invoking (2.2), we get

x + y2
≤ ‖x ‖2 + 2 *.

,

n∑
j=1

x2
j

+/
-

1/2
*.
,

n∑
j=1

y2
j

+/
-

1/2

+ y2

= ‖x ‖2 + 2 ‖x ‖ y + y2

= (‖x ‖ + y)2 .

Taking square roots gives us the desired inequality. �

2.3 The AM-GM Inequality

�eorem 2.8. For each n ≥ 1, and all x1, . . . ,xn > 0, there holds

x1 + · · · xn
n

≥
n√x1x2 . . . xn . (2.5)

Remark 2.2. �e quantity on the le� hand side of (2.5) is called the arithmetic
mean of (x1, . . . ,xn ). �e right hand term is instead called the geometric mean of
(x1, . . . ,xn ).
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To prove this result, we will �rst require a lemma that is very interesting in
its own right.
Lemma 2.9. Let n ∈ N and x1, . . . ,xn > 0. If x1 · · · xn = 1, then

x1 + · · · + xn ≥ n.

Proof. We prove this inequality by induction on n ≥ 1. Luckily for us, the base
case with n = 1 is obvious.

Inductive Step. Suppose that the claim holds for an n ≥ 1. We will prove that the
statement holds for n + 1. �us, our inductive hypothesis is the statement:

“(∀x1, . . . ,xn > 0), (x1 · · · xn = 1 =⇒ x1 + · · · + xn ≥ n.)”
Let now x1, . . . ,xn,xn+1 > 0 be real numbers such that x1 · · · xnxn+1 = 1. We will
show that

x1 + · · · + xn + xn+1 ≥ n + 1.
If every xj = 1, then the statement is obvious. �us, we can assume that there
exist indices 1 ≤ i, j ≤ n + 1 such that xi > 1 and xj < 1.5 A�er a relabeling, we
can assume that x1 < 1 and xn+1 > 1. Because (xn+1 − 1) (1 − x1) > 0, we must
have

x1 + xn+1 > 1 + x1xn+1. (2.6)
De�ning y := x1xn+1 > 0, the inequality above can then be wri�en as

x1 + xn+1 > 1 + y. (2.7)
Note that yx2 · · · xn = 1. Since {y,x2, . . . ,xn} consists of n positive numbers, our
inductive hypothesis implies that

y + x2 + · · · + xn ≥ n. (2.8)
Using this together with (2.7) yields

x1 + x2 + · · · + xn + xn+1 = (x1 + xn+1) + x2 + · · · + xn

> (1 + y) + x2 + · · · + xn (by (2.7))
= 1 + (y + x2 + · · · + xn )

≥ 1 + n (by (2.8))
= n + 1.

5�is is because x1x2 · · · xn+1 = 1. Indeed, if xi > 1 for some index i and x j ≥ 1 for all indices
j , i , then we would have x1 · · · xn+1 > x1 · · · xi−1xi+1 · · · xn+1 ≥ 1 which is a contradiction.
Similarly, if some xi < 1, there must be another x j with x j > 1.
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�is completes the inductive step. �

We are �nally ready to give a nice proof of �eorem 2.8.

Proof of �eorem 2.8. Given x1, . . . ,xn > 0 let us put A := (x1 · · · xn )
1
n > 0. For

each 1 ≤ j ≤ n de�ne
aj :=

xj

A
> 0

�en, a1 · · ·an = 1. By the previous lemma, we get that
a1 + · · · + an ≥ n.

Or, rather, that
x1 + · · · + xn

A
=
x1 + · · · + xn

(x1 · · · xn )
1
n
≥ n.

�erefore,
x1 + · · · + xn

n
≥ (x1 · · · xn )

1
n

as was asserted. �

3 Third Tutorial

LetX and Y be non-empty sets. We say thatX and Y have the same cardinality if
there exists a bijection f : X → Y . In this case, we write |X | = |Y |. If there exists
an injective function X → Y but no bijection X → Y exists, we write |X | < |Y |.
Remember that X is called countably in�nite if |X | = |N|. A set X is said to be
countable if it is either �nite or countably in�nite.
Proposition 3.1. �e set N × N is countable.

First Proof. Clearly, N × N is not �nite. �us, our only option is to show that
N × N is countably in�nite. Next, we observe that the elements of N × N can be
listed according to the following table:

(1, 1) (1, 2) (1, 3) · · · (1,n) · · ·

(2, 1) (2, 2) (2, 3) · · · (2,n) · · ·

(3, 1) (3, 2) (3, 3) · · · (3,n) · · ·

(4, 1) (4, 2) (4, 3) · · · (4,n) · · ·
...

...
...

. . .
... · · ·

(m, 1) (m, 2) (m, 3) · · · (m,n) · · ·
...

...
...

...
. . .
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We then enumerate the elements of N × N (i.e. the elements of the list above)
according to the so-called “diagonal rule”. Namely, we list the elements of N×N
in the following order:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . .

Pictorially, we are drawing arrows through the diagonals of the list and “enu-
merating” the elements of N × N by following the arrows. In doing so, we are
actually constructing a function N→ N × N. �is function would satisfy

1 7→ (1, 1), 2 7→ (2, 1), 3 7→ (1, 2) . . . .

Now, this function is clearly surjective6. �us, we have shown that N × N is
countable. �

Second Proof. We de�ne a function f : N × N → N according to the formula
f (m,n) = 2m3n. Suppose that 2m3n = 2r3s for natural numbers m,n, r , s . By the
uniqueness of factorization into primes, we must have m = r and n = s . �us, f
is injective whence N × N is countable (see �eorem 1.3.10 in Bartle). �

Using the countability of N×N, we are able to deduce the following easy fact.

Proposition 3.2. If X and Y are countable sets, then so is X × Y .

Proof. Because X and Y are both countable, we can �nd surjective functions (see
�eorem 1.3.10 in Bartle)

f : N→ X and д : N→ Y .

Now consider the function h : N × N→ X × Y given by the formula

h(m,n) = ( f (m),д(n)) .

Let (x ,y) ∈ X ×Y be a point. Because f and д are surjective, there existm,n ∈ N
such that f (m) = x and д(n) = y. �us, h(m,n) = (x ,y). Hence, h is surjective.
By the previous proposition, we know there exists a surjection ψ : N → N × N.
�en, the composite h ◦ψ will be a surjective function N→ X × Y . �

Using a simple inductive argument, we can actually conclude that �nite prod-
ucts of countable sets are again countable. However, we should �rst discuss some
of the unfortunate intricacies of notation.

6Since every element of N ×N can be found on one of these diagonal lines, our function will
“eventually reach” any given element of N × N.
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3.1 Cartesian Products

Let X1, . . . ,Xn be sets. We de�ne X1 × · · · × Xn to be the set of all n-tuples

{(x1, . . . ,xn ) : xj ∈ X j , 1 ≤ j ≤ n}.

To simplify notation, we o�en denote the product X1 × · · · × Xn by
n∏

k=1
Xk .

�us, when we have n + 1 sets X1, . . . ,Xn,Xn+1,

X1 × · · · × Xn × Xn+1 , (X1 × · · · × Xn ) × Xn+1. (3.1)

Indeed, the set on the le� has elements the form (x1, . . . ,xn+1) but the product on
the right consists of tuples of the form ((x1, . . . ,xn ),xn+1). However, there always
exists a bijection between these two sets. Certainly, consider the function

f : (X1 × · · · × Xn ) × Xn+1 → X1 × · · · × Xn+1

given by f ((x1, . . . ,xn ),xn+1) = (x1, . . . ,xn,xn+1). Clearly, f is surjective. To see
that it is injective, suppose that

(x1, . . . ,xn+1) =
(
x′1, . . . ,x

′
n+1

)
.

�en, xj = x′j for all 1 ≤ j ≤ n + 1. In particular, xn+1 = x′n+1 and

(x1, . . . ,xn ) = (x′1, . . . ,x
′
n ).

�erefore, ((x1, . . . ,xn ),xn+1) =
(
(x′1, . . . ,x

′
n ),x

′
n+1

)
. �is shows that f is injec-

tive, and hence a bijection.
Since both the sets in (3.1) are always in bijection, there is no reason to dis-

tinguish between the two when discussing cardinality.

Proposition 3.3. If X1, . . . ,Xn are countable sets, then so is X1 × · · · × Xn.

Proof. We argue by induction on n. �e base case n = 1 is obvious. �us, assume
that the claim holds true for n ≥ 1 and let X1, . . . ,Xn,Xn+1 be countable sets. By
the inductive hypothesis, the set

X1 × · · · × Xn

23



is countable. By Proposition 3.2, so must be the product

(X1 × · · · × Xn ) × Xn+1 “=”X1 × · · · × Xn × Xn+1.

�is completes the proof. Here we are writing “=” instead of = because, although
the sets are not equal per se, there exists a bijection between the two. �us, these
sets can be treated as the “same set” when discussing cardinality. �

Proposition 3.4. Let X and Y be non-empty sets with Y ⊆ X . �ere exists a
surjective function X → Y .

Proof. �is is not di�cult to prove. Fix any point y0 ∈ Y and de�ne a function

ϕ : X → Y , ϕ (x ) :=



x if x ∈ Y ,
y0 if x < Y .

Obviously, ϕ is the desired surjective map. �

Proposition 3.5. Let X and Y be sets with Y ⊆ X . If X is countable, then so is Y .

Proof. Because X is countable (i.e. �nite or countably in�nite) there exists a sur-
jective function f : N→ X . By Proposition 3.4, we may choose a surjective map
д : X → Y . �en, the composite д ◦ f is a surjective map N → Y . �us, Y is
countable. �

3.2 The Power Set

Let X be a set (possibly empty). �e power set of X , denoted P (X ), is de�ned to
be the set of all subsets of X . Symbolically,

P (X ) := {A : A ⊆ X } .

Note that ∅ is always a subset of X , regardless of the set X . Even if X is empty,
∅ will be a subset of X . �is means that ∅ ∈ P (X ) for all sets X . In particular,
P (X ) is never empty.

Example 3.1. We compute the power set for very small sets. First, we consider
P (∅). We have already seen that ∅ ∈ P (∅). Because ∅ is empty, it cannot have
any non-empty subsets. �erefore, P (∅) = {∅}.7

7Be warned that {∅} is a set containing the empty set. It is not the empty set, but rather a set
whose single element is the empty set!
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Example 3.2. We compute the power set of a singleton {x }. As always, ∅ is a
subset of {x } and hence ∅ ∈ P (X ). But, {x } is also a subset of X . �us,

P ({x }) = {∅, {x }}.

�is argument shows that for a general set X there holds ∅,X ∈ P (X ).

�ese examples tell us that |P (∅) | = 1 and |P ({x }) | = 2. �e next problem
generalizes this property.

Proposition 3.6. If X is a �nite set, then |P (X ) | = 2|X | . Here, |X | denotes the
cardinality of the set X .

Proof. As this is a statement depending on n ∈ N0, it is a good idea to prove the
claim by induction.

Base case(s). In the previous examples we veri�ed directly the cases n = 0 and
n = 1. �erefore, our base case is already complete.

Inductive Step. We now make the induction hypothesis: assume that |P (X ) | = 2n
for all sets X having n-elements. We want to show that |P (Y ) | = 2n+1 for all sets
Y having (n + 1)-elements. Let Y be a set with (n + 1)-elements. To count the
elements of P (Y ) is to count the subsets of Y . Fix a point y ∈ Y and de�ne
X := Y \ {y}; this set X has n-elements. Now, there are exactly two types of
subsets of Y :

(i) subsets of Y that contain y;

(ii) subsets of Y that do not contain y.

Clearly,

|P (Y ) | = #subsets of Y
= #subsets of Y that contain y + #subsets of Y not containing y.

Let A ⊆ Y be a subset not containing y. �en, A ⊆ X = Y \ {y}. By our induc-
tion hypothesis, |P (X ) | = 2n. �us, there are exactly 2n possibilities for A or,
equivalently, 2n-subsets of Y that don’t contain y.
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On the other hand, suppose that B is a subset of Y that does contain y. �en,
B \ {y} does not contain y. By the previous part, there are exactly 2n-distinct pos-
sibilities for B\{y}. But this means that there are precisely 2n-distinct possibilities
for B. Hence, there are 2n-subsets of Y that contain y. �is implies that

|P (Y ) | = #subsets of Y that contain y + #subsets of Y not containing y
= 2n + 2n = 2n+1.

�is completes the inductive step. �

Corollary 3.7.
n∑

k=0

(
n

k

)
= 2n for all n ≥ 0.

Proof. Let X be any set containing n-elements.8 For a natural number 0 ≤ k ≤ n,
let Nk denote the number of distinct subsets of X having k-elements. �at is, put

Nk := |{A ⊆ X : |A| = k }| .

�en, since
(
n

k

)
= Nk for each 0 ≤ k ≤ n, we see from the previous proposition

that
n∑

k=0

(
n

k

)
=

n∑
k=0

Nk = |P (X ) | = 2n .

�is completes the proof. �

3.3 Cantor’s Theorem

We have already discussed the power set of a given set X . We will now show
that there never exists a surjective function between X and its power set P (X ).

�eorem 3.8 (Cantor). LetX be a set. �ere does not exist a surjectionX → P (X ).
In particular, no bijection X → P (X ) exists. Hence, |X | < |P (X ) |.9

Proof. We argue by contradiction. Let f : X → P (X ) be a surjection. Consider
the following subset of X :

A := {
x ∈ X : x < f (x )

}
.

8For instance, take X = {1, 2, . . . ,n}.
9�e map f : X → P (X ) given by f (x ) = {x } is clearly an injection from X → P (X ). Since

no bijection X → P (X ) exists, we may indeed write |X | < |P (X ) |.
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Because f is surjective, there exists a ∈ X such that f (a) = A. �ere are now
two cases to be considered.

(1) Suppose a ∈ A. By de�nition of A, this forces a < f (a). But, f (a) = A.
�erefore, a < f (a) implies a < A. �is is a contradiction.

(2) Assume a < A. �at is, a < f (a) whence a ∈ A. �is is also a contradiction.

In either case we have a contradiction. Hence, no surjective function f can exist.
�

�is subtle theorem has grandiose implications. Essentially, it states that one
can build arbitrarily large sets by simply taking more and more power sets. Con-
sider for instance the in�nite set N. You have probably seen that there does not
exist a bijection N→ R. In this sense, we say that R is of a “larger in�nity” than
N.10 Cantor’s theorem states that P (N) is of a “larger in�nity” than N. But then,
P (P (N)) is of an “even larger in�nity” than P (N). Continuing in this way, we
see that there are “in�nitely many distinct in�nities”.

Corollary 3.9 (Russel’s Paradox). �e set of all sets does not exist.

Proof. We argue by contradiction. Suppose that the set of all sets exists, and
call it X . �en, P (X ) is a set of subsets of X . Hence, every element of P (X )
is a set. �us, P (X ) ⊆ X . By Proposition 3.4, there exists a surjective function
X → P (X ). But this contradicts Cantor’s theorem. �

Proposition 3.10. A binary sequence is a “list of points”

a1,a2,a3, . . . ,an, . . .

such that each aj belongs to the set {0, 1}. Usually, one denotes such a sequence by
(an ). Let B be the set of all binary sequences. �en, B is uncountable.

Proof. We argue by contradiction. Suppose that B is countable, then we can
10�is can be formalized in the sense of cardinal numbers. However, this is a topic for discus-

sion in a dedicated set theory or logic course.
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enumerate the elements of B:

(a (1)n ) = a (1)1 ,a
(1)
2 ,a

(1)
3 . . .

(a (2)n ) = a (2)1 ,a
(2)
2 ,a

(2)
3 . . .

...

(a (m)
n ) = a (m)

1 ,a
(m)
2 ,a

(m)
3 . . .

...

Here, each (a (m)
n ) represents a sequence in B. To derive a contradiction, we will

construct an element in B (i.e. a binary sequence) that does not belong to the list
above. For a given n ∈ N, let bn be given by the following formula:

bn :=



1 if a (n)n = 0,
0 if a (n)n = 1.

Grouping together all the bn into a list gives us a sequence (bn ) in B. We claim
that (bn ) is not equal to any (a (m)

n ) appearing in the list above. If (bn ) = (a (m)
n )

for somem ≥ 1, then bm = a (m)
m for thism. But this would directly contradict the

construction of (bn ). Hence, (bn ) < B which contradicts our assumption that B
was countable. �

Sets of Functions

Proposition 3.11. Let X be a �nite set and Y a countable set. Let F be the set of
all functions f : X → Y . �en F is countable.

Proof. Since X is �nite, it can be expressed as {x1, . . . ,xn} for some n ∈ N. We
now claim that there exists a bijection

F → Y × · · · × Y︸        ︷︷        ︸
n times

=

n∏
k=1

Y

To achieve this, consider the map Φ : F →∏n
k=1Y given by

Φ( f ) := ( f (x1), . . . , f (xn )) ∈
n∏

k=1
Y .
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Fix now a point (y1, . . . ,yn ) ∈
∏n

k=1Y . De�ne a function f : X → Y according
to the rule:

f (xk ) = yk , ∀1 ≤ k ≤ n.

�en, f ∈ F satis�es Φ( f ) = (y1, . . . ,yn ). Hence, Φ is surjective. To see that Φ
is also injective, suppose that Φ( f ) = Φ(д) for f ,д ∈ F . �is means that

( f (x1), . . . , f (xn )) = (д(x1), . . . ,д(xn )) .

Hence, f (xk ) = д(xk ) for all 1 ≤ k ≤ n. But this means that f = д on all of X .
�is is precisely the statement that f and д are the same functions. We conclude
that Φ is also injective. By Problem 3.3, we know that ∏n

k=1Y is countable. Since
F is in bijection with this set, we see that F is countable. �

3.4 Other Inequalities

We now prove some basic inequalities that do not rely on induction.

Proposition 3.12. Prove the following inequalities:

(1) for all x ∈ R one has x (1 − x ) ≤ 1
4 ;

(2) for all 0 ≤ x ,y ≤ 1 at least one of the following hold true:

xy ≤
1
4 or (1 − x ) (1 − y) ≤ 1

4 .

Proof.

(1) Clearly,

x2 − x +
1
4 =

(
x −

1
2

)2
≥ 0.

�erefore, x (1 − x ) = x − x2 ≤ 1
4 .

(2) If x = 0, the claim is obvious. �us, we may assume that x ∈ (0, 1]. Suppose
�rst that

0 ≤ y ≤ 1
4x .

�en, xy ≤ 1
4 . Otherwise, y > 1

4x so that

1 − y < 1 − 1
4x .
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In this case,

(1 − x ) (1 − y) ≤ (1 − x )
(
1 − 1

4x

)
= 1 − x − 1

4x +
1
4

=
1
x

[x (1 − x )] − 1
4x +

1
4

≤
1
x
·

1
4 −

1
4x +

1
4 =

1
4

�is completes the proof. �

4 Fourth Tutorial

We begin with a rapid review of the de�nitions. Let X be a subset of R (a priori,
possibly empty). A real number u is said to be an upper bound for X if x ≤ u for
all x ∈ X . If X has an upper bound, we say that X is bounded from above. We
call a point s ∈ R a least upper bound for X if both of the following hold:

(I) s is an upper bound for X ;

(II) if u is any upper bound for X , then s ≤ u.

A given subset of R may or may not have a least upper bound. If one exists,
however, it must be unique. To see this, let s and s′ be least upper bounds for a
set X . In particular, they are both upper bounds. �us, we must have s ≤ s′ and
s′ ≤ s by (II) above. Of course, this forces s = s′.

Completeness Property ofR. LetX be a non-empty subset ofR that is bounded
from above. �en X has a least upper bound, which we denote by supX .

In your assignment, you have proven that a non-empty subset of R that is
bounded from below has an in�mum, i.e. a greatest lower bound. If X is such a
set, we denote this quantity by inf X . As before, inf X can be shown to be unique.
With this in mind, we can state a converse to the completeness property of R.

Proposition 4.1. Let X be a subset of R.

1. If X has a least upper bound (i.e. a supremum), then X is non-empty and
bounded from above.
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2. If X has a greatest lower bound (i.e. an in�mum), then is non-empty and
bounded from below.

Proof. We only prove the �rst claim, and leave the second as an exercise. Suppose
that X has a supremum s in R. �en, s is an upper bound for X . By de�nition, X
must be bounded from above. All that remains is to check that X is non-empty.
For this, it is enough to show that the empty set has no least upper bound.

Consider the empty set ∅ and suppose (for a contradiction) that ∅ has a least
upper bound u in R. �en, x ≤ u for all x ∈ ∅. But, we also have x ≤ u − 1 for
all x ∈ ∅. �is means that u − 1 < u is an upper bound for ∅, contradicting the
choice of u as the least upper bound. �

Let X be a non-empty set that is bounded from above and let s denote its
supremum in R. Let ε > 0 be given and note that s − ε < s cannot be an upper
bound forX (since s is the least upper bound forX ). �us, there must exist xε ∈ X
such that s − ε < xε . Since s is an upper bound for X , this gives

s − ε < xε ≤ s . (4.1)

Conversely, let s be an upper bound for X and suppose that for each ε > 0 one
can �nd xε ∈ X such that (4.1) holds true. We claim that s = supX . As s is an
upper bound for X , it is enough to show that s ≤ u for all upper bounds u of X .
If u is an upper bound for X with u < s , then ε := (s −u) > 0 whence there exists
xε ∈ X with

s − ε < xε ≤ s .

But, s − ε = s − (s − u) = u. �is gives u < xε which contradicts the fact that
u is an upper bound for X . �us, we must have s ≤ u. Since u was an arbitrary
upper bound, we have s = supX . �is gives the following result from Bartle.

�eorem 4.2. Let X be a non-empty set and s an upper bound for X in R. �e
following statements are equivalent.

1. s = supX ;

2. for every ε > 0 there exists xε ∈ X such that s − ε < xε ≤ s .

For the in�mum, a similar argument to what we used above yields an analo-
gous result.

�eorem 4.3. Let X be a non-empty set and v an lower bound for X in R. �e
following statements are equivalent.
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1. v = inf X ;

2. for every ε > 0 there exists xε ∈ X such that v ≤ xε < v + ε .

It’s probably best if we do at least one worked example.

Problem 1. Consider the set

X =
{ 1
n
−

1
m

: n,m ∈ N
}
.

Compute supX and inf X .

Solution. We �rst check that X is bounded (bounded from above and below). By
the triangle inequality, for all n,m ∈ N:

����
1
n
−

1
m

���� ≤
1
n
+

1
m
≤ 1 + 1 = 2.

Hence, X is indeed bounded. By the completeness of R (and your homework
problems), both supX and inf X exist in R. Do note that

1
n
−

1
m
≤

1
n
≤ 1,

for all n,m ∈ N. Hence, 1 is an upper bound for X . Informally, we should try to
look for the largest elements in X and see what they approach. Here, we should
take n = 1 and try to make 1

m as small as possible. In doing so, 1 − 1
m seems to

approach 1. With this in mind, a good idea is to try and show that supX = 1.
Since we have already shown that 1 is an upper bound, it remains to check

that 1 is the least upper bound. Let ε > 0 be given, we want to show that there
exists xε ∈ X such that

1 − ε < xε ≤ 1.

Choosem ∈ N such that 1
m < ε (how?) and note that

xε := 1 − 1
m
∈ X .

�en, −ε < − 1
m whence

1 − ε < 1 − 1
m
= xε ≤ 1.
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By �eorem 4.2, we see that supX = 1. For inf X , we will use a trick from your
homework assignment. Observe that

X =
{ 1
n
−

1
m

: n,m ∈ N
}
=

{ 1
m
−

1
n

: n,m ∈ N
}
= −X .

Hence, by Assignment 3 we get inf X = inf (−X ) = − supX = −1. �

Given a subsetX of R, we de�ne maxX to be the largest element ofX , when-
ever it exists. Similarly, we de�ne minX as the smallest element of X , whenever
it exists. Note that, when these exist, we have minX , maxX ∈ X .

Proposition 4.4. Let X be a subset of R. �en maxX exists if and only if supX
exists and is an element of X . Similarly, minX exists if and only if inf X exists and
is an element of X .

Proof. We will only prove the �rst statement, leaving the second as a potential
exercise. Suppose that maxX exists and denote it by m. By de�nition of maxX ,
we have m ∈ X . Especially, X , ∅. �en, x ≤ m for all x ∈ X whence X is
bounded from above. �erefore, supX exists. Since m ∈ X , we get m ≤ supX .
On the other hand, m is an upper bound for X . By de�nition of supX as the
least upper bound, we also have supX ≤ m. It follows that supX = m whence
supX ∈ X .

Conversely, suppose that supX exists and is an element of X . By de�nition,
x ≤ supX for all x ∈ X . Since supX ∈ X , this means that supX is the maximal
element of X . �us, maxX exists. �

Remark 4.1. �is proof tells us that maxX = supX , whenever maxX exists.
Similarly, inf X = minX when the la�er exists.

4.1 The Existence of
√

2
We will elaborate on the argument used in �eorem 2.4.7 of Bartle’s Introduction
to Real Analysis. We claim that there exists a real number x such that x2 = 2. To
show this, we consider the set

X =
{
s ∈ [0,∞) : s2 < 2

}
.

Clearly, X is non-empty for 12 < 2 implies 1 ∈ X . Also, if s > 2 then s2 > 4
implies s < X . Hence, s ≤ 2 for all s ∈ X . �is means that X is a non-empty

33



bounded subset of R. It therefore has a supremum x in R. Since 1 ∈ X and x is
an upper bound for X , we immediately have

0 < 1 ≤ x .

We will show that both cases x2 < 2 and x2 > 2 are impossible. Clearly, this will
force x2 = 2 whence x is a square-root of 2.

First, suppose that x2 < 2. For every n ∈ N we have 1
n2 ≤

1
n so that(

x +
1
n

)2
= x2 +

2x
n
+

1
n2 ≤ x2 +

2x + 1
n
. (4.2)

By the assumption that x2 < 2, we see that

2 − x2

2x + 1 > 0.

�us, we can choose n ∈ N such that

0 < 1
n
<

2 − x2

2x + 1 .

�is implies that
2x + 1
n
< 2 − x2.

Returning to (4.2) yields(
x +

1
n

)2
= x2 +

2x
n
+

1
n2 ≤ x2 +

2x + 1
n
< x2 + 2 − x2 = 2. (4.3)

Because x > 0, we get that x+ 1
n is an element ofX . Since x is an upper bound for

X we must have x + 1
n ≤ x , which is a contradiction. �erefore, the case x2 < 2

is impossible.

Next, we show that the case x2 > 2 is impossible. Since we know that x ≥ 1
and x2 > 2, we actually have x > 1. Givenm ∈ N we calculate(

x −
1
m

)2
= x2 −

2x
m
+

1
m2 > x2 −

2x
m
. (4.4)
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Since x2 > 2, x2−2
2x is positive. We can therefore choosem ∈ N such that

0 < 1
m
<

x2 − 2
2x ⇐⇒ 0 < 2x

m
< x2 − 2.

Of course, this implies
2 − x2 < −

2x
m
.

Using this choice ofm in (4.4), we obtain(
x −

1
m

)2
> x2 −

2x
m
> x2 + 2 − x2 = 2.

Since x > 1, we have x − 1
m > 0. If s > x − 1

m then

s2 >
(
x −

1
m

)2
> 2.

Hence, s ≤ x − 1
m for all s ∈ X . �is means that x − 1

m is an upper bound for X ,
contradicting the least upper bound property of x .

4.2 The Density of the Irrationals

Recall that a non-empty set A ⊆ R is said to be dense in R if, for any x < y in R,
there exists a ∈ A such that

x < a < y.

You have seen in class that the set of rational numbers Q is dense in R. Here,
we show that the irrationals are also dense in R. First, let us recall the proof that
R is uncountable. Typically, one applies the diagonal argument to show that the
closed interval [0, 1] is uncountable. From there, it follows that R ⊃ [0, 1] is also
uncountable. Note that (0, 1) cannot be countable, for then [0, 1] = (0, 1) ∪ {0, 1}
would also be.

Next we �x two real numbers a,b with a < b and consider the function

f : (0, 1) → (a,b), x 7→ (b − a)x + a

which is a bijection (check this yourself!). �erefore, every open interval (a,b)
(with a,b ∈ R) is uncountable.

Proposition 4.5. �e set of irrational numbers is dense in R.
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Proof. Let x ,y ∈ R be such that x < y. We want to show that there exists an
irrational number ξ ∈ (x ,y). Let Qy

x denote the set of rational numbers in the
interval (x ,y), i.e.

Qy
x := (x ,y) ∩Q.

As a subset of a countable set, Qy
x is countable. Since (x ,y) is uncountable, the set

(x ,y) \Qy
x cannot be countable.11 Put otherwise, (x ,y) \Qy

x must be uncountable
and, in particular, non-empty. Let ξ be any element of (x ,y) \Qy

x . �en,

x < ξ < y and ξ < (x ,y) ∩Q.

�us, ξ is an irrational number satisfying x < ξ < y. �

�eorem4.6 (Characterization of Intervals). Let S ⊆ R contain at least two points
and assume that S satis�es the property

if x ,y ∈ S and x < y then [x ,y] ⊆ S .

�en, S is an interval.

Proof. �ere are 4 distinct cases to consider.

(i) S is bounded;

(ii) S is bounded from above but not from below;

(iii) S is bounded from below but not from above;

(iv) S is unbounded from above and below.

We begin with (i ). De�ne a := inf S and b := sup S and observe that S ⊆ [a,b].
We now claim that (a,b) ⊆ S . Let z ∈ (a,b) be given. �en, z is not a lower
bound for S . We can therefore choose a point x ∈ S with x < z. Similarly, z
is not an upper bound for S and there must exist y ∈ S with z < y. But then,
z ∈ [x ,y] ⊆ S . Since z was arbitrary, we obtain (a,b) ⊆ S . If a,b ∈ S , then
[a,b] = S . If a ∈ S but b < S , then [a,b) = S . Similarly, if a < S but b ∈ S we have
(a,b] = S . In either case, S is an interval.

For (ii ) we will use a similar argument. De�ne b := sup S and observe that
S ⊆ (−∞,b]. We claim that (−∞,b) ⊆ S . If z ∈ (−∞,b) then z < b whence z

11If it were, then as above, we could write (x ,y) = Qy
x ∪

[
(x ,y) \Qy

x

]
as the union of two

countable sets, making (x ,y) countable.
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is not an upper bound for S . �us, there exists y ∈ S with z < y. On the other
hand, z cannot be a lower bound for S (since S is unbounded from below). �is
means that we can choose x ∈ S with x < z < y. But then, z ∈ [x ,y] ⊆ S . It
follows that (−∞,b) ⊆ S . If b ∈ S , then (−∞,b] = S . Otherwise, (−∞,b) = S . In
either case, S is an interval.

For (iii ) we will “piggy back” o� (ii ). Suppose that S is bounded from below
but not from above. �en, −S is bounded from above but not from below. By (ii),
−S must be an interval of the form (−∞,b) or (−∞,b]. But then, S = −(−S ) is of
the form

(−b,∞) or [−b,∞).

Now we handle (iv ). Suppose that S is unbounded from above and below. We
claim that (−∞,∞) ⊆ S . Let z ∈ (−∞,∞) be given and note that z is neither
a lower bound nor an upper bound for S . �us, we can �nd x ,y ∈ S such that
x < z < y. �at is, z ∈ [x ,y] ⊆ S . �is yields R = (−∞,∞) ⊆ S ⊆ R. Since
S = R, we see that S is an interval. �

4.3 Algebraic Properties of the Supremum/Infimum

Problem 2. Let A and B be non-empty subsets of R that are bounded above. Sup-
pose both A and B only contain non-negative elements. Show that

sup (A · B) = supA · supB.

Here, A · B = {ab : a ∈ A, b ∈ B}.

Proof. Clearly, A · B , ∅. Since 0 ≤ a ≤ supA and 0 ≤ b ≤ supB, we have

0 ≤ ab ≤ supA · supB

for all ab ∈ A ·B. Hence, A ·B is bounded from above. �is means that A ·B has a
least upper bound. �e above tells us thatA ·B is bounded above by supA · supB;
it only remains to check that this is the least upper bound.

First, we handle the case where supA = 0 or supB = 0. Since 0 ≤ a ≤ supA
and 0 ≤ b ≤ supB for all a ∈ A and b ∈ B, we would have either A = {0}
or B = {0}. In either case, A · B = {0} whence sup (A · B) is indeed equal to
0 = supA · supB.

Now we check the case where supA and supB are non-zero (and hence strictly
larger than 0). Let u be an upper bound for A · B. �en,

0 ≤ ab ≤ u, ∀a ∈ A, b ∈ B.
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Let b ∈ B with b , 0. �en,

0 ≤ a ≤
u

b
, ∀a ∈ A.

�is forces 0 ≤ supA ≤ u
b whence 0 ≤ b supA ≤ u. Since b , 0 was arbitrary,

this actually holds for all b ∈ B \ {0}. Since it is trivially true for b = 0, we have

0 ≤ b supA ≤ u, ∀b ∈ B.
But this yields

0 ≤ b ≤
u

supA
for all b ∈ B so that supB ≤ u

supA . Of course, this gives supA supB ≤ u. Since u
was any upper bound of A · B, we conclude that sup(A · B) = supA · supB. �

4.4 More About Functions

Let X be a non-empty set and f : X → R a function. We say that f is bounded
from above if f (X ) is bounded from above inR. Similarly, f is said to be bounded
from below if f (X ) is bounded from below in R. If f is bounded from above, we
de�ne

sup
x∈X

f := sup f (X ) = sup {
y : y = f (x ) for some x ∈ X }

.

If f is bounded from below, we have the analogous de�nition:

inf
x∈X

f := inf f (X ) = inf {
y : y = f (x ) for some x ∈ X }

.

Problem 3. Let X and Y be non-empty sets. Let f : X → Y be any function and
д : Y → R bounded from above. Show that д ◦ f is bounded from above and that

sup
x∈X

(д ◦ f ) ≤ sup
y∈Y

д. (4.5)

In addition, we have equality when f is surjective.

Proof. �e function д ◦ f is bounded from above whenever д is bounded from
above since (д ◦ f ) (X ) ⊆ д(Y ). �erefore,

sup
x∈X

(д ◦ f ) = sup (д ◦ f ) (X )
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exists. To prove the desired inequality, it is enough to show that supy∈Y д is an
upper bound for the set (д ◦ f ) (X ). Clearly, any element of (д ◦ f ) (X ) takes the
form д( f (x )) for some x ∈ X . Rather, it takes the form д(y) for some element
y = f (x ) ∈ Y . �ence,

(д ◦ f ) (x ) = д( f (x )) = д(y) ≤ sup
y∈Y

д.

We have thus proven (4.5). Now, suppose that f is surjective. �is means that
д(Y ) = д( f (X )) whence

sup
y∈Y

д = supд(Y ) = supд( f (X )) = sup (д ◦ f ) (X ) = sup
x∈X

(д ◦ f ).

See the remark below for an example in which equality fails when f is not sur-
jective. �

Remark 4.2. Equality may fail in (4.5) if f is not surjective. Let X = Y = [0, 1]
and de�ne functions f : X → Y , д : Y → R according to the formulas

f (x ) = 0, д(y) = y.

�en, (д ◦ f ) (X ) = {0} so that

sup
x∈X

(д ◦ f ) = 0.

On the other hand, д(Y ) = [0, 1]. By an earlier result (Proposition 4.4), we have
supд(Y ) = maxд(Y ) = 1 > 0. �erefore,

sup
x∈X

(д ◦ f ) < sup
y∈Y

д. (4.6)

5 Fi�h Tutorial

We �rst recall some notions about open and closed subsets of R. A set U ⊆ R is
called open if, for every x ∈ U , there exists ε > 0 such that

Vε (x ) := (x − ε,x + ε ) ⊆ U .

In symbolic terms, U is said to be open if and only if:

(∀x ∈ U ) (∃ε > 0 such that Vε (x ) ⊆ U ) .
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In other words, a set U is open if for every point x ∈ U there exists an open
interval (x − ε,x + ε ) contained in U .12 Since an open interval (x − ε,x + ε )
contains all points “near x”, the de�nition for an open set can be interpreted as
follows:

A set U ⊆ X is called open if, for every x ∈ U , the set U also contains
all points near x .13

A set F ⊆ R is said to be closed if F c = R\F is open in R. Let us now summarize
some properties of open sets that you will have proven in the lectures.

• If {Uα }α∈I is an indexed family of open sets, then ⋃
α∈I Uα is also open.

• If U1 and U2 are open subsets of R, then so is U1 ∩U2. By induction, �nite
intersections of open sets are thus open.

• Both R and ∅ are open in R.

�e set T of all open subsets of R is therefore closed under unions, �nite inter-
sections, and contains both ∅ and R. �is makes T into what we call a topology.
Since R has a topology (i.e. open subsets), it is called a topological space.

Example 5.1. Let us show that in�nite intersections of open sets need not be
open. For every n ∈ N, let Un be the open interval:

Un :=
(
−

1
n
,

1
n

)
.

Now consider the in�nite family {Un}
∞
n=1, what can be said about ⋂∞

n=1Un? Well,
a�er a moment’s consideration, it is not di�cult to see that

∞⋂
n=1

Un =

∞⋂
n=1

(
−

1
n
,

1
n

)
= {0}. (5.1)

To prove this, we �rst note the obvious inclusion {0} ⊆ Un, for each n ∈ N. Since
this holds for all n, we have {0} ⊆ ⋂∞

n=1Un. Conversely, let x ∈ ⋂∞
n=1Un be given;

we will show that x , 0 is impossible. If x , 0, then either x < 0 or x > 0.
12Note that the empty set ∅ is vacuously open by this de�nition as well. If ∅ were not open,

then there must exist x ∈ ∅ such that Vε (x ) * ∅ for all ε > 0. Since this would imply x ∈ ∅, we
have a contradiction.

13Please note that this is not rigorous, and is only intended to provide intuition.

40



1. Case x > 0. By the Archimedean property, there exists n ∈ N so large that
1
n < x . �us, x < Un.

2. Case x < 0. �en, −x > 0. As above, we can �nd n ∈ N such that n > − 1
x .

�is implies that x < − 1
n whence x < Un.

In either case, we get x < Un for some n ∈ N. Since this contradicts the assump-
tion that x ∈ ⋂∞

n=1Un, we conclude that x , 0 is impossible. �us, x ∈ ⋂∞
n=1Un

implies x = 0, i.e. ⋂∞n=1Un ⊆ {0}. To summarize, we have proven (5.1).
But {0} is not open! If it were, then for 0 ∈ {0} we could �nd ε > 0 such

that (0 − ε, 0 + ε ) ⊆ {0}; which is clearly absurd. Hence ⋂∞
n=1Un is an in�nite

intersection of open sets that is not open.

Example 5.2. You have proven (using De Morgan’s laws) that any intersection
of closed sets is necessarily closed. You have also seen that �nite unions of closed
sets are closed. What about in�nite unions of closed sets? First, note that any
singleton {x } ⊂ R is closed. Indeed,

R \ {x } = (−∞,x ) ∪ (x ,∞)

is a union of open sets, and hence open. Consider the union ⋃
x∈(0,1) {x } = (0, 1)

of in�nitely many closed sets. We claim that (0, 1) is not closed in R. If it were,
then R \ (0, 1) = (−∞, 0] ∪ [1,∞) would be open in R. But, for any ε > 0,

Vε (0) = (−ε, ε ) * (−∞, 0] ∪ [1,∞).

�is means that R \ (0, 1) is not open whence (0, 1) is not closed.

By way of another example, we show that N is closed in R. Indeed, R \N can
be wri�en as the union of open sets:

R \ N = (−∞, 1) ∪
∞⋃
n=1

(n,n + 1).

�us, R \ N is open. A more interesting example is the following.

Example 5.3. We show that Q is neither open nor closed in R. Suppose for a
contradiction thatQ is open inR. �en, for anyq ∈ Q there exists ε > 0 such that
Vε (q) = (q − ε,q + ε ) ⊆ Q. Recall from the previous tutorial that the irrationals
are dense in R. �us, every open interval in R contains an irrational number. In
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particular, so doesVε (q). It follows thatVε (q) cannot be contained in Q, which is
a contradiction. We conclude that Q is not open.

To see that Q is not closed, we also argue by contradiction. If Q were closed,
then the set of irrationals R \ Q would be open in R. �en, for any irrational
number ξ , we could �nd ε > 0 such thatVε (ξ ) = (ξ − ε, ξ + ε ) ⊆ R \Q. Since any
open interval contains a rational number (Q is dense in R), this is impossible.
Hence, Q cannot be closed.

5.1 About Intervals

Proposition 5.1. Let U ⊆ R. �en U is open if and only if it can be wri�en as a
union of open intervals.

Proof. Since open intervals are open, and unions of open sets are always open,
the direction “ ⇐= ” is immediate. Conversely, let U be an open subset of R. If
U = ∅, then U can be wri�en as the empty union of open intervals. Otherwise,
U is non-empty. For every x ∈ U , we can �nd εx > 0 such that Vεx (x ) ⊆ U .
�erefore, ⋃

x∈U

Vεx (x ) ⊆ U .

On the other hand, x ∈ U implies x ∈ Vεx (x ) from which we get⋃
x∈U

Vεx (x ) ⊇ U .

We conclude that ⋃
x∈U

Vεx (x ) = U .

Since every Vεx (x ) is itself an open interval, we see that U can be wri�en as the
union of open intervals. �

In the previous tutorial we proved the characterization of intervals theorem,
which we recall below for the sake of convenience.

�eorem5.2 (Characterization of Intervals). Let S ⊆ R contain at least two points
and assume that S satis�es the property

if x ,y ∈ S and x < y then [x ,y] ⊆ S .

�en, S is an interval.
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Using this theorem, we will be able to deduce a very intuitive result that, a
priori, seems very tricky to prove rigorously.

Proposition 5.3. Let J be an index set and
{
Ij

}
j∈J

a family of intervals such that⋂
j∈J Ij , ∅. �en, I := ⋃

j∈I Ij is an interval in R.

Proof. As mentioned, we will be using the characterization of intervals theorem.
Since every interval contains at least two points, so must I . Let now x ,y ∈ I
with x < y be given. By �eorem 4.6, it is enough to show that [x ,y] ⊆ I . Let
a ∈

⋂
j∈J Ij ; choose indices j1 and j2 ∈ J such that x ∈ Ij1 and y ∈ Ij2 . We now

distinguish three cases.

1. Case a ≤ x < y. Since a,y ∈ Ij2 , we must have [a,y] ⊆ Ij2 ⊆ I . In particular,
[x ,y] ⊆ I .

2. Case x < a < y. Since x ∈ Ij1 and a ∈ Ij1 , we get that [x ,a] ⊆ Ij1 ⊆ I .
Similarly, we see that [a,y] ⊆ I . �erefore, [x ,y] = [x ,a] ∪ [a,y] ⊆ I .

3. Case x < y ≤ a. Since x ∈ Ij1 and a ∈ Ij1 , it follows from the properties of
intervals that [x ,a] ⊆ Ij1 ⊆ I . However, because y ≤ a, we have

[x ,y] ⊆ [x ,a] ⊆ I .

In either case we have [x ,y] ⊆ I . By the characterization of intervals theorem, I
is an interval in R. With this, the proof is complete. �

5.2 The Boundary of a Set

Let X be a subset of R. �e boundary of X is de�ned to be the set

∂X := {
x ∈ R : ∀ε > 0, Vε (x ) ∩ X , ∅ and Vε (x ) ∩ X

c , ∅
}
.

In other words, ∂X consists of all points x ∈ X such that every ε-neighbourhood
of x intersects both X and X c. �is de�nition is a lot to unpack so let us take
a step back. Consider the set (0, 1) ⊂ R. �e point 0 < (0, 1) belongs to ∂(0, 1)
since every ε-neighbourhood (−ε, ε ) of 0 contains negative numbers (points not
in (0, 1)) and points between 0 and 1 (i.e. points in (0, 1)). Similarly, 1 ∈ ∂S .

In the tutorial, I will draw a picture that I hope will make of this clearer. If
this doesn’t help, come see me or send an me an email; I will then update these
notes with more examples. For now, we will stick to more “proofy” problems.
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Proposition 5.4. For any subset X ⊆ R, we have the ∂X = ∂(R \ X ). �erefore,
the boundary of a set is complement symmetric.

Proof. We could go through showing that ∂X ⊆ ∂(R \ X ) and ∂(R \ X ) ⊆ ∂X .
Or, we could be clever and realize that the de�nition of ∂X is symmetric in X
and R \ X = X c. Indeed, the proof follows from the following observation:

∂X =
{
x ∈ R : ∀ε > 0, Vε (x ) ∩ X , ∅ and Vε (x ) ∩ X

c , ∅
}

=
{
x ∈ R : ∀ε > 0, Vε (x ) ∩ X c , ∅ and Vε (x ) ∩ X , ∅

}
= ∂(X c)

= ∂(R \ X ).

�

Proposition 5.5. Let ∅ $ X $ R be given. �en, ∂X , ∅.

Proof. Since X is non-empty, we can choose x ∈ X . Since X , R, there exists
y ∈ R with y < X . For the moment, let us make the assumption:

Assumption : x < y

�en, [x ,y]∩X is a non-empty and bounded subset of R. Let s be the supremum
of [x ,y] ∩ X in R. Clearly, x ≤ s ≤ y. We now show that s ∈ ∂X . Given ε > 0,
we know that s − ε is not an upper bound of [x ,y] ∩ X . �erefore, we can �nd
an element z ∈ [x ,y] ∩ X such that

s − ε < z ≤ s .

�en, z ∈ Vε (s )∩X . In particular,Vε (s )∩X , ∅. We now consider two sub-cases:

(i) If s < X then Vε (s ) 3 s intersects R \ X at s .

(ii) Suppose that s ∈ X so that s ∈ [x ,y] ∩ X . Since y < X and s ≤ y, we must
have s < y. In this case, we obtain

(s,min {
s + ε,y

}
) ⊆ (s, s + ε ) ⊆ Vε (s ).

But, since s is an upper bound for [x ,y]∩X , the interval (s,min {
s + ε,y

}
)

is contained in R \ X . Indeed, for any w ∈ (s,min {
s + ε,y

}
) we have

x ≤ s < w ≤ y whence w ∈ [x ,y]. If w ∈ X , then w ∈ [x ,y] ∩ X
would contradict the upper bound property of s .
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In either case, we haveVε (s )∩X , ∅ andVε (s )∩ (R\X ) , ∅. �us, s ∈ ∂X . In the
case y < x , we argue similarly but using instead the in�mum of [y,x] ∩ X . �

If X is a set, the de�nition of ∂X says that for each x ∈ ∂X and every ε > 0
the ε-neighbourhood Vε (x ) intersects both X and X c. �us, by shrinking ε as
necessary, this seems to suggest that one can approximate all x ∈ ∂X by points
in X and also by elements of X c. �is is con�rmed by the following theorem:

�eorem 5.6. Let X be a set. �en, z ∈ ∂X if and only if for each n ∈ N there
exists x ∈ X and y ∈ X c such that

|z − x | <
1
n

and ��z − y�� <
1
n
. (5.2)

Proof. First assume that z ∈ ∂X and let n ∈ N be given. By de�nition of ∂X ,
V1/n (z) ∩ X , ∅ and V1/n (z) ∩ X c , ∅. �us, we can pick x ∈ V1/n (z) ∩ X
and y ∈ V1/n (z) ∩ X c. Since this implies |z − x | < 1

n and ��z − y�� < 1
n , the �rst

implication has been proven.
Conversely, �x z and assume that for each n ∈ N one can �nd x ∈ X and

y ∈ X c such that (5.2) holds. Let now ε > 0 be given. By the Archimedean
Property, there exists n ∈ N such that n > 1

ε . Or, equivalently, such that 1
n < ε .

Now, applying the assumption for this n, (5.2) provides the existence of x ∈ X
and y ∈ X c such that x ∈ V1/n (z) and y ∈ V1/n (z). Using the choice of n, we �nd
that

x ∈ V1/n (z) ⊆ Vε (z) and y ∈ V1/n (z) ⊆ Vε (z).

�us, Vε (z) ∩ X and Vε (z) ∩ X
c are both non-empty. Hence, z ∈ ∂X . �

We now a recall a problem you will prove in your fourth assignment:

Lemma 5.7. Let X ⊆ R be closed. �en, ∂X ⊆ X .

A subset X of R is said to be clopen if it is both open and closed. With the
help of this lemma, we can completely characterize the clopen subsets of R.

Proposition 5.8. A subset X of R is clopen if and only if X = R or X = ∅.

Proof. It was shown in class that∅ and R are clopen. �us, we only need to show
the “ =⇒ ” implication. To this end, let X be a non-empty clopen subset of R.
We claim that X = R. Since X is closed, our previous lemma forces ∂X ⊆ X .

We now show that ∂X must be empty. If this is true, then Proposition 5.5
would imply that X = R, since X , ∅. Suppose that ∂X is non-empty and
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choose x ∈ ∂X . As mentioned above, ∂X ⊆ X implies x ∈ X . Since X is open,
there exists an ε-neighbourhood Vε (x ) ⊆ X . �us, Vε (x ) ∩ (R \ X ) = ∅ for this
particular ε . Of course, this contradicts the assumption that x ∈ ∂X . Our only
option is therefore ∂X = ∅ which forces (by Proposition 5.5) X = R. �

From this, we can deduce a very nice topological property.

Corollary 5.9. R cannot be wri�en as the union of two non-empty open subsets X
and Y of R such that X ∩ Y = ∅.

Proof. Let X and Y be open subsets of R, with X ∩ Y = ∅, such that R = X ∪ Y .
Clearly, X c = Y and Y c = X . Since Y is open, this tells us thatX c is open. Hence,
X is closed. Similarly, Y can be seen to be closed. But, this would mean that
X and Y are clopen. By the last proposition, we must have X = R or Y = R.
Without loss of generality, suppose that X = R. Finally, observe that

Y = Y ∩ R = Y ∩ X = ∅.

�is shows that X and Y cannot be non-empty disjoint open subsets of R. With
this, the proof is complete. �

Finally, we consider the question of when a given set arises as the boundary
of an open set. As it turns out, this question has an elegant answer.

�eorem 5.10. Let X ⊆ R. �en, X is the boundary of an open set if and only if
X is closed and contains no non-trivial open intervals.

Proof. First let us assume that X is the boundary of some open set. �at is, there
exists an open set U ⊆ R such that ∂U = X . Since you have proven in your
assignment that the boundary of a set is always closed, we see that X = ∂U
is closed. Now, we must show that X contains no non-empty open intervals.
Assume that I ⊆ X is a non-empty interval and let x ∈ I be given. Since I is
open, there exists ε > 0 such that Vε (x ) ⊆ I ⊆ X . �erefore, Vε (x ) ⊆ ∂U = X . In
particular, x ∈ ∂U so that

Vε (x ) ∩U , ∅ and Vε (x ) ∩U
c , ∅.

However, because U is open, Vε (x ) ∩U ⊆ ∂U ∩U = ∅. Clearly, this is a contra-
diction.

Conversely, let us assume that X is closed and contains no non-empty open
intervals; we will construct an open set U ⊆ R such that ∂U = X . To this end,
letU := X c. Since X is closed,U is an open subset of R. We must now show that
∂U = X . Here, there are two inclusions to demonstrate:
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• We claim thatX ⊆ ∂U . Givenx ∈ X and ε > 0, we know thatVε (x )∩X , ∅.
Since X = U c, this means that Vε (x ) ∩ U c is non-empty. Now, since X
contains no non-empty open intervals, Vε (x ) * X . �us,

Vε (x ) ∩ X
c = Vε (x ) ∩U

is non-empty as well. Since ε > 0 was arbitrary, this implies that x ∈ ∂U .

• We now show that ∂U ⊆ X . Otherwise, ∂U ∩X c = ∂U ∩U is non-empty.
However, this is impossible by assignment 4 since U is open.

With this, the proof is complete. �

6 Sixth Tutorial – The Cantor Set

We devote this tutorial to the construction of an infamous topological structure
known as the Cantor set. It is this set which helped give rise to the subject known
today as point-set topology. �e Cantor set is very special in the sense that it
de�es intuition. For one, the Cantor set is a closed uncountable set that does not
contain any open interval. Moreover, the Cantor set is both totally disconnected
and nowhere dense (these terms will be de�ned rigorously in a few moments).
Despite this, the Cantor set does not contain any isolated points (again, we will
give precise meaning to this term shortly). In short, the Cantor set is a prime
example of how weak our ingrained topological intuition can be.

6.1 Constructing the Cantor Set

We begin with the closed and bounded interval [0, 1], which has length equal to
1. Let us putA0 := [0, 1]. We can now subdivideA0 into three disjoint bounded
intervals, each of length 1

3 , according to the following rule:

A0 :=
[
0, 13

]
∪

(1
3 ,

2
3

)
∪

[ 2
3 , 1

]
.

Note that the three intervals given above are pairwise disjoint (i.e. none of these
intervals have common points). �e idea is now to remove what we will call the
middle open third interval. In the case ofA0, this “middle open third interval”
will simply be the open interval (1

3 ,
2
3

)
.
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Deleting this interval from A0, we obtain a new subset of [0, 1] given by

A1 :=
[
0, 13

]
∪

[ 2
3 , 1

]
.

Note that A1 is actually a subset of A0. Moreover, since �nite unions of closed
sets are always closed, A1 will be both closed and bounded. Now, A1 consists of
two intervals, each having length 1

3 . We will now remove the “middle open third
interval” from each of these two sub-intervals. To do this, we decompose [0, 1

3]
into thirds as follows:

[
0, 13

]
=

[
0, 19

]
∪

(1
9 ,

2
9

)
∪

[ 2
9 ,

1
3

]
.

�us, when removing the “open middle third” interval from
[
0, 1

3

]
, we would be

le� with
[
0, 19

]
∪

[ 2
9 ,

1
3

]
. (6.1)

Similarly, we break the second interval in A1 into thirds:
[ 2
3 , 1

]
=

[ 2
3 ,

7
9

]
∪

(7
9 ,

8
9

)
∪

[ 8
9 , 1

]
.

�e “open middle third” interval corresponding to the interval above is therefore(
7
9 ,

8
9

)
. Deleting this from

[
2
3 , 1

]
leaves us with the following:
[ 2
3 ,

7
9

]
∪

[ 8
9 , 1

]
. (6.2)

�us, (6.1)-(6.2) consist of the sets le�over a�er deleting the “open middle third”
intervals from the two subintervals of A1, respectively. We then de�ne

A2 :=
[
0, 19

]
∪

[ 2
9 ,

1
3

]
∪

[ 2
3 ,

7
9

]
∪

[ 8
9 , 1

]
.

Again, A2 is the disjoint union of �nitely many closed intervals in [0, 1]. Hence,
A2 is closed and bounded. Note that every subinterval in the de�nition of A2
has length equal to 1

32 . We now apply the last steps recursively. Given An, for
some n ∈ N, we remove the “open middle third” interval from every (disjoint)
closed subinterval given in the de�nition of An. A�er removing an “open middle
third” interval from a closed interval [a,b], we are always le� with two disjoint
closed intervals. �erefore, upon removing the “open middle third” subintervals
from each of the subintervals of An, we will be le� with a �nite family of disjoint
closed intervals, each contained in An. We then de�ne An+1 to be the union of
these closed intervals. �e following properties will hold for this An+1.
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• An+1 is closed. Indeed, An+1 is by de�nition the �nite union of disjoint
closed intervals.

• An+1 ⊆ An. Certainly, every interval in the de�nition of An+1 was obtained
by removing a “middle open third” interval from some subinterval of An.
In particular, every interval that makes up An+1 is a subset of An. Since
An+1 is merely the union of these intervals, we get An+1 ⊆ An.

• 0 ∈ An for every n ∈ N. Indeed, this follows by observing that the end-
points of intervals are never removed when deleting the “open middle
third” interval. Similarly, 1 ∈ An.

�erefore, for every n ≥ 0, we obtain a sequence of closed and bounded sets,
denoted by {An}n∈N0 . Note that, by construction, 0 ∈ ⋂

n∈N0 An. In particular, this
intersection is non-empty.

De�nition 6.1 (Cantor Set). �e Cantor set C is the non-empty set

C :=
⋂
n∈N0

A0. (6.3)

Note that C ⊆ A0 ⊆ [0, 1]. Moreover, since An is closed for each n ∈ N, it is
immediate from the intersection property of closed sets that C is closed.

Since the Cantor set is very di�cult to picture, I have included a depiction
from Wikipedia below.

Figure 1: Six iterations of the Cantor set

6.2 The Cantor Set is Uncountable

Given the title of this subsection, we can all guess what we will prove next.

Proposition 6.1. �e Cantor set C de�ned in (6.3) is uncountable.

49



Proof. Suppose, by way of contradiction, that C is countable and enumerate its
elements:

C := {x1,x2, . . . ,xn, . . . } .

By construction, C = ⋂
n∈N0 An ⊆ A1 =

[
0, 1

3

]
∪

[
2
3 , 1

]
. Since these two intervals

are disjoint, the point x1 only belongs to one of these two intervals. Let I1 denote
the interval not containing this point x1. Dividing this subinterval I1 by remov-
ing its “open middle third” interval, we obtain two disjoint closed subintervals of
A2 (each of length 1

32 ). Again, since these two intervals are disjoint and x2 ∈ A2,
we see that x2 cannot belong to both of these subintervals. Let I2 be any one
of these two subintervals not containing x2. Since I2 was obtained by deleting
points from I1, we clearly have I2 ⊆ I1 ⊆ [0, 1].

We proceed recursively, obtaining a nested sequence

I1 ⊇ I2 ⊇ · · · ⊇ In · · ·

of closed and bounded intervals, with xn < In for every n ∈ N. By the nested
interval property of R, we know that ⋂

n∈N In is non-empty. Let now x ∈
⋂

n∈N In
so that x ∈ In for all n ∈ N. By construction, In ⊆ An whence x ∈ ⋂

n∈N0 An = C.
�us, x belongs to the Cantor set C and must be present in our enumeration. On
the other hand, xn < In for every index n. Since x ∈ In, this forces x , xn for all
n ∈ N. We have therefore found an element of C not present in our enumeration.
Hence C cannot be countable. �

6.3 The Topology of C

We now discuss the surprising topological aspects of the Cantor set. We have al-
ready seen that C is closed and bounded (making it an example of what is known
as a compact set). Now, we claim that C does not contain any open interval (and
hence does not contain any non-trivial interval).

Proposition 6.2. �e Cantor set C does not contain any non-trivial interval.

Proof. Here we have to look back at our construction of the Cantor set. At thenth

stage of the construction, An is the disjoint union of 2n closed intervals in [0, 1],
each having length 3−n. �us, any interval contained in An must have length no
larger than 3−n. Hence, if I is a non-trivial interval contained in C, it must satisfy

|I | ≤ inf
n≥1

3−n .

50



Here, |I | simply denotes the length of I . By Bernoulli’s inequality,

3n > n for all n ≥ 1.

�us,
0 ≤ inf

n≥1
3−n ≤ inf

n≥1

1
n
= 0.

We then see that |I | = 0, which is absurd for any non-trivial interval. We con-
clude that C does not contain any non-trivial interval. �

Corollary 6.3. �e Cantor set C has empty interior. �is makes C and example of
a nowhere dense set.14

Proof. Let C̊ denote the interior of C. �en, C̊ is a subset of C by de�nition. If
C̊ were non-empty, then for any point x ∈ C̊ we could �nd ε > 0 such that
Vε (x ) ⊆ C̊ ⊆ C. Of course, this means that C would contain an open interval.
�is contradiction shows that C has empty interior. �

Remark 6.1. Note that 0 = inf C and 1 = supC.15 Since 0, 1 ∈ C, we see that C
contains both of its “endpoints”. But this does not imply that ∂C = {0, 1}! Indeed,
as we shall see ∂C, contains much more than the two endpoints 0 and 1 of C.

We claim that ∂C = C. Since C is closed, the inclusion ∂C ⊆ C is immediate.
Conversely, let x ∈ C be given and �x ε > 0. Clearly, Vε (x ) ∩ C , ∅ since x ∈ C.
However, because C does not contain any open interval, we haveVε (x ) * C. �is
implies that

Vε (x ) ∩ C , ∅ and Vε (x ) ∩ C
c , ∅.

Since ε > 0 was arbitrary, it follows that x ∈ ∂C. �us, C ⊆ ∂C and ∂C = C. In
particular, ∂C is uncountable. �erefore, the Cantor set is an example of a closed
set with boundary points that are not endpoints. In fact, every point in C is a
boundary point of C.

De�nition 6.2. A subset X of R is said to be totally disconnected if, for any
x ,y ∈ X with x < y, there exists z ∈ R \ X such that x < z < y.

One example of a totally disconnected set is Q. Indeed, by the density of the
irrationals, for any x < y in Q one can always �nd an irrational number z with
z ∈ (x ,y).

14A set A ⊆ R is said to be nowhere dense if the interior of A is empty.
15�is is because C ⊆ [0, 1] and 0, 1 ∈ C.
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Proposition 6.4. �e Cantor set C is totally disconnected.

Proof. Let x ,y ∈ C be given and assume that x < y. We must show that there
exists some z < C with x < z < y. Since C does not contain any non-trivial
interval, we cannot have (x ,y) ⊆ C. Namely, (x ,y) ∩ Cc , ∅. �en, any z ∈
(x ,y) ∩ Cc is satis�es x < z < y and z < C. �

De�nition 6.3. Let X be a non-empty subset of R. We say that a point x ∈ X is
an isolated point of X if there exists ε > 0 such that Vε (x ) ∩ (X \ {x }) = ∅.

In more familiar language, x ∈ X is called an isolated point ofX if there exists
an ε-neighbourhood of x that does not contain points in X other than x .

Proposition 6.5. �e Cantor set C has no isolated points.

Proof. Fix x ∈ C and let ε > 0 be given; we must show that Vε (x ) intersects C at
a point other than x . Since x ∈ C, we must have x ∈ An for all n ≥ 1. Arguing
as before, we can �nd N ∈ N so large that 3−N < ε . Consider this AN , and recall
that every subinterval of AN has length equal to 3−N < ε . Let I = [a,b] be the
closed subinterval of AN containing the point x . For any y ∈ I :

��x − y�� ≤ |b − a | .16

Since I has length 3−N < ε , it follows that

��x − y�� ≤ 3−N < ε

whence y ∈ Vε (x ). Or, rather, I = [a,b] ⊆ Vε (x ). Now, I is a subinterval from
the construction of AN whence I ⊆ An for all n ≤ N . On the other hand, when
removing the “open middle third” in the construction, the end points of the in-
tervals are never removed. �erefore the end points a,b of I will belong to An

for all n ∈ N. �is simply means that

a,b ∈ C =
⋂
n∈N0

An .

Since a,b ∈ Vε (x ), it follows that Vε (x ) intersects C at a point other than x . �

16First note that x ≤ b and y ≥ a. �erefore, x − y ≤ b − a. Similarly, one can show that
y − x ≤ b − a whence −(b − a) ≤ x − y.
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Remark 6.2. In the previous proof, we have used that if x is an endpoint of one of
the disjoint intervals that make up An for some n ∈ N, then x ∈ C. It is therefore
natural to ask whether the converse is true as well. �at is, suppose x ∈ C. Can
we conclude that x is an endpoint of one of the disjoint intervals making up An

for some n ∈ N? Unfortunately, this is not the case. To see that not all of points
of C are of this form, recall C is uncountable. On the other hand, the collection
of endpoints of intervals making up An for each n ∈ N is countable.

7 Seventh Tutorial

We begin by reiterating the de�nition of a limit for sequences. Recall that a se-
quence is a function x : N → R, where we denote by xn the value x (n). It has
become convention to denote a sequence by either (xn ) or {xn}n∈N; I prefer the
former. Intuitively, we like to picture a sequence as an “in�nite list” of num-
bers that may have repetitions. For this reason, it is important not to confuse a
sequence with a subset of the real numbers, as sets do not allow for repetitions.

De�nition 7.1. Let (xn ) be a sequence and �x x ∈ R. We say that xn converges
to x (as n → ∞) if, for every ε > 0, there exists N ∈ N such that |xn − x | < ε for
all n ≥ N . In symbolic terms:

(∀ε > 0) (∃N ∈ N) (n ≥ N =⇒ |xn − x | < ε ) .

If this is the case, then we write xn → x , xn
n→∞
−−−−→ x , or

limxn = x .

To help solidify the de�nition of convergence, we give a few explicit examples
of convergent sequences. Although in practice one does not argue directly from
the de�nition, it is important to fully understand the logic behind this de�nition.

Example 7.1. Show that
lim 2n

n + 1 = 2.

Proof. Let ε > 0 be given, we must �nd N ∈ N such that

����
2n

n + 1 − 2
���� < ε, ∀n ≥ N .
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First, we calculate for all n ∈ N:

����
2n

n + 1 − 2
���� =

�����
2n − 2(n + 1)

n + 1
�����
=

2
n + 1 ≤

2
n
.

By the Archimedean property, we can �nd N ∈ N such that N > 2
ε . �en, for all

n ≥ N there holds
2
n
≤

2
N
< 2 · ε2 = ε .

Hence, if n ≥ N , we see that

����
2n

n + 1 − 2
���� ≤

2
n
< ε,

which is what had to be shown. �

Example 7.2. Prove that
lim 3n + 1

2n + 5 =
3
2 .

Proof. Let ε > 0 be given, we seek N ∈ N such that

����
3n + 1
2n + 5 −

3
2

���� < ε

for all n ≥ N . Naturally, for each n ∈ N, we have the following estimate:

����
3n + 1
2n + 5 −

3
2

���� =
�����
2(3n + 1) − 3(2n + 5)

2(2n + 5)
�����
=

�����
2 − 15

2(2n + 5)
�����

=
13

2(2n + 5)

≤
13
2n

≤
13
n
.

Choose N ∈ N so large that 1
N <

ε
13 (why can we do this?); if n ≥ N the above

implies that

����
3n + 1
2n + 5 −

3
2

���� ≤
13
n
≤

13
N
< 13 · ε13 = ε .
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Put otherwise, we have
����
3n + 1
2n + 5 −

3
2

���� < ε, ∀n ≥ N .

By de�nition of the limit, this means that
3n + 1
2n + 5

n→∞
−−−−→

3
2 .

�

Remark 7.1. We would like to point out our general strategy for computing limits
via the de�nition. If we wish to show that a sequence (xn ) converges to x ∈ R,
we start by �xing ε > 0. Our goal is then to show that there exists N ∈ N such
that |xn − x | < ε whenever n ≥ N . To �nd such an N , we try to estimate |xn − x |
for all large enough n. �is is done in the hopes of bounding the (o�en complex)
expression |xn − x | by some term, depending on n, that is easier to estimate.

Example 7.3. Prove that

lim n2 − 1
2n2 + 3 =

1
2 .

Proof. Following the outline in the remark, let ε > 0 and consider the expression:
�����
n2 − 1
2n2 + 3 −

1
2

�����
=

�����
2(n2 − 1) − (2n2 + 3)

2(2n2 + 3)
�����

=
�����

5
2(2n2 + 3)

�����
≤

5
4n2

≤
2
n2 .

Now, it will be easier to �nd our candidate for N . Let N ∈ N be such that

N >

√
2
ε
,

which we know to exist by the Archimedean property. If n ≥ N , then our esti-
mate above tells us that

�����
n2 − 1
2n2 + 3 −

1
2

�����
≤

2
n2 ≤

2
N 2 < 2 · ε2 = ε .

�is is what had to be shown. �
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We give one �nal example.

Example 7.4. Prove that

lim
√
n

n + 1 = 0.

Proof. Let ε > 0 be given. For every n ∈ N, we have

�����

√
n

n + 1 − 0
�����
=

√
n

n + 1 ≤
√
n

n
=

1
√
n
.

Let now N ∈ N be such that N > 1
ε2 . �en, 1√

N
< ε so that, for all n ≥ N ,

�����

√
n

n + 1 − 0
�����
≤

1
√
n
≤

1
√
N
< ε .

�

7.1 Other Properties and a Return to Topology

We note that the convergence of a sequence (xn ) does imply that convergence of
the sequence ( |xn |). Indeed, we prove this below.

Proposition 7.1. Let (xn ) be a sequence of real numbers converging to x ∈ R.
�en, |xn | converges to |x |, as n → ∞.

Proof. Let ε > 0 be given, since limxn = x , we can �nd N ∈ N so large that
|xn − x | < ε for all n ≥ N . By the reverse triangle inequality, for all n ≥ N there
then holds

| |xn | − |x | | ≤ |xn − x | < ε .

Hence, lim |xn | = |x |. �

�e converse need not hold in general. Indeed, consider the sequence (xn )
given by xn := (−1)n. �is sequence does not converge to any real number x ,
but the sequence given by |xn | is always equal to 1. Since constant sequences
converge, this means that ( |xn |) is convergent. Despite this, a partial converse to
the above does hold.

Proposition 7.2. Let (xn ) be a sequence of real numbers. If ( |xn |) converges to 0
as n → ∞, then so does (xn ).
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Proof. Given ε > 0, we can �nd N ∈ N so large that | |xn | − 0| < ε , whenever
n ≥ N . But this means that |xn | < ε for all n ≥ N . �is proves the claim. �

�eorem 7.3. If a > 1 is a real number, then

lim
( 1
an

)
= 0.

Moreover, if a ∈ (−1, 1), then liman = 0.

Proof. First suppose that a > 1. �en, a = 1 + t for some t > 0. By Bernoulli’s
inequality, we know that

an = (1 + t )n ≥ 1 + nt , ∀n ≥ 1.

�erefore, for n ∈ N, we have the estimate:
����

1
an

���� =
1
an
≤

1
1 + nt ≤

1
nt
.

Choose N ∈ N such that N > 1
tε > 0. For all n ≥ N , we have

����
1
an
− 0

���� ≤
1
nt
≤

1
Nt
<

tε

t
= ε .

�is shows that 1
an → 0, as n → ∞. Now, we handle the case where a ∈ (0, 1).

Consider b := 1
a > 1; for every n ∈ N we have

an =
1
bn
.

By the �rst part, it follows that

liman = lim
( 1
bn

)
= 0.

If a = 0, then obviously liman = 0. �us, it only remains to handle the case
a ∈ (−1, 0). In this case, note that |a | ∈ (0, 1) and

��an�� = |a |n , ∀n ∈ N.
By the previous case (the case of a ∈ (0, 1)), we see that

lim ��an�� = lim ( |a |n ) = 0.

Invoking Proposition 7.2, we see that liman = 0 in this case as well. With this,
the proof is complete. �

57



Before moving onto more quantitative results, we should take a moment to
discuss the relationship between open sets and limits. As it turns out, the ε − N
de�nition of the limit for sequences can be reformulated entirely in terms of open
sets.

�eorem 7.4 (Open set characterization of the limit). Let (xn ) be a sequence and
�x a point x ∈ R. �e following statements are equivalent:

(1) limxn = x , i.e. xn converges to x as n → ∞;

(2) for each open setU containing x , there exists N ∈ N such that xn ∈ U for all
n ≥ N .17

Proof. We �rst show that (1) implies (2). Assume that xn → x and letU 3 x be an
open set. �ere exists ε > 0 such thatVε (x ) ⊆ U . For this ε , using that limxn = x ,
we can �nd N ∈ N such that

|xn − x | < ε, ∀n ≥ N .

Equivalently, xn ∈ Vε (x ) ⊆ U for all n ≥ N . �is veri�es that (2) holds true.
Conversely, assume that criterion (2) is true; we must show that xn converges

to x . Given ε > 0, it is clear that Vε (x ) is an open set containing x . �erefore,
by (2) with U = Vε (x ), there exists N ∈ N such that xn ∈ Vε (x ) for all n ≥ N .
However, this is equivalent to writing

|xn − x | < ε ∀n ≥ N .

Since ε > 0 was arbitrary, this means that limxn = x . �

Remark 7.2. Let (xn ) be a sequence converging to a point x . �en, intuitively
speaking, xn can be made arbitrarily close to x by making n very large. Now,
given an open setU containing the point x , the theorem above says that xn must
belong to U for all n large. �is agrees with the intuitive statement that open
sets contain all points “near” every one of its elements.

Sequences can also be used to characterized closed sets. We formalize this
notion below.

�eorem 7.5. Let F ⊆ R be a set. �e following statements are equivalent:

(1) F is closed;
17Put otherwise, the open set U contains the point xn for all n ≥ N .
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(2) F contains the limits of all its convergent sequences. �at is, if (xn ) is any
convergent sequence with xn ∈ F for all n ∈ N, then limxn ∈ F .

Proof. You will prove (1) =⇒ (2) in your assignment. �us, we need only show
that (2) implies (1). For this, we argue by contradiction. Assume that (2) holds
but that F is not closed. �en, F c is not open. �at is, there exists a point x ∈ F c
such that Vε (x ) * F c for each ε > 0. In particular, for each n ≥ 1, we have
V1/n (x ) ∩ F , ∅. �us, given n ∈ N, we may select a point xn ∈ V1/n (x ) ∩ F . �is
gives us a sequence (xn ) in F such that

|xn − x | <
1
n

for all n ∈ N. By the Squeeze theorem, this implies that xn → x as n → ∞.
However, as (xn ) is a sequence in F by construction, our assumption implies that
limxn = x ∈ F . As we have chosen x ∈ F c, this is a contradiction. �

7.2 About the Ratio Test

We begin with the following theorem.

�eorem 7.6. Let (xn ) be a sequence of positive real numbers such that

L := lim
(
xn+1
xn

)
exists. If L < 1, then (xn ) converges to 0.

Proof. Fix r ∈ (L, 1) and de�ne ε0 := r − L > 0. Choose N ∈ N such that

�����
xn+1
xn
− L

�����
< ε0, ∀n ≥ N .

Since xn > 0 for all n, we know that L ≥ 0. If n ≥ N , then the above implies that

xn+1
xn
=

�����
xn+1
xn

�����
≤

�����
xn+1
xn
− L

�����
+ |L| < L + ε0 = r .

�us, for all n ≥ N there holds

0 < xn+1 < xnr < xn−1r
2 < · · · < xNr

n−N+1 =: Crn,
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for some constant C > 0 that does not depend on n. By �eorem 7.3, we know
that lim rn = 0. In particular, we know that lim(Crn ) = 0. �us, given ε > 0, we
can �nd N ′ ∈ N so large that

Crn = ��Crn�� < ε, ∀n ≥ N ′.

Let K := max (N ,N ′). If n ≥ K + 1, then

|xn | ≤ Crn−1 < ε,

since n − 1 ≥ N ′. �us, the theorem is proven. �

Remark 7.3. In the context of the previous result, when L > 1 we can instead say
that the sequence (xn ) is divergent. Indeed, assuming that lim xn+1

xn
= L > 1, there

exists N ∈ N such that �����
xn+1
xn
− L

�����
< L − 1

for all n ≥ N . �en, for all such n ∈ N, we �nd that

L −
xn+1
xn
< L − 1 ⇐⇒ 1 < xn+1

xn
,

whence xn+1 > xn for all n ≥ N . In particular, for any n ≥ N , we see that

xn > xn−1 > xn−2 > · · · > xN > 0.

So, if xn converges to some x ∈ R, we must have limxn = x ≥ xN > 0. However,
it would then follow from the limit laws that

lim xn+1
xn
=

limxn+1
limxn

=
x

x
= 1

which contradicts our assumption that L > 1.
In light of Proposition 7.2, the positivity assumption is not required. Indeed,

we only require that the sequence (xn ) be non-zero.

Corollary 7.7 (Ratio Test for Sequences). Let (xn ) be a sequence of non-zero real
numbers and assume that

L = lim |xn+1 |

|xn |

exists. If L < 1, then (xn ) converges to 0. If L > 1, then (xn ) does not converge.
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Proof. If L < 1 then �eorem 7.6 ensures that |xn | → 0 as n → ∞. Of course,
citing Proposition 7.2, we infer that xn → 0 as well. If L > 1, our remark tells us
that ( |xn |) does not converge. �is implies that (xn ) cannot converge. Indeed, if
(xn ) were convergent, then so would be ( |xn |) by Proposition 7.1. �

Remark 7.4. If L = 1 then nothing can be said about the convergence of (xn ).
Indeed, the constant sequence (xn ) given by xn = 1 is convergent and satis�es

lim |xn+1 |

|xn |
= 1.

On the other hand, the alternating sequence xn := (−1)n is divergent but also
satis�es the above. Similarly, the sequence xn = n is unbounded (and therefore
divergent) but once again satis�es the above.

7.2.1 A First Look at Infinite Series

Let (xn ) be a sequence of real numbers. For every N ∈ N, let us de�ne

SN :=
N∑
n=1

xn .

�is gives us a new sequence (SN ) in R. We then say the in�nite series ∑∞
n=1 xn

converges if there exists a real number x such that

lim
N→∞

SN = lim
N→∞

N∑
n=0

xn = x .

In this case, we will denote this limit by the symbol ∑∞n=1 xn. �e series ∑∞
n=1 xn

is said to be absolutely convergent if the series

∞∑
n=1
|xn |

is convergent. It is a fact that every absolutely convergent series is convergent.

�eorem 7.8. Let (xn ) be a sequence of real numbers and assume that the series∑∞
n=1 |xn | is convergent. �at is, let

∑∞
n=1 xn be absolutely convergent. �en,

∑∞
n=1 xn

converges in R.
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Proof. We postpone the proof; we will return to this result once we have studied
Cauchy sequences. �

Proposition 7.9. Let (xn ) be a sequence of non-zero real numbers such that

lim
�����
xn+1
xn

�����
= L

exists. If L < 1, then the series
∑∞

n=1 xn is absolutely convergent.

Proof. It is automatic that L ≥ 0. Let us �x L < r < 1 and de�ne ε0 := r − L > 0.
�ere exists N ∈ N so large that

�����

�����
xn+1
xn

�����
− L

�����
< ε0, ∀n ≥ N .

�erefore, by the triangle inequality,
�����
xn+1
xn

�����
=

�����

�����
xn+1
xn

�����
− L + L

�����
≤

�����

�����
xn+1
xn

�����
− L

�����
+ L

< ε0 + L = r

for all n ≥ N . �at is,
|xn+1 | ≤ r |xn | ∀n ≥ N .

It follows that |xn+k | ≤ rk |xn | for all k ≥ 1 and n ≥ N . But then, for every
K ≥ N + 1, we see that

K∑
n=N+1

|xn | ≤
K∑
k=1
|xN+k | ≤

K∑
k=1

rk |xN | = |xN |
k∑

k=1
rk

= |xN | r
1 − rk
1 − r

≤ |xN |
r

1 − r .

�erefore, the sequence

(SK )
∞
k=1 =

*
,

K∑
k=1
|xk |+

-
is bounded. �is implies (by the monotone convergence theorem - which you
will all see soon) that the series ∑∞

n=1 |xn | converges. �
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7.3 Some Additional Limit Proofs

We will use the remaining time to discuss additional “less obvious” limits. For
these, we will simplify our argument by using the squeeze and limit theorems.
First, we show that

lim 2n
n! = 0. (7.1)

To do this, we will show that

0 < 2n
n! ≤ 2

(2
3

)n−2
, ∀n ≥ 2.

If this indeed true, then the squeeze theorem would imply that

lim 2n
n! = 0.

�us, we are reduced to verifying the aforementioned inequality. For this, we
shall argue by induction. As a base case, let us check the inequality for n = 2:

0 < 22

2! = 2 and 2
(2
3

)0
= 2.

Our base case is thence satis�ed. Now, for the inductive step. Assume that

0 < 2n
n! ≤ 2

(2
3

)n−2

for some n ≥ 2. Clearly, by the inductive hypothesis:

0 < 2n+1

(n + 1)! =
2

(n + 1) ·
2n
n! ≤

2 · 2
(n + 1)

(2
3

)n−2

≤ 2
(2
3

)n−2+1

= 2
(2
3

) (n+1)−2
.

Here, we have used that n ≥ 2 implies n + 1 ≥ 3 and, consequently, 1
n+1 ≤

1
3 . By

our earlier remarks (where we discussed the application of the squeeze theorem),
we see that (7.1) holds.
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Next, we discuss the following limit:

lim n!
nn
= 0. (7.2)

Again, this can be solved relatively easily by the use of the squeeze theorem.
Given n ∈ N, observe that

0 < n!
nn
=
n · (n − 1) · · · 2 · 1

n · n · · · · n︸      ︷︷      ︸
n times

=

n∏
k=1

k

n
≤

1
n
.

�is last inequality uses the fact that k
n ≤ 1, for all k = 2, . . . ,n. �us, for every

n ∈ N, one has
0 ≤ n!

nn
≤

1
n
.

Since
1
n

n→∞
−−−−→ 0,

the Squeeze �eorem shows that (7.2) is true.

8 Eighth Tutorial

Let (xn ) be a sequence and suppose that xn converges to x ∈ R. It was seen in
the lectures that any subsequence (xnk ) of (xn ) must also converge to this point
x . Moreover, let us recall that

e := lim
n→∞

(
1 + 1

n

)n
. (8.1)

Note that this is our de�nition of e! We still do not know how to de�ne ex for all
real numbers x ! Similarly, we cannot yet make sense of the logarithm. Next, we
warm up by practicing with subsequences and limit-laws.

Example 8.1. We show that

lim
(
1 − 1

n

)n
=

1
e
.

To see this, note that for n ≥ 2:(
1 − 1

n

)−n
=

(n − 1
n

)−n
=

( n

n − 1

)n
.
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Or, equivalently,(
1 − 1

n

)−n
=

(
1 + 1

n − 1

)n
=

(
1 + 1

n − 1

)n−1 (
1 + 1

n − 1

)
.

�erefore,

lim
(
1 − 1

n

)−n
= lim

(
1 + 1

n − 1

)n−1
lim

(
1 + 1

n − 1

)
= lim

(
1 + 1

n − 1

)n−1

= e,

where we have used (8.1) in this last step. Now, we write

lim
(
1 − 1

n

)n
= lim 1(

1 − 1
n

)−n = 1
lim

(
1 − 1

n

)−n = 1
e
.

Example 8.2. Similarly, we will show that

lim
(
1 + 1

2n

)n
=
√
e .

Here, we will instead make use of subsequences. For each n ∈ N, we can write

(
1 + 1

2n

)n
=

[(
1 + 1

2n

)2n] 1
2
. (8.2)

Now, (
1 + 1

2n

)2n

is a subsequence of
(
1 + 1

n

)n
, which we know to be convergent with limit e . �is

tells us that the sequence given above converges:

lim
(
1 + 1

2n

)2n
= lim

(
1 + 1

n

)n
= e .

Using this in (8.2), the limit laws tell us that

lim
(
1 + 1

2n

)n
= lim

[(
1 + 1

2n

)2n] 1
2
=
√
e .
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Example 8.3. Find the �aw in the following “proof” that

lim
(
1 + 2

n

)n
= e2.

“Proof”. For every n ∈ N we can write

(
1 + 2

n

)n
=



(
1 + 1

n/2

)n/2

2

.

Since we know that
lim

(
1 + 1

n

)n
= e,

we get that

lim
(
1 + 1

n/2

)n/2
= e .

�us,

lim
(
1 + 2

n

)n
= lim



(
1 + 1

n/2

)n/2

2

= e2.

�

What exactly goes wrong with the proof above? Well, everything is correct
up until the statement

lim
(
1 + 1

n/2

)n/2
= e .

�is does not follow from the fact that

lim
(
1 + 1

n

)n
= e,

Indeed, although it seems to be at a �rst glance,(
1 + 1

n/2

)n/2
is not a subsequence of (

1 + 1
n

)n
.

�is is because n/2 need not be a natural number for every n ∈ N. Having said
this, it is only natural to give a correct proof of this result.
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Proposition 8.1. One has lim
(
1 + 2

n

)n
= e2.

Proof. By the limit laws and (8.1), it is easy to see that

e2 = lim
(
1 + 1

n

)2n
= lim

(
1 + 2

n
+

1
n2

)n
. (8.3)

Next, we observe that for each n ∈ N(
1 + 2

n

)n
≤

(
1 + 2

n
+

1
n2

)n
≤

(
1 + 2

n

)n (
1 + 1

n2

)n
. (8.4)

Here, we have used the fact that(
1 + 2

n
+

1
n2

)
≤

(
1 + 2

n

) (
1 + 1

n2

)
, ∀n ∈ N.

Now, (8.4) shows that(
1 + 2

n
+

1
n2

)n (
1 + 1

n2

)−n
≤

(
1 + 2

n

)n
, ∀n ∈ N.

Furthermore, a direct calculation ensures that(
1 + 2

n
+

1
n2

)n (
1 + 1

n2

)−n
=

(
1 + 2

n
+

1
n2

)n (
1 − 1

n2 + 1

)n
for all n ∈ N. Combining this with the previous inequality, we �nd that(

1 + 2
n
+

1
n2

)n (
1 − 1

n2 + 1

)n
≤

(
1 + 2

n

)n
≤

(
1 + 2

n
+

1
n2

)n
.

Finally, an application of Bernoulli’s inequality to
(
1 − 1

n2+1

)n
gives the inequality(

1 + 2
n
+

1
n2

)n (
1 − n

n2 + 1

)
≤

(
1 + 2

n

)n
≤

(
1 + 2

n
+

1
n2

)n
for all n ∈ N. Note also that

lim
(
1 − n

n2 + 1

)
= 1.

�us, by the limit laws, (8.3), and the Squeeze �eorem, we infer that

e2 = lim
(
1 + 2

n

)n
.

�
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8.1 Approximating square roots

Let a > 0 be given; we will construct a sequence in R converging to
√
a. In fact,

as we shall soon see, this sequence will not require that we know the numerical
value of

√
a. As a �rst step, pick any x1 > 0 from R. For n ≥ 1, we de�ne

xn+1 := 1
2

(
xn +

a

xn

)
> 0 (8.5)

�is gives rise to a recursive sequence (xn ), with xn > 0 for every n ∈ N. As a
�rst step, we will show that x2

n ≥ a for all n ≥ 2. For any n, note that xn is a root
of the following equation:

x2 − 2xn+1x + a = 0.

In particular, the quadratic equation above has a real root. It follows from the
quadratic formula that the discriminant

4x2
n+1 − 4a

must be non-negative, i.e. 4x2
n+1 − 4a ≥ 0. �us, x2

n+1 ≥ a whence xn+1 ≥
√
a.

As a second step, we show that the sequence (xn ) is decreasing for all n ≥ 2.
Namely, we show that xn+1 ≤ xn, whenever n ≥ 2. To see this, we simply
calculate

xn − xn+1 = xn −
1
2

(
xn +

a

xn

)
=
xn
2 −

a

2xn

=
1
2

(
x2
n − a

xn

)
≥ 0.

Here, we have used that x2
n ≥ a whenever n ≥ 2. �us, xn+1 ≥ xn whenever

n ≥ 2. Combined, we have shown that (xn ) is an eventually decreasing sequence
with xn ≥

√
a for n ≥ 2. By the monotone convergence theorem, we know that

(xn ) will converge to some x ≥
√
a. In fact, using the limit laws with (8.5) shows

that x will satisfy
x =

1
2

(
x +

a

x

)
≥ 0.

Rather,
x =

a

x
≥ 0.
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�us, we havex2 = a as was required. �is recursive procedure is in general quite
fruitful and simple. For this reason, we give one �nal example before moving on
to more general results.

Example 8.4. Let x1 ≥ 2 be given and de�ne for n ≥ 1:

xn+1 := 1 +
√
xn − 1. (8.6)

We will show that the recursive sequence (xn ) converges and calculate its limit.
First, let us show (by induction) that xn ≥ 2 for all n ∈ N. �e base case n = 1 is
trivial. Assuming that xn ≥ 2, we then have

xn+1 = 1 +
√
xn − 1 ≥ 1 +

√
2 − 1 = 2.

Here, we have used that the function f (x ) :=
√
x is monotone increasing on

[0,∞).18 We conclude that xn ≥ 2 for all n ∈ N. In particular, xn − 1 ≥ 1 for all
n ∈ N. �us, given n ∈ N, we have

xn+1 = 1 +
√
xn − 1 ≤ 1 + (xn − 1) = xn .

In this last step, we have used that
√
t ≤ t for all t ≥ 1.19 Hence, (xn ) is a mono-

tone decreasing sequence that is bounded below by 2. It therefore converges to
some point x ≥ 2. Using the limit laws and (8.6), this point x must satisfy

x = 1 +
√
x − 1.

It follows that (x − 1) =
√
x − 1, where x − 1 ≥ 1. Hence,

√
x − 1 = 1 whence

x = 2. We conclude that limxn = 2.
18To see why this is true, suppose that 0 ≤ x < y. �en, we calculate

√
y −
√
x =

(
√
y −
√
x ) (
√
y +
√
x )

√
y +
√
x

=
y − x
√
x +
√
y
≥ 0.

�us,
√
x ≤
√
y whenever 0 ≤ x < y. Since this also holds for 0 ≤ x = y, we see that f (x ) =

√
x

is monotone increasing on [0,∞).
19To justify this inequality, let t ≥ 1 and note that

t −
√
t =
√
t (
√
t − 1) ≥

√
t − 1 ≥ 0.
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8.2 The Bolzano-Weierstrass Theorem

In this section, we prove one of the most fundamental and useful theorems in
real analysis. Although the result heavily hinges upon our cumulative e�orts
thus far, the theorem will easily follow from one simple observation.

De�nition 8.1. Let (xn ) be a sequence of real numbers. �e N th term xN is called
a peak of the sequence (xn ) if, for every n ≥ N , there holds xn ≤ xN .

In light of this de�nition, we have a relatively simple proof of our key lemma.

Lemma 8.2. Any sequence of real numbers has a monotone subsequence.

Proof. Let (xn ) be a sequence of real numbers. We distinguish the only two pos-
sible cases.

1. Suppose (xn ) has in�nitely many peaks. �en, we can �nd a subsequence
(xnk ) of (xn ) consisting entirely of peaks. For every index k , xnk is a peak
of the sequence (xn ). In particular, xn1 is a peak of the sequence (xn ). Since
n2 > n1, we must then have xn1 ≥ xn2 . Similarly, since xn2 is a peak and
n3 > n2, there holds

xn2 ≥ xn3

and so forth. In general, we have

xn1 ≥ xn2 ≥ · · · ≥ xnk ≥ · · ·

�at is, (xnk ) is a monotone subsequence of (xn ).

2. Otherwise, (xn ) has only �nitely many peaks. �us, we can �nd N ∈ N
so large that xn is not a peak of the sequence (xn ) for all n ≥ N . De�ne
xn1 := xN . Since xn1 is not a peak of the sequence (xn ), there is some xj in
our sequence, with j ≥ n1, such that xj > xn1 . In particular, j , n1. Put
then

xn2 := xj

so that xn1 < xn2 and N ≤ n1 < n2. Again, xn2 is not a peak of the sequence
(xn ). By a similar argument, we can �nd j > n2 such that xj > xn2 . De�ne
then xn3 := xj so that

xn1 < xn2 < xn3 .

Continuing in this way, we construct a monotone increasing subsequence
(xnk ) of (xn ).
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In either case, we have found a monotone subsequence. �

Armed with this lemma, we can easily establish the following powerhouse of
a theorem.

�eorem8.3 (Bolzano-Weierstrass). Any bounded sequence inR has a convergent
subsequence.

Remark 8.1. �e theorem above continues to hold in Rm and Cn for allm,n ∈ N.
Such theorems are known as compactness theorems and are extremely powerful.

Proof of �eorem. By our lemma, any sequence has a monotone subsequence. If
(xn ) is bounded, then any monotone subsequence of (xn ) is also bounded. By the
monotone convergence theorem, such a subsequence converges. �

8.3 More about the Supremum

Proposition 8.4. Let E ⊆ R be non-empty and bounded from above. Fix a point
y ∈ R; the following statements are equivalent:

(1) y is the limit of two sequences (xn ) and (yn ) such that, for everyn ∈ N, xn ∈ E
and yn is an upper bound of E.

(2) y = supE.

Proof. Suppose that (1) holds. For every n ∈ N, yn is an upper bound for E and
xn ∈ E. �erefore, we must have

xn ≤ supE ≤ yn

for each n ∈ N. Le�ing n → ∞, the Squeeze �eorem implies thaty ≤ supE ≤ y.
Conversely, let y := supE. For every n ∈ N, the quantity y − 1

n is no longer
an upper bound for E (y is the least upper bound). �us, there exists xn ∈ E such
that

y −
1
n
< xn ≤ y.

�is gives us a sequence (xn ) in E with limxn = y. Now, take (yn ) to be the
constant sequence yn := y. �
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9 Ninth Tutorial

Since this is the last tutorial before the second midterm exam, we will spend
some �ime reviewing topics in point-set topology and sequences. As for the
more recent material covered (e.g. Cauchy sequences), we will focus on solving
some of the ungraded homework questions.

9.1 Accumulation Points

Proposition 9.1. Let (xn ) be a bounded sequence in R. �en, limxn exists if and
only if the sequence (xn ) has exactly one accumulation point.

Proof. One direction is easy: if (xn ) converges to x ∈ R, then so must any subse-
quence of (xn ). In particular, x can be the only accumulation point of (xn ).

Conversely, suppose that the sequence (xn ) has only one accumulation point,
say, x . �en, every convergent subsequence (xnk ) of (xn ) must converge to this
point x . By way of contradiction, suppose that (xn ) does not converge to this
point x . �en, there is some ε0 > 0 such that, for every N ∈ N, there exists n ≥ N
with the property that |xn − x | ≥ ε0.20 In particular, we can �nd a subsequence
(xnk ) of (xn ) such that ���xnk − x

��� ≥ ε0, for all k ∈ N. Note that this subsequence
is also a bounded sequence. By the Bolzano-Weierstrass theorem, we can �nd a
subsequence (xnkj ) of our subsequence (xnk ) that converges. Since (xnkj ) is then
a convergent subsequence of (xn ), it must converge to x . But this is impossible
for, as a subsequence of (xnk ),

���xnkj − x
��� ≥ ε0, for all j ∈ N.

�is proves our claim. �

Remark 9.1. �e boundedness assumption in the previous proposition is neces-
sary. Indeed, consider the sequence (xn ) in R given by

xn =



1, if n is even,
n, if n is odd.

Clearly, limx2n = lim 1 = 1 whence 1 is an accumulation point of (xn ). Let
now (xnk ) be a convergent subsequence of (xn ). In particular, (xnk ) is bounded.

20To see this, just negate the de�nition of convergence to x .
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Now, (xnk ) either contains a subsequence of (x2n ), or a subsequence of (x2n+1).
However, since any subsequence of (x2n+1) is unbounded, (xnk ) must contain a
subsequence of (x2n ). In particular, (xnk ) contains a subsequence converging to
1. Because (xnk ) is assumed to be convergent, all subsequences converge and
have the same limit as (xnk ). �is tells us that limxnk = 1. In short, (xn ) has
a single accumulations point, i.e. 1. However, (xn ) is unbounded and clearly
cannot converge.

Proposition 9.2. Let (xn ) be a bounded sequence inR. �en, (xn ) converges if and
only if

lim inf xn = lim supxn .
In either case,

limxn = lim inf xn = lim supxn .

Proof. Let (xn ) be a convergent sequence, with limit x ∈ R. By the previous
proposition, (xn ) has but a single accumulation point, denoted a. Hence,

lim inf xn = lim supxn = a.

But, (xn ) is a convergent subsequence of (xn ). �erefore, limxn = x must be
an accumulation point of (xn ). Since a is the only such point, we conclude that
x = a. Especially,

limxn = lim inf xn = lim supxn .
Conversely, suppose that lim inf xn = lim supxn. Denote by Acc(xn ) the set of all
accumulation points of (xn ). Since (xn ) is bounded, is has a convergent subse-
quence (why?). �us, Acc(xn ) is non-empty. If it contains two distinct elements
a1 < a2, then we would have

lim inf xn ≤ a1 < a2 ≤ lim supxn .

which would be a contradiction. Hence, Acc(xn ) consists of a single point a. In
particular,

a = lim inf xn = lim supxn .
Once again invoking the previous proposition, we see that limxn exists. As be-
fore, (xn ) is a convergent subsequence of (xn ) and therefore limxn is an accumu-
lation point of (xn ). It follows that

limxn = a = lim inf xn = lim supxn .

�
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�is convergence criterion easily leads to the following:

Proposition 9.3. Let (xn ) be a bounded sequence and �x x ∈ R. If every subse-
quence of (xn ) has a subsequence converging to x , then xn → x as n → ∞.

Proof. In light of the previous result, it is enough to show that x is the only
accumulation point of (xn ). Clearly, since (xn ) is a subsequence of itself, there
is a subsequence (xnk ) converging to x . Hence, x is an accumulation point of
(xn ). Now, if (xnk ) is any convergent subsequence of (xn ), it must converge to x .
Indeed, this is because (xnk ) has (by assumption) a subsequence converging to
x . We infer that every convergent subsequence of (xn ) converges to x . It follows
that

lim supxn = lim inf xn = x

and the proof is complete. �

Example 9.1. Let (xn ) be an unbounded sequence. We claim that there exists a
subsequence (xnk ) such that

lim 1
xnk
= 0.

Since (xn ) is unbounded, we know that for every M > 0, one can �nd some n ∈ N
such that |xn | > M . In fact, we can �nd in�nitely many n such that |xn | > M .
Otherwise, we would have

|xn | ≤ M

for all but �nitely many n ∈ N. If this were the case, then the sequence (xn )

would be bounded. Now, given k ≥ 1, we can �nd nk ∈ N such that ���xnk
��� > k .

Having chosen xnk , we can guarantee the existence of nk+1 ∈ N such that

���xnk+1
��� > k + 1 and nk+1 > nk .

In this way, we construct a subsequence (xnk ) such that ���xnk
��� > k , for everyk ∈ N.

It follows that, �����
1
xnk
− 0

�����
=

1
���xnk

���
<

1
k
, ∀k ≥ 1.

Hence, limxnk = 0.

We conclude this section with a more di�cult example.
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Example 9.2. Let (xn ) be a bounded sequence and let

lim inf xn = l ≤ L = lim supxn .

Show that if xn+1 − xn → 0 then all points in [l ,L] are accumulation points of
(xn ).

Solution. Suppose there exists x ∈ [l ,L] which is not an accumulation point of
(xn ). Since we know that both l and L are accumulation points, we must have
l < x < L. As x is not an accumulation point of the sequence, there exist ε > 0
and N ∈ N such that

xn < (x − ε,x + ε ) ∀n ≥ N (9.1)
Furthermore, since xn+1 − xn → 0, we may suppose without loss of generality
that N is su�ciently large so that

|xn+1 − xn | < ε ∀n ≥ N . (9.2)

Let now δ = L − x > 0. Since L is an accumulation point, we may �nd M ≥ N
such that

xM ∈ (L − δ ,L + δ ) = (x ,L + δ ).

Combining the above with equation (9.1), we see that xM ≥ x + ε . We now show
by induction that xn ≥ x + ε for all n ≥ M . Indeed, if xn ≥ x + ε for some
n ≥ M ≥ N , then equation (9.1) implies that either xn+1 ≥ x + ε or xn+1 ≤ x − ε .
In the la�er case, we have

|xn+1 − xn | ≥ xn − xn+1 ≥ x + ε − (x − ε ) ≥ 2ε .

Since this contradicts equation (9.2), we conclude that xn+1 ≥ x + ε . We have
deduced that

xn ≥ x + ε > l + ε

for all n ≥ M . But this contradicts the fact that l is an accumulation point. �

9.2 Cauchy Sequences and Applications

Example 9.3. Let (xn ) be a sequence of real numbers and let r ∈ (0, 1). In
addition, suppose that |xn+1 − xn | < rn, for all n ∈ N. We show that (xn ) is
convergent. Based on the given information, it is not clear what limxn should
be. �us, our only real option is to check that (xn ) is Cauchy.21

21Since R is complete, a sequence in R converges if and only if it is Cauchy. �e importance
of this fact should not be underestimated.
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To this end, let ε > 0 be given, and choose N ∈ N so large that

rN

1 − r < ε .

�is can be done because r ∈ (0, 1) implies lim rn = 0. Now, given any natural
numbersm > n ≥ N ,

|xm − xn | = |xm − xm−1 + xm−1 + · · · − xn+1 + xn+1 − xn |

≤

m−1∑
k=n

|xk+1 − xk |

≤

m−1∑
k=n

rk

=

m−1∑
k=0

rk −
n−1∑
k=0

rk

=
1 − rm
1 − r −

1 − rn
1 − r

=
rn − rm

1 − r
≤

rn

1 − r

≤
rN

1 − r .

Hence, |xm − xn | < ε wheneverm ≥ n ≥ N . �is shows that (xn ) is Cauchy.

Problem 4. Let (xn ) be a sequence with xn ≥ 0, for all n ∈ N. Suppose that
lim (−1)nxn exists. Prove that (xn ) converges.

Proof. Let x denote the limit of the sequence (−1)nxn. �en, all subsequences of
(−1)n (xn ) converge to this point x . In particular,

x = lim (−1)2nx2n = limx2n ≥ 0

and, since xn ≥ 0 for all n ∈ N,

x = lim (−1)2n+1x2n+1 = lim (−x2n+1) ≤ 0.
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�erefore, the only possibility is to have x = 0. �at is, lim (−1)nxn = 0. Let now
ε > 0 be given. Using this last property, we can �nd N ∈ N such that

|xn | = ��(−1)nxn − 0�� < ε

for all n ≥ N . �is means that limxn = 0. �

9.3 Absolutely Convergent Series

Let us now return to the notion of absolute convergence, which was quickly in-
troduced in §7.2.1. For the sake of clarity, we will reiterate everything here. Let
(xn ) be a sequence of real numbers and de�ne, for each N ∈ N, the partial sum

SN :=
N∑
n=1

xn .

Note that (SN ) is itself a sequence of real numbers indexed by the variable N . We
then say that the series ∑∞

n=1 xn converges if the sequence of partial sums (SN )
converges. If this is the case, we de�ne

∞∑
n=1

xn := lim
N→∞

SN .

On the other hand, the sequence ∑∞
n=1 xn is said to converge absolutely when

the series ∑∞
n=1 |xn | converges. By the monotone convergence theorem, this is

equivalent to saying that the partial sums ∑N
n=1 |xn | are bounded:

Lemma 9.4. Let (xn ) be a sequence of real numbers and de�ne

SN :=
N∑
n=1
|xn | , ∀N ∈ N.

�en, the series
∑∞

n=1 xn is absolutely convergent if and only if there exists M > 0
such that |SN | ≤ M for all N ∈ N. �at is,

∑∞
n=1 xn converges absolutely if and only

if (SN ) is bounded.

Proof. By de�nition, if ∑∞n=1 |xn | converges, then the sequence (SN ) de�ned above
is convergent with lim SN =

∑∞
n=1 |xn |. Since convergent sequences are bounded,
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it follows that (SN ) is bounded. Conversely, assume that there exists M > 0 such
that

|SN | = SN =
∞∑
n=1
|xn | ≤ M

for all N ∈ N. Since SN ≤ SN+1 for all N ∈ N, the sequence (SN ) is therefore
a bounded monotone increasing sequence. By the monotone convergence theo-
rem, (SN ) is convergent. By de�nition, this implies the absolute convergence of∑∞

n=1 xn. �

�eorem 7.8 from §7.2.1 states that every absolutely convergent series is also
convergent. Equipped with the notion of a Cauchy sequence, we can �nally
supply the proof of this important result.

Proof of �eorem 7.8. Let (xn ) be a sequence of real numbers such that ∑∞
n=1 xn

converges absolutely. �at is, assume that ∑∞
n=1 |xn | is convergent. De�ne for

each N ∈ N the quantities

SN :=
N∑
n=1

xn and RN :=
N∑
n=1
|xn | .

Since ∑∞
n=1 |xn | converges, the sequence (RN ) is Cauchy in R. So, for each ε > 0,

we can �nd K ∈ N such that

|RN − RM | =

N∑
n=M+1

|xn | < ε

whenever N ≥ M ≥ N . In particular, by the triangle inequality, we obtain

|SN − SM | =
������

N∑
n=M+1

xn

������
≤

N∑
n=M+1

|xn | < ε

for all N ≥ M ≥ K . �is shows that the sequence of partial sums (SN ) is Cauchy
and thus convergent. It follows that ∑∞

n=1 xn converges. �

In order to show that absolute convergence implies convergence, we used
that every Cauchy sequence in R is convergent. As it turns out, the convergence
of every Cauchy sequence is equivalent to every absolutely convergent series
being convergent. Namely, if we assume that every absolutely convergent series
converges, we can show that every Cauchy sequence must converge.

78



�eorem 9.5. �e following statements are equivalent:

(1) Every Cauchy sequence in R is convergent.

(2) Every absolutely convergent series is convergent.

We omit the proof of this theorem as it does not pertain directly to the course
material.

9.4 Divergence of the Harmonic Series

We now consider the in�nite series
∞∑
n=1

1
n
,

which is o�en called the harmonic series. As mentioned previously, the in�nite
series above can be formally de�ned by the following

lim
N→∞

N∑
n=1

1
n
=: lim

N→∞
SN .

provided the limit exists. Here, we are se�ing SN := ∑N
n=1

1
n for each N ≥ 1.

�en, the in�nite series ∑∞
n=1

1
n exists if and only if the sequence (SN ) converges.

�us, to show that the harmonic series ∑∞
n=1

1
n is divergent, it is enough to show

that the sequence (SN ) is not Cauchy.
Let now N ,M ∈ N be given. If M > N , an easy calculation tells us that

|SN − SM | = SM − SN =
M∑
n=1

1
n
−

N∑
n=1

1
n
=

M∑
n=N+1

1
n

≥

M∑
n=N+1

1
M

=
M − N

M

= 1 − N

M
.

In particular, taking M = 2N gives

|S2N − SN | ≥ 1 − 1
2 =

1
2 , ∀N ∈ N.

�is shows that (SN ) cannot be Cauchy, and thus does not converge.
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10 Tenth Tutorial

�is tutorial is all about limits of functions. Before giving any problems and
examples, let us �rst reiterate the ε − δ de�nition of the limit. To properly make
sense of the behaviour of a function “near a point x”, it is critical that the function
be de�ned at some points near x . �is is precisely what the concept of a cluster
point formalizes:

De�nition 10.1. Let A ⊆ R. A point a ∈ R is called a cluster point of A if, for
each δ > 0, Vδ (a) ∩ (A \ {a}) , ∅. Or, as we shall see later in Corollary 10.7, a is
a cluster point of A if and only if

a ∈ A \ {a}.

Plainly put, this guarantees that there are “enough points” in A near a to
de�ne a meaninful limit for a function f de�ned on A.

De�nition 10.2. Let A ⊆ R and a be a cluster point of A. Let f : A → R be a
function and �x L ∈ R. We say that f (x ) converges to L as x → a, wri�en

lim
x→a

f (x ) = L,

provided for each ε > 0 there exists δ > 0 such that

��f (x ) − L�� < ε whenever x ∈ A and 0 < |x − a | < δ .

Or, symbolically, if

(∀ε > 0) (∃δ > 0) (∀x ∈ A) (0 < |x − a | < δ =⇒ ��f (x ) − L�� < ε ).

Note that the value of f (a) (if it even exists) is of no importance as the require-
ment that 0 < |x − a | < δ excludes the possibility that x = a.

Remark 10.1. �e ε − δ de�nition of the limit bears a signi�cant resemblance
to the ε − N de�nition for sequences. Indeed, the ε serves as an error term to
measure how close to the limit L the value f (x ) is. However, instead of looking
at very large natural numbers, we care about values of x close to a. So, in the
ε − δ de�nition, the δ -term measures how close to a the variable x is. Hence, the
ε − δ de�nition formalizes the following intuitive statement:

If the distance between f (x ) and L can be made arbitrarily small by
making x su�ciently close to a, then limx→c f (x ) = L.
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10.1 Examples Using the ε − δ Definition

To help us be�er understand the ε − δ characterization of the limit, we work out
two intuitive examples explicitly.

Example 10.1. Using the ε − δ de�nition of the limit, prove that

lim
x→c

f (x ) =
√
c, ∀c ≥ 0,

where f : [0,∞) → R is given by f (x ) :=
√
x .

Proof. Let ε > 0 be given, we must show that there is some δ > 0 such that
���f (x ) −

√
c ��� < ε

for all x ∈ [0,∞) with 0 < |x − c | < δ . We distinguish two possible cases:

1. Case c = 0. Here, we really want to show that
√
x → 0 as x → 0. Choose

δ := ε2 > 0. �en, if 0 < x < δ = ε2, we calculate

��f (x ) − 0�� =
���
√
x ��� =

√
x <
√
δ <
√
ε2 = ε .

�is shows that
√
x → 0 as x → 0.

2. We now handle the case c > 0. For any x ∈ [0,∞) with x , c , we calculate

���
√
x −
√
c ��� =

�����
(
√
x −
√
c ) (
√
x +
√
c )

√
x +
√
c

�����
=
|x − c |
√
x +
√
c

≤
|x − c |
√
c
.

Now, let
δ :=

√
cε > 0.

If x ≥ 0 and 0 < |x − c | < δ we �nd that

���
√
x −
√
c ��� ≤

|x − c |
√
c
<

δ
√
c
= ε .

�is completes the proof. �
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Let us consider another example.

Example 10.2. Prove that, for every c > 0, one has

lim
x→c

1
√
x
=

1
√
c
.

Of course, we are are viewing 1√
x

as a function with domain equal to (0,∞).

Proof. Given ε > 0 and x > 0 with x , c , we have the estimate

�����
1
√
x
−

1
√
c

�����
=

���
√
x −
√
c ���

√
x
√
c
=

|x − c |
√
x
√
c
(√

x +
√
c
)

≤
|x − c |

x
√
c
.

Let now
δ := min

{
c3/2

2 ε,
c

2

}
> 0.

If 0 < |x − c | < δ , then x , c and

−δ < x − c < δ .

But then, δ ≤ c
2 would imply

x > c − δ ≥
c

2

so that
�����

1
√
x
−

1
√
c

�����
≤
|x − c |

x
√
c
<

δ
√
c

2
c
=

2δ
c3/2 ≤ ε .

�is shows that
1
√
x
→

1
√
c

as x → c .

�

82



10.2 Cluster Points and the Closure

We now discuss the link between closed sets and cluster points. More precisely,
we study the relationship between the cluster points of a set A and the closure
of A.

Proposition 10.1. Let A be a subset of R. Denote by A′ the set of all cluster points
of A. �en, Ā = A ∪A′.

Proof. First, if x ∈ A′ then x ∈ A \ {x } ⊆ Ā. Hence, we see that A′ ⊆ Ā. Since
there also holds A ⊆ Ā, it follows that

A ∪A′ ⊆ A.

Conversely, let x ∈ Ā. If x ∈ A then we have x ∈ A ∪ A′. Otherwise, x < A
whence A = A \ {x }. In particular,

Ā = A \ {x }.

Since x ∈ Ā, we see that
x ∈ A \ {x }

whence x ∈ A′. �is shows that Ā ⊆ A ∪A′ and the proof is complete. �

�is gives us an easy corollary that helps to get a handle on this concept.

Corollary 10.2. A subset of R is closed if and only if it contains all of its cluster
points.

Proof. By the previous proposition, it is easy to see that Ā = A if and only if A
contains all of its cluster points. �

Let us think back to our discussion of the Cantor set C. �ere, we had in-
troduced the notion of an isolated point. For the sake of completeness, let us
reiterate this de�nition here.

De�nition 10.3. Let A be a subset of R. A point x ∈ A is said to be an isolated
point of A if there exists ε > 0 such that Vε (x ) ∩ (A \ {x }) is empty.

Remark 10.2. �is is quite the opposite of a cluster point. Indeed, a cluster point
x ofA is a point in R such that we can always �nd elements ofA arbitrarily close
to x . On the other hand, when dealing with an isolated point x , if we “zoom in”
enough, there are no points in A that are near x .
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10.3 The Relationship with Accumulation Points

Let (xn ) be a sequence in R. �e sequence (xn ) is said to be injective if, for any
n,m ∈ N, having xn = xm implies n = m. In other words, the sequence (xn ) is
called injective if it is an injective function N→ R.

Lemma 10.3. Let A be an in�nite subset of R and let x be a cluster point of A. For
each ε > 0, the intersection

Vε (x ) ∩ (A \ {x })

is in�nite.

Proof. Given ε > 0, we at least know that the intersection above is non-empty
(because x is a cluster point of A). Assume for a contradiction that it is �nite.
�en,

Vε (x ) ∩ (A \ {x }) = {x1, . . . ,xn} (∗)

for some x1, . . . ,xn ∈ R. Clearly, every xi is di�erent from x . Let now

α := min
1≤i≤n

|xi − x | > 0.

Also, α < ε . Since x is a cluster point of A, we know that Vα (x ) ∩ (A \ {x }) is
non-empty. Choose any y from this intersection and note that

y ∈ Vα (x ) ∩ (A \ {x }) =⇒ y ∈ Vε (x ) ∩ (A \ {x }).

However, ��y − x �� < α < |x − xi |, for all i = 1, . . . ,n. �is means that y , xi , for
all i = 1, . . . ,n. Since y ∈ Vε (x ) ∩ (A \ {x }), this contradicts (∗). �

Proposition 10.4. Let (xn ) be an injective sequence in R. A point x ∈ R is an
accumulation point of (xn ) if and only if it is also a cluster point of the set

S := {xn : n ∈ N} ⊂ R.

Proof. First, let x ∈ R be an accumulation point of (xn ). �at is, one can �nd
a subsequence (xnk ) of (xn ) converging to x . Given ε > 0, one can always �nd
N ∈ N so large that ���xnk − x

��� < ε whenever nk ≥ N . �is is the same as saying
that xnk ∈ Vε (x ), for every nk ≥ N . In particular, Vε (x ) ∩ {xn : n ∈ N} is non-
empty. Since our sequence is injective, this implies that

Vε (x ) ∩ (S \ {x }) = ∅.
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As ε > 0 was arbitrary, we conclude that x is a cluster point of S .
Conversely, let x be a cluster point of the set S . Because (xn ) is injective, S

must be in�nite. For a given k ∈ N, we know that

V 1
k
(x ) ∩ (S \ {x }) ⊆ S , ∅.

In fact, by the previous lemma, there will be in�nitely many elements in this
intersection. �is allows us to construct a subsequence (xnk ) of (xn ) such that

���xnk − x
��� <

1
k
, ∀k ∈ N.

By the squeeze theorem, we conclude that limxnk = x . Especially, x is an accu-
mulation point of (xn ). �

Remark 10.3. �e previous claim fails if we do not require (xn ) to be injective.
Indeed, consider the sequence (xn ) := (−1)n. Obviously,

limx2n = 1 and limx2n+1 = −1.

�erefore, ±1 are accumulation points of the sequence (xn ). Since any subse-
quence of (xn ) contains a subsequence of (x2n ) or (x2n+1), we see that these are
the only accumulation points of the sequence. �at is,

Acc(xn ) = {±1} .

However, the set
{xn : n ∈ N} = {1,−1}

has no cluster points. �is is con�rmed by the following result.

Proposition 10.5. A �nite subset of R has no cluster points.

Proof. Let A ⊆ R be �nite. If A is empty, then the claim is obvious. Otherwise,
we can write A in the following way:

A = {x1, . . . ,xn} .

Now, assume that x ∈ R is a cluster point of x . �en, x ∈ A \ {x }. However, since
�nite sets are close, this implies that

x ∈ A \ {x } = A \ {x }.

�is contradiction shows that A cannot have any cluster points. �
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As mentioned in De�nition 10.1, we will now verify that x ∈ R is a cluster
point of a set A if and only if

x ∈ A \ {x }

To establish this, it is enough to prove the following theorem.

�eorem 10.6. Let A be a subset of R and �x a point x . �e following statements
are equivalent.

(1) x ∈ Ā;

(2) every open setU containing x intersects A, i.e. U ∩A , ∅;

(3) for every ε > 0, one has Vε (x ) ∩A , ∅.

Proof. We �rst show that (1) is equivalent to (2). Let x ∈ Ā and assume that there
is some open set U 3 x with U ∩ A = ∅. �en, A ⊆ U c whence Ā ⊆ U c. But,
this would imply x ∈ U ∩ U c which is absurd. Conversely, suppose that every
open set U 3 x has non-empty intersection with A. We must prove that x ∈ Ā.
If x < Ā, then we can �nd a closed set F ⊇ A not containing the point x . In this
case, F c is an open set containing the point x . By hypothesis, we must have

∅ , F c ∩A ⊆ F ∩ F c,

which is a contradiction. We have thus established the equivalence (1)⇐⇒ (2).
Let us now show that (2) is equivalent to (3), whence the theorem would

follow. Since every Vε (x ) is open, it is obvious that (2) implies (3). Conversely,
suppose that (3) holds and let U be an open set containing the point x . Choose
ε > 0 such that Vε (x ) ⊆ U . By assumption, Vε (x ) ∩A , ∅. �is implies that

U ∩A ⊇ Vε (x ) ∩A , ∅.

�is completes the proof. �

Corollary 10.7. Let A ⊆ R and �x a ∈ R. �en, a is a cluster point of A if and
only if a ∈ A \ {a}.

11 Eleventh Tutorial

Let’s �rst spend a minute discussing the de�nition of the limit for sequences. Let
(xn ) be a sequence and �x a point x ∈ R. We have limxn = x if and only if

(∀ε > 0) (∃N ∈ N) (∀n ≥ N =⇒ |xn − x | < ε ).
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If limxn , x , then negating the above says that

(∃ε > 0) (∀N ∈ N) (∃n ≥ N =⇒ |xn − x | ≥ ε ).

�is means that there exist in�nitely many n ∈ N with the property that

|xn − x | ≥ ε .

We cannot say that there exists N ∈ N such that |xn − x | ≥ ε for all n ≥ N .
Indeed, this would imply that |xn − x | ≥ ε for all but �nitely many n, which is
entirely di�erent from the statement that |xn − x | ≥ ε for in�nitely many n ∈ N.

11.1 More Examples of Function Limits

Example 11.1. We show that

lim
x→a

1
x2 =

1
a2

for all a , 0. Obviously, f (x ) = 1
x2 is considered as a function with domain

R \ {0}. Let now ε > 0 be given. If δ > 0 and x , 0 satis�es 0 < |x − a | < δ , then
we have the estimate

����
1
x2 −

1
a2

���� =
���x

2 − a2���
x2a2 =

|x − a | |x + a |

x2a2 < δ
|x | + |a |

x2a2 .

If in addition δ ≤ |a |, then

|x | ≤ |x − a | + |a | < δ + |a | ≤ 2 |a | .

Hence,

����
1
x2 −

1
a2

���� < δ
|x | + |a |

x2a2 ≤ δ
3 |a |
x2a2 =

3δ
x2 |a |

.

If we assume further that δ ≤ |a |2 , then

| |x | − |a | | ≤ |x − a | < δ

implies |a | − δ < |x | < |a | + δ whence |x | > |a | − |a |2 =
|a |
2 . Rather, we obtain

1
x2 <

4
a2
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so that
����

1
x2 −

1
a2

���� <
3δ

x2 |a |
≤

12δ
|a |3
.

Finally, if

δ ≤
ε |a |3

12 ,

then
����

1
x2 −

1
a2

���� <
3δ

x2 |a |
≤

12δ
|a |3
< ε .

�erefore, we de�ne

δ := min
{
|a |

2 ,
ε |a |3

12 , |a |
}
= min

{
|a |

2 ,
ε |a |3

12

}
.

By our earlier calculations, for every x , 0 with 0 < |x − a | < δ , one has

����
1
x2 −

1
a2

���� < ε .

�is completes the proof.

Example 11.2. Given a , −1, we claim that

lim
x→a

x

1 + x =
a

1 + a .

Again, here we are viewing x
1+x as a function R \ {−1} → R.

Proof. Let ε > 0 be given and �x a , −1. Henceforth, we shall always assume
that x , −1. If for some δ > 0 one has 0 < |x − a | < δ , then

����
1

1 + x −
1

1 + a
���� =

|x − a |

|1 + x | |1 + a | <
δ

|1 + x | |1 + a | .

Next, we have to “rid ourselves” of the |1 + x | term. To this end, suppose addi-
tionally that

δ ≤
|1 + a |

2 .

�en, by the reverse triangle inequality,

|1 + x | ≥ |1 + a | − |x − a | > |1 + a | − δ ≥ |1 + a |2 > 0.
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�erefore,

����
1

1 + x −
1

1 + a
���� <

δ

|1 + x | |1 + a | ≤
2δ

(1 + a)2 .

�us, if
δ ≤ ε

(1 + a)2
2

then
����

1
1 + x −

1
1 + a

���� <
2δ

(1 + a)2 ≤ ε .

Finally, we de�ne

δ := min
{
|1 + a |

2 , ε
(1 + a)2

2

}
.

By the calculations we carried out above, we conclude that

����
1

1 + x −
1

1 + a
���� < ε

for all x , −1 with 0 < |x − a | < δ . �

Remark 11.1. Using the sequential criterion for the limit, we can easily conclude
that the limit

lim
x→−1

x

1 + x
does not exist. Indeed, consider the sequence (xn ) in R de�ned by

xn := −1 − 1
n
.

Clearly, xn , −1 for all n ∈ N and limxn = −1. Furthermore, for each n ∈ N we
calculate:

f (xn ) =
xn

1 + xn
=
−1 − 1

n

− 1
n

= n
(
1 + 1

n

)
≥ n.

Hence, we get that lim f (xn ) does not exist in R. �is shows that lim
x→−1

x

1 + x does
not exist either.
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11.2 Limits at Infinity

Let f : R→ R be a function; we would like to make the statement

lim
x→±∞

f (x ) = `

meaningful and rigorous. Ideally, we want to capture what it means for a function
f to “approach” a value ` “at in�nity”. Naturally, we achieve this by tweaking
the ε − δ de�nition for the limit. In fact, I think our de�nition will more closely
resemble the ε − N de�nition for sequences.

De�nition 11.1. Let f : R → R be a function. We say that f (x ) converges to
` ∈ R as x → ∞, wri�en

lim
x→∞

f (x ) = `,

if for every ε > 0, there is some M > 0 such that ��f (x ) − `�� < ε whenever x > M .
In more symbolic terms,

(∀ε > 0) (∃M > 0) (∀x > M =⇒ ��f (x ) − `�� < ε ).

Similarly, we can de�ne limits at −∞.

De�nition 11.2. We say that f (x ) converges to ` ∈ R as x → −∞, denoted

lim
x→−∞

f (x ) = `,

if for every ε > 0, there is some N < 0 such that ��f (x ) − `�� < ε whenever x < N .
Or, symbolically,

(∀ε > 0) (∃N < 0) (∀x < N =⇒ ��f (x ) − `�� < ε ).

We will write
` = lim

|x |→∞
f (x )

to say that
` = lim

x→∞
f (x ) = lim

x→−∞
f (x ).

Example 11.3. Consider the function f : R→ R given by f (x ) := 1
1+x2 . �en,

lim
|x |→∞

f (x ) = 0.
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Proof. Let ε > 0 be given and let M ∈ N be so large that

M2 >
1
ε
− 1.22

Clearly,
1

1 +M2 < ε .

If x > M , then x2 > M2 and 1 + x2 > 1 +M2. �erefore,

����
1

1 + x2
���� =

1
1 + x2 <

1
1 +M2 < ε .

�is shows that
lim
x→∞

f (x ) = 0.

Similarly, one can show that lim
x→−∞

f (x ) = 0. �

11.3 Continuity of Functions

We have now come to the topic of continuity. For the moment, let us �x a set
A ⊆ R and a point a ∈ A. We say that a function f : A→ R is continuous at the
point a if for every ε > 0, there exists δ > 0 such that

��f (x ) − f (a)�� < ε

whenever x ∈ A satis�es |x − a | < δ . Equivalently, if

(∀ε > 0) (∃δ > 0) (∀x ∈ A) ( |x − a | < δ =⇒ ��f (x ) − f (a)�� < ε ). (11.1)

Note that in contrast to the ε − δ de�nition of the limit, we do not require that
|x − a | be positive. �at is, we allow for x = a. It is a routine exercise to show
that the continuity of f at a implies the continuity of ��f �� at a. Indeed, the proof
is immediate from the reverse triangle inequality:

����f (x )�� − ��f (a)���� ≤ ��f (x ) − f (a)�� .

�is is highly reminiscent of a result we had for sequences, and as such it is
natural to check whether the converse holds.

22Note that such and M exists by the Archimedean property.
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Example 11.4. Consider the function f : [0, 1]→ R given by the rule

f (x ) :=



1 if x ∈ Q,
−1 if x < Q.

Clearly, ��f (x )�� = |±1| = 1 for all x ∈ [0, 1]. Hence, ��f �� is continuous. However, f
will turn out to be discontinuous at every point x ∈ [0, 1]. To see this, we �x a
point x ∈ [0, 1] and distinguish the only two possible cases.

(1) Suppose that x ∈ Q so that f (x ) = 1. By their density, we can select a
sequence of irrational numbers (xn ) from [0, 1] such that limxn = x . Since
every xn < Q, we see that

lim
n→∞

f (xn ) = lim
n→∞

(−1) = −1 , 1 = f (x ).

(2) Suppose that x < Q, whence f (x ) = −1. As above, choose a sequence (xn )
in Q ∩ [0, 1] that converges to x as n → ∞. Since every xn is rational, we
see that

lim
n→∞

f (xn ) = lim
n→∞

1 = 1 , −1 = f (x ).

In either case, we see (by the sequential criterion for continuity) that the function
f is nowhere continuous on [0, 1].

Let us now see how the continuity of a functions helps to locally preserve the
“sign” or “magnitude” of a function.

Proposition 11.1. LetA ⊆ R and assume that f : A→ R is continuous at a point
a ∈ A. If f (a) > 0, there exists a δ -neighbourhood Vδ (a) such that f (x ) > 0 for all
x ∈ A ∩Vδ (a).

Remark 11.2. Loosely speaking, if f : A → R is continuous at a and f (a) > 0,
the result above says that f (x ) is positive at all points in A “near” a.

Proof. Let us de�ne
ε := f (a)

2 > 0.

Since f is continuous at a, we can �nd δ > 0 such that

��f (x ) − f (a)�� < ε =
f (a)

2
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for all x ∈ A with |x − a | < δ . �at is, the above holds for all x ∈ Vδ (x ) ∩ A.
However, for any such x , we have

f (a) − f (x ) ≤ ��f (x ) − f (a)�� <
f (a)

2

whence it follows that
f (a) −

f (a)

2 < f (x ).

Or, rather, we �nd that
f (x ) >

f (a)

2 > 0

for all x ∈ Vδ (x ) ∩A. �

Corollary 11.2. Let A ⊆ R and assume that f : A → R is continuous at a point
a ∈ A. If f (a) < 0, there exists a δ -neighbourhood Vδ (a) such that f (x ) < 0 for all
x ∈ A ∩Vδ (a).

Proof. Apply the previous result to the function д := −f . �

�e argument used in the proof of this proposition can be generalized to
obtain a result that applies to ��f ��.

Proposition 11.3. Let f : A ⊆ R → R be a function and assume that f is
continuous at a point a ∈ A. If f (a) , 0, then one can �nd δ > 0 such that

��f (x )�� > 0

for all x ∈ Vδ (a) ∩A.

Proof. If f is continuous at a, then so is ��f ��. Also, if f (a) , 0, then ��f (a)�� > 0.
�erefore, it su�ces to apply Proposition 11.1 to ��f ��. �

11.3.1 Thomae’s Function

�roughout this subsection, we denote by I the open interval (0, 1). �omae’s
function is de�ned to be the mapping given by the rule

f : I → R, x 7→



0 if x < Q,
1
q if x ∈ Q and x =

p
q with p,q ∈ N and gcd(p,q) = 1.

(11.2)
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Note that f (x ) , 0 for all x ∈ Q ∩ I .
We assert that f is continuous at all irrational numbers and discontinuous at

every rational number. �is would show that the function f de�ned above has
only countably many discontinuities on the interval (0, 1). In fact, f would be
discontinuous only on a countably in�nite set.

Proposition 11.4. �omae’s function f de�ned in (11.2) is continuous everywhere
on I except at those point in I ∩Q.

Proof. We �rst show that f is discontinuous at every x ∈ Q ∩ I . Let (ξn ) be
a sequence of irrational numbers in (0, 1) that converge to x as n → ∞.23 By
de�nition, f (ξn ) = 0 for all n ∈ N. However,

lim f (ξn ) = 0 , f (x )

which shows that f is not continuous at x by the sequential characterization of
the limit.

To prove that f is continuous at the irrational points of I , we follow the
argument used in Assignment 10 (see MyCourses). �

11.3.2 Continuity of the Maximum Operator

Let f ,д : R → R be functions and assume that these are continuous at a ∈ R.
Is it true that the function x 7→ max{ f (x ),д(x )} is also continuous at a? To
help answer this question, let us �rst justify two elementary identities. Given
x ,y ∈ R, we claim that

max{x ,y} = x + y + ��x − y��
2 . (11.3)

To check this, we distinguish two cases:

1. If x ≥ y then

x + y + ��x − y��
2 =

x + y + x − y

2 =
2x
2 = x = max{x ,y}.

23Since I is open, there exists ε > 0 such that (x − ε,x + ε ) ⊆ I . �erefore, we have(
x − ε

n ,x +
ε
n

)
⊆ (x − ε,x + ε ) ⊆ I for all n ≥ 1. Since the irrationals are dense in R, there

exists for each n ∈ N and irrational number ξn ∈
(
x − ε

n ,x +
ε
n

)
. Since ��x − ξn �� < ε

n → 0 as
n → ∞, the Squeeze �eorem ensures that ξn → x as n → ∞.
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2. If instead x < y then

x + y + ��x − y��
2 =

x + y + y − x

2 =
2y
2 = y = max{x ,y}.

Hence, we see that (11.3) holds. In a similar way, one can check that

min{x ,y} = x + y − ��x − y��
2 .

So, in particular, for each x

max{ f (x ),д(x )} = f (x ) + д(x ) + ��f (x ) − д(x )��
2 , (11.4)

min{ f (x ),д(x )} = f (x ) + д(x ) − ��f (x ) − д(x )��
2 . (11.5)

�is shows that max{ f (x ),д(x )} and min{ f (x ),д(x )} can both be expressed as
the linear combination of continuous functions, and hence will be continuous at
a as well.

11.4 Open Mappings

A function f : R → R is said to be an open map if f (O ) is open in R whenever
O is open in R. �at is, if f sends open sets to open sets. It is not true that all
continuous maps are open, as we shall see below.

Example 11.5. Consider the function f : R→ R given by x 7→ x2. Clearly, f is
continuous on all of R. However, it is not an open map. To see this, note that f
maps the open set (−1, 1) onto the set [0, 1), which is not open!

To make this phenomenon more concrete, we �x an open interval (a,b) ⊆ R.
If a ≥ 0, then f ((a,b)) = (a2,b2) which is again open in R. Similarly, if a < b ≤ 0
then

f ((a,b)) = (b2,a2)

which is an open subset of R. So far, f has taken open sets to open sets. �e
problem we encountered earlier arises when a < 0 < b, in which case

f ((a,b)) =
[
0,max{|a | , |b |}2

)
which is not open in R.
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Although every continuous function need not be an open map, the following
characterization of continuous functions does hold true.

�eorem 11.5. A function f : R→ R is continuous if and only if f −1(V ) is open
for every open set V ⊆ R.

Proof. First suppose that f is continuous and �x an open set V ⊆ R. We claim
that f −1(V ) is open. If f −1(V ) is empty, then we are done. Otherwise, let us take
x ∈ f −1(V ) and consider y = f (x ) ∈ V . Since V is open, we can �nd ε > 0 such
that Vε (y) ⊆ V . For this ε > 0, there is δ > 0 with the property that

��f (z) − f (x )�� = ��f (z) − y�� < ε

for all z ∈ R with |z − x | < δ . �at is, f (z) ∈ Vε (y) ⊆ V for all z ∈ Vδ (x ). It
follows that Vδ (x ) ⊆ f −1(V ) whence f −1(V ) is open.

Conversely, �x a point c ∈ R and let ε > 0. De�ne y := f (c ) and consider the
ε-neighbourhood Vε (y). By hypothesis, we know that f −1(Vε (y)) is open in R.
Since c ∈ f −1(Vε (y)), we can therefore �nd δ > 0 such that Vδ (c ) ⊆ f −1(Vε (y)).
In particular, this means that

f (x ) ∈ Vε (y), whenever |x − c | < δ .

Of course, this is the same as saying that ��f (x ) − f (c )�� < ε for all x ∈ R with
|x − c | < δ . Hence, f is continuous at c . �

In a similar vein, we say that f is a closed map if it sends closed sets to closed
sets. �at is, if Σ ⊆ R is closed, then so is f (Σ).

Example 11.6. Consider once more the function f (x ) = x2. If [a,b] ⊂ R is a
closed interval, then f ([a,b]) is also closed in R. To see this, we consider three
cases as above. First if a ≥ 0, then f ([a,b]) = [a2,b2] which is again a closed
interval in R. Similarly, if a < b ≤ 0 then

f ([a,b]) = [b2,a2]

Finally, if a < 0 < b then

f ([a,b]) =
[
0,max{|a | , |b |}2

]

which is also closed in R.
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11.5 Compactness and Open Covers

Let us consider a set K ⊆ R. An open cover of K is a family U := {Uα }α∈I of
open sets such that K ⊆ ⋃

α∈I Uα . �at is, an open cover of K is simply a family
of open sets whose union contains K . Using the de�nition of an open cover, we
can de�ne the concept of compactness. �is very general notion captures what it
means for a “space” to behave like a �nite set (albeit in a loose sense). Although
its de�nition is purely topological, continuous functions on compact sets will
enjoy very nice analytic properties.

De�nition 11.3. A subset K ⊆ R is said to be compact whenever every open
cover of K has a �nite subcover. More precisely, a set K is compact if, for any
open cover U = {Uα }α∈I of K , there exist �nitely many Uα1, . . . ,Uαn ∈ U such
that K ⊆ ⋃n

j=1Uα j .

Next, we provide some examples (mostly without proof 24) of sets that are
compact.

• �e empty set ∅ is compact since it is a subset of every set. Hence, given
any open cover U of ∅, we have ∅ ⊆ U for each U ∈ U . �at is, every
open set U ∈ U is trivially a �nite subcover of ∅.

• �e closed interval [0, 1] is compact. In fact, every interval [a,b] with a < b
is compact.

• If S ⊂ R is bounded, then ∂S is compact.

• Every �nite set is compact. Indeed, letX = {x1, . . . ,xn} be any �nite set and
let {Uα }α∈I be an open cover ofX . �at is, eachUα is open andX ⊆ ⋃

α∈I Uα .
Now, for each j = 1, . . . ,n, there exists αj ∈ I such that xj ∈ Uα j . Hence,
{x1, . . . ,xn} = X ⊆ Uα1 ∪ · · · ∪Uαn .We infer that X is compact.

• �e Cantor set C de�ned in §6 is compact.

To help solidify the concept of compactness, let us give two explicit examples
of an open cover which has no �nite subcover (to see why some sets might not
be compact).

24�e compactness of these sets will follow at once when we prove the Heine-Borel theorem.
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Example 11.7. Consider the set A = [0,∞), which is unbounded. We claim that
A has an open cover that does not have a �nite subcover. In this particular case,
such an open cover is easy to construct. Given n ≥ −1, we de�neUn := (n,n+2),
which is clearly open in R. Moreover, (−1,∞) =

⋃
n≥−1Un. �us, the family

U := {Un : n ≥ −1, n ∈ Z}

is an open cover of [0,∞) that has no �nite subcover.25

One last trickier example is in order.

Example 11.8. We claim that [0, 1) is not compact. Let us try to �nd an open
cover of [0, 1) having no �nite subcover. Since [0, 1) is bounded, the “bounded-
ness trick” we used in the last example will fail here. Instead, let us try to cook up
a slightly more contrived open cover. First, note that given x ∈ [0, 1) ⊆ (−1, 1),
we can �nd εx > 0 such that Vεx (x ) ⊆ (−1, 1). In fact, by replacing εx with

εx
2 < εx ,

we can make sure that there always exists y < Vεx (x ) with 0 < y < 1. �en, the
family {

Vεx (x ) : x ∈ [0, 1)}
certainly forms an open cover of [0, 1). However, given �nitely many x1, . . . ,xn
in [0, 1), the union ⋃n

j=1Vεxj (xj ) cannot cover all of [0, 1). Indeed, this is because
every Vεxj (xj ) is of the form (aj ,bj ), with bj < 1. �at is,

n⋃
j=1

Vεxj (xj ) ⊆

(
min

1≤j≤n
aj , max

1≤j≤n
bj

)
where max1≤j≤n bj < 1.

�e next result is a fundamental property of compact sets that continues to
hold in more general se�ings. For now, however, it will be more than enough to
have the result for R.

Lemma 11.6. If K ⊆ R is compact, then it is also bounded.
25�e union of �nitely many members of U always gives a bounded set, and thus no �nite

subcollection ofU can cover [0,∞).
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Proof. For each n ∈ N de�ne Un := (−n,n). �en, Un is open and

K ⊆ R =
⋃
n∈N

Un .

�us, {Un}n∈N is an open cover of K . Since K is compact, we can �nd �nitely
many Un1, . . . ,Unk such that K ⊆ Un1 ∪ · · · ∪Unk . Let N := max (n1, . . . ,nk ) and
note that

K ⊆ Un1 ∪ · · · ∪Unk = UN = (−N ,N ).

Since K is a subset of a bounded set, the proof is complete. �

12 Twel�h/Last Tutorial

Recall the (topological/generalized) de�nition of a compact set: a set K ⊆ R is
said to be compact if every open cover of K has a �nite subcover. As seen in the
lectures, the Heine-Borel theorem provides a complete characterization of the
compact subsets of R.

�eorem 12.1 (Heine-Borel). A subset K ⊆ R is compact (according to De�nition
11.3) if and only if it is both closed and bounded.

At the end of the previous tutorial, we showed that any compact set is auto-
matically bounded (see Lemma 11.6). In fact, our proof of this fact was elemen-
tary in the sense that it did not rely on anything other than the very de�nition
of compactness. Arguing in a similar way, it is not too hard to show using only
elementary arguments that every compact set is closed. Although we already
know this from class, it is still a good exercise to understand a di�erent proof.

�eorem 12.2. Every compact subset of R is both closed and bounded.

Proof. By Lemma 11.6, we already know that every compact set is bounded. Now
let K ⊆ R be compact; we must show that K is closed. To establish this, we will
prove that Kc is open. Fix a point x ∈ Kc and de�ne

Un :=
{
y ∈ R : ��x − y�� >

1
n

}
= R \

[
x −

1
n
,x +

1
n

]

for each n ∈ N. Clearly, Un is open and Un ⊆ Un+1 for all n ≥ 1. Finally, observe
that

∞⋃
n=1

Un = R \ {x }.
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Since x < K , it follows that K ⊆ R \ {x } =
⋃

n∈NUn. �at is, {Un}n∈N is an open
cover of K . By de�nition of compactness, there exist �nitely many Un1, . . . ,Unk

such that
K ⊆ Un1 ∪ · · · ∪Unk .

As in the proof of Lemma 11.6, we de�ne N := max(n1, . . . ,nk ) and observe that

K ⊆ Un1 ∪ · · · ∪Unk ⊆ UN .

�us, U c
N ⊆ Kc. However, U c

N =
[
x − 1

N ,x +
1
N

]
whence(

x −
1
N
,x +

1
N

)
⊆ U c

N ⊆ Kc.

Put otherwise, we haveV1/N (x ) ⊆ Kc. As x ∈ Kc was arbitrary, we infer that Kc

is open. �is completes the proof. �

12.1 Uniform Continuity

Given a subset A ⊆ R and a function f : A → R, we say that f is uniformly
continuous on A if for each ε > 0, there exists δ > 0 such that ��f (x ) − f (y)�� < ε
whenever x ,y ∈ A satisfy ��x − y�� < δ . In symbolic terms:

(∀ε > 0) (∃δ > 0) (∀x ,y ∈ A) (��x − y�� < δ =⇒ ��f (x ) − f (y)�� < ε ).

At a �rst glance this may seem to be the same as saying that f is continuous on
A, but this is not the case. By way of clari�cation, let us compare our de�nition
of uniform continuity to our ε − δ de�nition of continuity in (11.1).

• Continuity is a local property and uniform continuity is a global property. We
know what it means for the function f to be continuous at an individual point
a ∈ A, but we have only de�ned uniform continuity for the entire set A.
Namely, the continuity of f at a single point a depends only on the behaviour
of f in a neighbourhood of a. On the other hand, uniform continuity depends
on how f behaves on the entire set A.

• We say that f is continuous at a point y ∈ A if

(∀ε > 0) (∃δ > 0) (∀x ∈ A) (��x − y�� < δ =⇒ ��f (x ) − f (y)�� < ε ).

�us, we say that f is continuous on the entire set A if

(∀y ∈ A) (∀ε > 0) (∃δ > 0) (∀x ∈ A) ( |x − a | < δ =⇒ ��f (x ) − f (a)�� < ε ).
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In this expression, the variable y appears before the “∃δ”, which means that δ
may depend on the point y. However, this is not the case in the de�nition of
uniform continuity. For f to be uniformly continuous on A, the δ > 0 cannot
depend on x or y.

Let us also recall the following fundamental result from class.

�eorem 12.3 (Uniform Continuity �eorem). Let K ⊂ R be compact and let
f : K → R be continuous. �en, f is uniformly continuous on A.

If K is not compact, this implication may fail. However, there are still many
nice continuous functions that turn out to be uniformly continuous on unbounded
intervals. One example is the function

f : (0,∞) → R, x 7→
√
x .

Example 12.1. We claim that the function f described above is uniformly con-
tinuous on [0,∞). First, let us establish the following useful inequality:

���
√
x −
√
y��� ≤

√
��x − y��, ∀x ,y ≥ 0. (12.1)

By symmetry, it is enough to show that the above holds whenever 0 ≤ y ≤ x .
For such x ,y, the inequality in (12.1) reduces to proving that

√
x −
√
y ≤
√
x − y ⇐⇒

(√
x −
√
y
)2
≤ (x − y)

⇐⇒ x − 2√xy + y ≤ x − y

⇐⇒ −2√xy + y ≤ −y
⇐⇒ 2y ≤ 2√xy
⇐⇒ y ≤

√
xy.

�is last inequality holds true because y ≤ x implies

y =
√
y2 =

√
y · y ≤

√
x · y.

�us, we have proven (12.1). It now becomes trivial to show that
√
x is uniformly

continuous on [0,∞). To see this, let ε > 0 be given and take δ := ε2 > 0. If
x ,y ∈ [0,∞) are such that ��x − y�� < δ , then (12.1) tells us that

��f (x ) − f (y)�� =
���
√
x −
√
y��� ≤

√
��x − y�� <

√
δ = ε .

Note our δ only depends on ε and not on x or y.
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12.1.1 A Return to Cauchy Sequences

Let f : A→ R be a uniformly continuous function and let (xn ) be a sequence inA.
If (xn ) is Cauchy, then the induced sequence ( f (xn )) turns out to be also Cauchy.
In this sense, we say that f takes Cauchy sequences to Cauchy sequences. �is
is not a property satis�ed by functions that are merely continuous. Indeed, con-
sider the function

f : (0, 1) → R, x 7→
1
x
.

Clearly, f is continuous on its entire domain. Now, the sequence (xn ) in (0, 1)
de�ned by xn := 1

n converges to 0 and must therefore be Cauchy. However, we
have f (xn ) = n for each n ∈ N. Hence, the sequence ( f (xn )) is not Cauchy.

Proposition 12.4. Let A ⊆ R be non-empty and let f : A → R be uniformly
continuous. If (xn ) is a Cauchy sequence in A, then ( f (xn )) is also Cauchy.

Proof. Let ε > 0 be given. Since f is uniformly continuous, there exists δ > 0
such that ��f (x ) − f (y)�� < ε for all x ,y ∈ A satisfying ��x − y�� < δ . Now, using
that (xn ) is Cauchy in A, there exists N ∈ N such that |xn − xm | < δ whenever
n,m ≥ N . Consequently,

��f (xn ) − f (xm )�� < ε
for all n,m ≥ N . As ε > 0 was arbitrary, it follows that ( f (xn )) is Cauchy. �

Next we ask whether the converse is true. Namely, if a function maps Cauchy
sequences to Cauchy sequences, must it be uniformly continuous? To help an-
swer this question, we consider a continuous function on an interval that is not
uniformly continuous.

Lemma 12.5. Let f : R → R be given by f (x ) := x2. �e function f is not
uniformly continuous on R, but is uniformly continuous on any compact interval
[−a,a].

Proof. �e only non-trivial claim is that f is not uniformly continuous on all of
R. To see this, we argue by contradiction. If f is uniformly continuous on R,
then for ε := 1 we can �nd δ > 0 such that

���x
2 − y2��� < 1

whenever ��x − y�� < δ . Given x ∈ R we consider the point

y := x +
δ

2 .
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It is clear that ��x − y�� < δ , and we must therefore have
������
x2 −

(
x +

δ

2

)2������
< 1.

However, the expression above reduces to the following:
�����
xδ +

δ 2

4
�����
< 1.

Since x ∈ R can be made very large, this is impossible. �

Having exhibited a continuous function R→ R that is not uniformly contin-
uous, we can answer our original question.

Example 12.2. We claim that the function f : R → R given by x 7→ x2 takes
Cauchy sequences in R to Cauchy sequences. To see this, let (xn ) be a Cauchy
sequence. Since Cauchy sequences are bounded, the sequence (xn ) is contained
within some compact interval [−a,a]. �at is, (xn ) is a Cauchy sequence in
[−a,a]. By continuity on all of R, the function f is uniformly continuous on
[−a,a]. Since uniformly continuous functions take Cauchy sequences to Cauchy
sequences, we see that ( f (xn )) is Cauchy in R.

�us, we have found a continuous map R→ R that takes Cauchy sequences
to Cauchy sequences, even though it is not uniformly continuous on R. Moving
away from examples, let us now prove some more powerful/general statements.

Proposition 12.6. Let A ⊆ R be non-empty and let f ,д : A → R be uniformly
continuous on A.

(1) f + д is uniformly continuous as a function A→ R.

(2) �e product f д may not be uniformly continuous on A.

Proof. We begin with the �rst claim. Let ε > 0 be given and let δ1 > 0 be such
that

��f (x ) − f (y)�� <
ε

2
whenever x ,y ∈ A satisfy ��x − y�� < δ1. Similarly, because д is uniformly contin-
uous on A, we can �nd δ2 > 0 with the property that ��x − y�� < δ2 (with x ,y ∈ A)
implies

��д(x ) − д(y)�� <
ε

2 .
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Taking δ := min{δ1,δ2} > 0, we see that for any x ,y ∈ A with ��x − y�� < δ we
have:

��( f + д) (x ) − ( f + д) (y)�� = ��f (x ) + д(x ) − f (y) − д(y)��
≤ ��f (x ) − f (y)�� + ��f (y) − д(y)��
<
ε

2 +
ε

2
= ε .

�is means that f +д is uniformly continuous onA. For the second part, consider
the functions f (x ) = д(x ) = x on all of R. Clearly, both f and д are uniformly
continuous but their product f д = x2 is not (by our previous lemma). �

12.2 Uniformly Continuous Functions Are Bounded

Given a non-compact bounded subset A of R, a continuous function f : A → R
need not be bounded. Indeed, this is the case for the continuous map

f : (0, 1]→ R, x 7→
1
x
.

�us, continuous functions need not (in general) be bounded. However, it is
true that uniformly continuous functions on bounded domains are bounded. We
prove this below.

�eorem 12.7. Let A ⊂ R be bounded and suppose that f : A → R is uniformly
continuous on A. �en, f is bounded on A.

Proof. We argue by contradiction. If f were unbounded on A, we could �nd a
sequence (xn ) in A such that ��f (xn )�� > n for each n ∈ N. Since A is bounded, the
sequence (xn ) is bounded. �us, we can �nd a subsequence (xnk ) that converges
in R. Equivalently, (xnk ) is a Cauchy sequence in A such that

���f (xnk )
��� > nk ≥ k

for allk ∈ N. However, since f is uniformly continuous onA, we see that ( f (xnk ))
is Cauchy in R. In particular, the sequence ( f (xnk ))k is bounded. �is contradicts
the fact that ���f (xnk )

��� > nk ≥ k .

Hence, we conclude that f is bounded on A. �
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12.3 Lipschitz Continuity

Lipschitz continuity is an additional continuity condition one can impose on a
function that is stronger than uniform continuity.

De�nition 12.1. Let A be a non-empty subset of R. A function f : A → R is
said to be Lipschitz continuous on A if there exists L > 0 such that

��f (x ) − f (y)�� ≤ L ��x − y��

for all x ,y ∈ A. �e set of all Lipschitz continuous functions A → R is o�en
denoted by Lip(A;R) or Lip(A).

It is automatic that Lipschitz continuous functions are uniformly continuous
on their domains. Indeed, given f ∈ Lip(A) and ε > 0, we de�ne δ = ε

L and
notice that if x ,y ∈ A satisfy ��x − y�� < δ then

��f (x ) − f (y)�� ≤ L ��x − y�� < Lδ = ε .

One can extend the concept of a Lipschitz function to that of a Hölder continuous
function. We make this precise below.

De�nition 12.2. Let A ⊆ R be non-empty and let f : A→ R be a function. We
say that f is Hölder continuous on A with exponent α > 0 if there exists M > 0
such that

��f (x ) − f (y)�� ≤ M ��x − y��α

for all x ,y ∈ A.

Note that f ∈ Lip(A;R) if and only if f is Hölder continuous on A with
exponent α = 1.

Exercise 12.1. Let f : A ⊆ R → R be Hölder continuous on A with exponent
α > 0. Prove that f is uniformly continuous on A.

Let us now give some examples of Lipschitz/Hölder continuous functions.

(i) By the reverse triangle inequality, the function f (x ) := |x | is Lipschitz on
R. Indeed, note that

��|x | − ��y���� ≤ ��x − y��
for all x ,y ∈ R.
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(ii) In (5.1) we showed that

���
√
x −
√
y��� ≤

√
��x − y�� = ��x − y��1/2 , ∀x ,y ∈ [0,∞).

�us, we were really proving that f (x ) :=
√
x is Hölder continuous on

[0,∞) with exponent α = 1
2 .

(iii) �e function f (x ) =
√
x is not Lipschitz on [0, 1]. To see this, we argue by

contradiction. If it were Lipschitz on [0, 1], we could �nd L > 0 such that
���
√
x −
√
y��� ≤ L ��x − y�� , ∀x ,y ∈ [0, 1].

�us,

sup
x ,y∈[0,1]

x,y

���
√
x −
√
y���

��x − y��
≤ L < ∞.

In particular (taking y = 0),

sup
x∈[0,1]
x,0

√
x

x
= sup

x∈[0,1]
x,0

1
√
x
< ∞.

Since this is absurd, we have a contradiction.

12.4 The Lebesgue Number Lemma (Optional)

If time permits, let us conclude by exploring a more advanced and less intuitive
property that compact sets enjoy. Despite being somewhat strange at �rst glance,
the usefulness of this result should not be underestimated.

�eorem 12.8 (Lebesgue Number Lemma). Let K ⊆ R be compact and let

U = {Uα }α∈I

be an open cover of K . �ere exists δ > 0 such that, for any x ∈ K , there is some
Uα ∈ U with Vδ (x ) ⊆ Uα . In symbolic terms:

(∃δ > 0) (∀x ∈ K ) (∃α ∈ I with Vδ (x ) ⊆ Uα ).

In other words, every δ -neighbourhood centered at a point x ∈ K is entirely con-
tained within a single member ofU . �is δ is called a Lebesgue number.
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Proof. For every x ∈ K , we can �ndUαx ∈ U containing the point x . SinceUαx is
open, there is some corresponding εx such that Vεx (x ) ⊆ Uαx . Next, we consider
the family of open sets

A := {
Vεx /2(x ) : x ∈ K }

which certainly forms an open covering of K . Since K is compact, it has a �nite
subcover. Namely, we can �nd �nitely many points x1, . . . ,xn ∈ K such that

K ⊆
n⋃
j=1

Vεj/2(xj ), εj = εx j .

Now, de�ne
δ := 1

2 min
1≤j≤n

εj > 0.

Let x ∈ K be given and consider B (x ,δ ). Since

K ⊆
n⋃
j=1

Vεj/2(xj ),

we can �nd j = 1, . . . ,n with x ∈ Vεj/2(xj ). �en, by the triangle inequality, it
follows that

Vδ (x ) ⊆ Vεj (xj ) ⊆ Uα j .

�
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