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1 First Tutorial

Let’s begin by recalling some important topological notions. A setU ⊆ R is said
to be open if, for each x ∈ U , there exists ε > 0 such that Vε (x ) ⊆ U . Here,
Vε (x ) := (x − ε,x + ε ) is the open interval of radius ε centered at x .1 A set F ⊆ R
is called closed if its complement is open, i.e. if R \ F is open in R. Finally, a set
K ⊆ R is called compact provided it is closed and bounded.2 We also recall the
following properties:

• Arbitrary unions of open sets are open. �at is, if {Uα }α∈I is an indexed
family of open sets, then ⋃

α∈I Uα is open.

• Finite intersections of open sets are open. More precisely, ifU1, . . . ,Un are
open, then so is ⋃n

k=1Uk .

• Finite unions of closed sets are closed. Namely, given closed sets F1, . . . , Fn
in R, their union ⋃n

k=1 Fk is also closed.

• Arbitrary intersections of closed sets remain closed, i.e. ⋂
α∈I Fα is closed

if each Fα is closed.

We also point out that these topological notions will interact very nicely with
our de�nitions of continuity and convergence.
Remark 1.1. It should be noted that the de�nitions of open and closed sets are in
no way “opposites”. �at is, it is not true that a subset A ⊆ R is either open or
closed. For example, the set of rational numbers Q is neither open nor closed.
�erefore, if A ⊆ R is not open, it does not follow that A is closed. Similarly, A
not being closed does not mean that A is open!

1.1 Uniform Continuity

Given a subset A ⊆ R and a function f : A → R, we say that f is uniformly
continuous on A if for each ε > 0, there exists δ > 0 such that ��f (x ) − f (y)�� < ε
whenever x ,y ∈ A satisfy ��x − y�� < δ . In symbolic terms:

(∀ε > 0) (∃δ > 0) (∀x ,y ∈ A) (��x − y�� < δ =⇒ ��f (x ) − f (y)�� < ε ).
1Vε (x ) is o�en called an ε-neighbourhood of x . �erefore, the setU is called open if for every

point x ∈ U , there exists a neighbourhood of x contained in U .
2Note that none of these sets are assumed to be intervals. For example, (1, 2) ∪ (3, 4) is open

but not an interval. Similarly, {0, 1} is closed and is also not an interval.
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At a �rst glance this may seem to be the same as saying that f is continuous on
A, but this is not the case. By way of clari�cation, let us compare our de�nition
of uniform continuity to our ε − δ de�nition of continuity.

• Continuity is a local property and uniform continuity is a global property. We
know what it means for the function f to be continuous at an individual point
a ∈ A, but we have only de�ned uniform continuity for the entire set A.
Namely, the continuity of f at a single point a depends only on the behaviour
of f in a neighbourhood of a. On the other hand, uniform continuity depends
on how f behaves on the entire set A.

• We say that f is continuous at a point y ∈ A if

(∀ε > 0) (∃δ > 0) (∀x ∈ A) (��x − y�� < δ =⇒ ��f (x ) − f (y)�� < ε ).

�us, we say that f is continuous on the entire set A if

(∀y ∈ A) (∀ε > 0) (∃δ > 0) (∀x ∈ A) (��x − y�� < δ =⇒ ��f (x ) − f (y)�� < ε ).

In this expression, the variable y appears before the “∃δ”, which means that δ
may depend on the point y. However, this is not the case in the de�nition of
uniform continuity. For f to be uniformly continuous on A, the δ > 0 cannot
depend on x or y.

Let us also recall the following fundamental result from class.

�eorem 1.1 (Uniform Continuity �eorem). Let K ⊂ R be compact and let
f : K → R be continuous. �en, f is uniformly continuous on K .

If K is not compact, this implication may fail. However, there are still many
nice continuous functions that turn out to be uniformly continuous on unbounded
intervals. One example is the function

f : [0,∞) → R, x 7→
√
x .

Example 1.1. We claim that the function f described above is uniformly con-
tinuous on [0,∞). First, let us establish the following useful inequality:

���
√
x −
√
y��� ≤

√
��x − y��, ∀x ,y ≥ 0. (1.1)
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By symmetry, it is enough to show that the above holds whenever 0 ≤ y ≤ x .
For such x ,y, the inequality in (1.1) reduces to proving that

√
x −
√
y ≤
√
x − y ⇐⇒

(√
x −
√
y
)2
≤ (x − y)

⇐⇒ x − 2√xy + y ≤ x − y

⇐⇒ −2√xy + y ≤ −y
⇐⇒ 2y ≤ 2√xy
⇐⇒ y ≤

√
xy.

�is last inequality holds true because y ≤ x implies

y =
√
y2 =

√
y · y ≤

√
x · y.

�us, we have proven (1.1). It now becomes trivial to show that
√
x is uniformly

continuous on [0,∞). To see this, let ε > 0 be given and take δ := ε2 > 0. If
x ,y ∈ [0,∞) are such that ��x − y�� < δ , then (1.1) tells us that

��f (x ) − f (y)�� =
���
√
x −
√
y��� ≤

√
��x − y�� <

√
δ = ε .

Note our δ only depends on ε and not on x or y.

We now check that uniformly continuous functions behave as expected un-
der composition. Namely, we claim that compositions of uniformly continuous
functions are again uniformly continuous.

Proposition 1.2. Let A,B ⊆ R and f : A→ R be uniformly continuous. Assume
that д : B → R is uniformly continuous and that f (A) ⊆ B. �en, the function

д ◦ f : A→ R

is also uniformly continuous.

Proof. Let ε > 0 be given. Since д is uniformly continuous on B, there exists
δ > 0 such that ��д(x ) − д(y)�� < ε whenever x ,y ∈ B are such that ��x − y�� < δ .
Using instead that f is uniformly continuous, for this δ > 0, we can �nd δ ′ > 0
such that

��f (x ) − f (y)�� < δ
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whenever x ,y ∈ A satisfy ��x − y�� < δ ′. �erefore, given x ,y ∈ A with ��x − y�� < δ ′
we have

��f (x ) − f (y)�� < δ
so that ��д( f (x )) − д( f (y))�� < ε . �at is,

��(д ◦ f ) (x ) − (д ◦ f ) (y)�� < ε

for all x ,y ∈ A with ��x − y�� < δ ′. We infer that д ◦ f is uniformly continuous. �

1.1.1 A Return to Cauchy Sequences

Let f : A→ R be a uniformly continuous function and let (xn ) be a sequence inA.
If (xn ) is Cauchy, then the induced sequence ( f (xn )) turns out to be also Cauchy.
In this sense, we say that f takes Cauchy sequences to Cauchy sequences. �is
is not a property satis�ed by functions that are merely continuous. Indeed, con-
sider the function

f : (0, 1) → R, x 7→
1
x
.

Clearly, f is continuous on its entire domain. Now, the sequence (xn ) in (0, 1)
de�ned by xn := 1

n converges to 0 and must therefore be Cauchy. However, we
have f (xn ) = n for each n ∈ N. Hence, the sequence ( f (xn )) is not Cauchy as it
is unbounded.

Proposition 1.3. Let A ⊆ R be non-empty and let f : A → R be uniformly
continuous. If (xn ) is a Cauchy sequence in A, then ( f (xn )) is also Cauchy.

Proof. Let ε > 0 be given. Since f is uniformly continuous, there exists δ > 0
such that ��f (x ) − f (y)�� < ε for all x ,y ∈ A satisfying ��x − y�� < δ . Now, using
that (xn ) is Cauchy in A, there exists N ∈ N such that |xn − xm | < δ whenever
n,m ≥ N . Consequently,

��f (xn ) − f (xm )�� < ε
for all n,m ≥ N . As ε > 0 was arbitrary, it follows that ( f (xn )) is Cauchy. �

Next we ask whether the converse is true. Namely, if a function maps Cauchy
sequences to Cauchy sequences, must it be uniformly continuous? To help an-
swer this question, we consider a continuous function on an interval that is not
uniformly continuous.

7



Lemma 1.4. Let f : R → R be given by f (x ) := x2. �e function f is not
uniformly continuous on R, but is uniformly continuous on any compact interval
[−a,a].

Proof. �e only non-trivial claim is that f is not uniformly continuous on all of
R. To see this, we argue by contradiction. If f is uniformly continuous on R,
then for ε := 1 we can �nd δ > 0 such that

���x
2 − y2��� < 1

whenever ��x − y�� < δ . Given x ∈ R we consider the point

y := x +
δ

2 .

It is clear that ��x − y�� < δ , and we must therefore have
������
x2 −

(
x +

δ

2

)2������
< 1.

However, the expression above reduces to the following:

�����
xδ +

δ 2

4
�����
< 1.

Since x ∈ R was arbitrary, the above implies that the function

д(x ) := xδ +
δ 2

4
is bounded on R. Clearly, this is a contradiction. �

Having exhibited a continuous function R→ R that is not uniformly contin-
uous, we can answer our original question.

Example 1.2. We claim that the function f : R → R given by x 7→ x2 takes
Cauchy sequences in R to Cauchy sequences. To see this, let (xn ) be a Cauchy
sequence. Since Cauchy sequences are bounded, the sequence (xn ) is contained
within some compact interval [−a,a]. �at is, (xn ) is a Cauchy sequence in
[−a,a]. By continuity on all of R, the function f is uniformly continuous on
[−a,a]. Since uniformly continuous functions take Cauchy sequences to Cauchy
sequences, we see that ( f (xn )) is Cauchy in R.
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�us, we have found a continuous map R→ R that takes Cauchy sequences
to Cauchy sequences, even though it is not uniformly continuous on R. Moving
away from examples, let us now prove some more powerful/general statements.

Proposition 1.5. Let A ⊆ R be non-empty and let f ,д : A → R be uniformly
continuous on A.

(1) f + д is uniformly continuous as a function A→ R.

(2) �e product f д may not be uniformly continuous on A.

Proof. We begin with the �rst claim. Let ε > 0 be given and let δ1 > 0 be such
that

��f (x ) − f (y)�� <
ε

2
whenever x ,y ∈ A satisfy ��x − y�� < δ1. Similarly, because д is uniformly contin-
uous on A, we can �nd δ2 > 0 with the property that ��x − y�� < δ2 (with x ,y ∈ A)
implies

��д(x ) − д(y)�� <
ε

2 .

Taking δ := min{δ1,δ2} > 0, we see that for any x ,y ∈ A with ��x − y�� < δ we
have:

��( f + д) (x ) − ( f + д) (y)�� = ��f (x ) + д(x ) − f (y) − д(y)��
≤ ��f (x ) − f (y)�� + ��f (y) − д(y)��
<
ε

2 +
ε

2
= ε .

�is means that f +д is uniformly continuous onA. For the second part, consider
the functions f (x ) = д(x ) = x on all of R. Clearly, both f and д are uniformly
continuous but their product f д = x2 is not (by our previous lemma). �

1.2 Uniformly Continuous Functions Are Bounded

Given a non-compact bounded subset A of R, a continuous function f : A → R
need not be bounded. Indeed, this is the case for the continuous map

f : (0, 1]→ R, x 7→
1
x
.
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�us, continuous functions need not (in general) be bounded. However, it is
true that uniformly continuous functions on bounded domains are bounded. We
prove this below.

�eorem 1.6. Let A ⊂ R be bounded and suppose that f : A → R is uniformly
continuous on A. �en, f is bounded on A.

Proof. We argue by contradiction. If f were unbounded on A, we could �nd a
sequence (xn ) in A such that ��f (xn )�� > n for each n ∈ N. Since A is bounded, the
sequence (xn ) is bounded. �us, we can �nd a subsequence (xnk ) that converges
in R. Equivalently, (xnk ) is a Cauchy sequence in A such that

���f (xnk )
��� > nk ≥ k

for allk ∈ N. However, since f is uniformly continuous onA, we see that ( f (xnk ))
is Cauchy in R. In particular, the sequence ( f (xnk ))k is bounded. �is contradicts
the fact that ���f (xnk )

��� > nk ≥ k .

Hence, we conclude that f is bounded on A. �

Remark 1.2. Note that the boundedness assumption on the domain of f cannot be
dropped. �at is, a uniformly continuous function f : A→ R may be unbounded
if A is unbounded. �is is the case for f (x ) = x and A = R.

1.3 Lipschitz Continuity

Lipschitz continuity is an additional continuity condition one can impose on a
function that is stronger than uniform continuity.

De�nition 1.1. Let A be a non-empty subset of R. A function f : A→ R is said
to be Lipschitz continuous on A if there exists L > 0 such that

��f (x ) − f (y)�� ≤ L ��x − y��
for all x ,y ∈ A. �e set of all Lipschitz continuous functions A → R is o�en
denoted by Lip(A;R) or Lip(A).

It is automatic that Lipschitz continuous functions are uniformly continuous
on their domains. Indeed, given f ∈ Lip(A) and ε > 0, we de�ne δ = ε

L and
notice that if x ,y ∈ A satisfy ��x − y�� < δ then

��f (x ) − f (y)�� ≤ L ��x − y�� < Lδ = ε .
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One can extend the concept of a Lipschitz function to that of a Hölder continuous
function. We make this precise below.

De�nition 1.2. Let A ⊆ R be non-empty and let f : A → R be a function. We
say that f is Hölder continuous on A with exponent α > 0 if there exists M > 0
such that

��f (x ) − f (y)�� ≤ M ��x − y��α

for all x ,y ∈ A.

Note that f ∈ Lip(A;R) if and only if f is Hölder continuous on A with
exponent α = 1.

Exercise 1.1. Let f : A ⊆ R → R be Hölder continuous on A with exponent
α > 0. Prove that f is uniformly continuous on A.

Let us now give some examples of Lipschitz/Hölder continuous functions.

(i) By the reverse triangle inequality, the function f (x ) := |x | is Lipschitz on
R. Indeed, note that

��|x | − ��y���� ≤ ��x − y��
for all x ,y ∈ R.

(ii) In (1.1) we showed that

���
√
x −
√
y��� ≤

√
��x − y�� = ��x − y��1/2 , ∀x ,y ∈ [0,∞).

�us, we were really proving that f (x ) :=
√
x is Hölder continuous on

[0,∞) with exponent α = 1
2 .

(iii) �e function f (x ) =
√
x is not Lipschitz on [0, 1]. To see this, we argue by

contradiction. If it were Lipschitz on [0, 1], we could �nd L > 0 such that

���
√
x −
√
y��� ≤ L ��x − y�� , ∀x ,y ∈ [0, 1].

�us,

sup
x ,y∈[0,1]

x,y

���
√
x −
√
y���

��x − y��
≤ L < ∞.
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In particular (taking y = 0),

sup
x∈[0,1]
x,0

1
√
x
= sup

x∈[0,1]
x,0

√
x

x
≤ sup

x ,y∈[0,1]
x,y

���
√
x −
√
y���

��x − y��
≤ L < ∞.

Since 1√
x

is unbounded on (0, 1], we have a contradiction.

1.4 Di�erentiation

We now introduce the notion of a derivative. Let I ⊆ R be an interval in R and
assume that f : I → R is a function.

De�nition 1.3. �e function f is said to be di�erentiable at a point c ∈ I provided
the limit

lim
x→c

f (x ) − f (c )

x − c

exists. If it does, we denote this limit by f ′(c ) and call f ′(c ) the derivative of f at
c . If f ′(c ) exists for all c ∈ I we say that f is di�erentiable on I . In this case, the
map x 7→ f ′(x ) is a well de�ned function on I that we call the derivative of f .3

Let’s also take a moment to recall the following observation from the lectures:

Proposition 1.7. Let I ⊆ R be an interval and let f : I → R be a function. If f is
di�erentiable at c ∈ I , then f is continuous at c ∈ I .

Proof. For all x ∈ I with x , c one may write

f (x ) − f (c ) =
f (x ) − f (c )

x − c
· (x − c )

whence

lim
x→c

( f (x ) − f (c )) = lim
x→c

(
f (x ) − f (c )

x − c

)
lim
x→c

(x − c ) = f ′(c ) · 0 = 0.

�at is, limx→c f (x ) = f (c ) and therefore f is continuous at c . �

3In the case where c is an endpoint of I , the limit

lim
x→c

f (x ) − f (c )

x − c

should be interpreted as a one-sided limit.
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A few simple examples are in order:
Example 1.3. Consider the function f (x ) = x2 on R and �x c ∈ R. For each
x ∈ R di�erent from c , we obtain

f (x ) − f (c )

x − c
=
x2 − c2

x − c
=

(x − c ) (x + c )

x − c
= x + c

so that
lim
x→c

f (x ) − f (c )

x − c
= lim

x→c
(x + c ) = 2c .

�erefore, f ′(c ) = 2c for all c ∈ R. We infer that f is di�erentiable on R with
f ′(x ) = 2x .
Example 1.4. Consider the function f (x ) :=

√
x de�ned on (0,∞) with

f ′(x ) =
1

2
√
x
.

Fixing c ∈ (0,∞) and le�ing x , c be positive we calculate

f (x ) − f (c )

x − c
=

√
x −
√
c

x − c
=

√
x −
√
c

x − c
·

√
x +
√
c

√
x +
√
c

=
x − c

(x − c ) (
√
x +
√
c )

=
1

√
x +
√
c
.

So, since
√
x →

√
c as x → c , the limit laws yield

lim
x→c

f (x ) − f (c )

x − c
=

1
2
√
c
, ∀c ∈ (0,∞).

�erefore f is di�erentiable on (0,∞) with f ′(x ) = 1
2
√
x

.

Example 1.5. We claim that the function f : (0,∞) → R given by f (x ) = 1/x is
also di�erentiable. Indeed, for any c > 0 and x > 0 di�erent from c , we see that

f (x ) − f (c )

x − c
=

1
x −

1
c

x − c
=
c − x

xc

1
x − c

= −
1
xc
.

�erefore,
lim
x→c

f (x ) − f (c )

x − c
= −

1
c2 .

We conclude that f is indeed di�erentiable with derivative given by f ′(x ) = − 1
x2 .
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If f : I → R is di�erentiable and Lipschitz continuous on the interval I , it is
possible to bound the derivative f ′ on the entire interval I . Indeed, we con�rm
this below.

Proposition 1.8. Let I ⊆ R be an interval and f : I → R be di�erentiable on I .
If f is Lipschitz continuous on I , then f ′ is bounded on I . More precisely, if there
exists a constant L > 0 such that

��f (x ) − f (y)�� ≤ L ��x − y�� , ∀x ,y ∈ I ,
then one has ��f ′(x )�� ≤ L for all x ∈ I .

Remark 1.3. We will soon see that the converse is also true. �at is, if f : I → R
is di�erentiable on I and f ′ is bounded on I , then f must be Lipschitz continuous
there too.

Proof. Fix a point y ∈ I . Since f ′(y) exists, we know that the limit

f ′(y) = lim
x→y

f (x ) − f (y)

x − y

is de�ned. �erefore,

��f ′(y)�� = lim
x→y

�����
f (x ) − f (y)

x − y

�����
≤ lim

x→y
L = L.

Since y ∈ I was arbitrary, the assertion follows. �

2 Second Tutorial

In relation to the �rst assignment, we begin by checking that the function

f : R→ R

given by f (x ) = x4/3 is not uniformly continuous on R. To this end, we construct
two sequences (xn ) and (yn ) in R such that ��xn − yn��→ 0 but ��f (xn ) − f (yn )�� ≥ 1
for all n ∈ N. Consider the sequences

xn = n
3/4 and yn := n3/4 +

1
n1/4
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Clearly, ��xn − yn�� = n−1/4 → 0 as n → ∞. Furthermore, for each n ∈ N, a
straightforward calculation gives

f (yn ) =

( [
n3/4 +

1
n1/4

]4)1/3
=

(
n3 + 4n2 + 6n + 4 + 1

n

)1/3

>
(
n3 + 4n2 + 6n + 4

)1/3

>
(
n3 + 3n2 + 3n + 1

)1/3

= (n + 1)3/3

= n + 1.

In particular, f (yn ) > n = f (xn ). �erefore,

��f (yn ) − f (xn )�� = f (yn ) − f (xn ) > (n + 1) − n = 1.

We infer that f is not uniformly continuous on R.

We now return to the notion of di�erentiability. Let I ⊆ R be an interval;
recall that a function f : I → R is said to be di�erentiable at a point c ∈ I
provided the limit

f ′(c ) := lim
x→c

f (x ) − f (c )

x − c

exists. Let us also take a moment to recall the very powerful mean value theorem:

�eorem 2.1 (Mean Value �eorem). Let [a,b] ⊂ R be a bounded interval and
let f : [a,b] → R be continuous on [a,b], and di�erentiable on (a,b). �en, there
exists a point c ∈ (a,b) such that

f ′(c ) =
f (b) − f (a)

b − a
.

Namely, f ′ achieves the average change of f on [a,b].

Remark 2.1. Note that the converse does not hold true. More precisely, given a
point c ∈ (a,b), we cannot guarantee that there exist points x ,y ∈ [a,b] such
that

f ′(c ) =
f (x ) − f (y)

x − y
.
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Indeed, consider the function f (x ) = x3 on [−1, 1]. Clearly, f ′(0) = 0 but, since
f is strictly monotone increasing and injective,

f (x ) − f (y)

x − y
, 0

for all x ,y ∈ [−1, 1] with x , y.
Using �eorem 2.1, we showed that a di�erentiable function f : I → R is

increasing (perhaps not strictly) on I if and only if f ′(x ) ≥ 0 for all x ∈ I . Of
course, such a characterization cannot possibly hold for increasing functions that
are not everywhere di�erentiable.

Corollary 2.2. Let f ,д : [0,∞) → R be di�erentiable on [0,∞) and assume that
f ′(x ) ≤ д′(x ) for all x ∈ [0,∞). If f (0) = д(0), then f ≤ д on all of [0,∞).

�is result says that if д increases faster than f and both д and f “start” at
the same value, then д is always at least as large as f .

Proof of Corollary. De�ne h(x ) := д(x ) − f (x ). Clearly, h is di�erentiable on
[0,∞) and

h′(x ) = д′(x ) − f ′(x ) ≥ 0
for all x ∈ [0,∞). It follows that h is increasing on [0,∞). �erefore, h(x ) ≥
h(0) = 0 for all x ≥ 0. Put otherwise,

д(x ) − f (x ) ≥ 0

for all x ≥ 0. �is completes the proof. �

Example 2.1. Let f : I → R be di�erentiable on R and �x a point c ∈ R such
that f (c ) = 0. Consider the function д : R→ R given by д(x ) = ��f (x )��. We claim
that д is di�erentiable at c if and only if f ′(c ) = 0. First, if f ′(c ) = 0, then by the
reverse triangle inequality,

�����
д(x ) − д(c )

x − c
− 0

�����
=

�����

��f (x )�� − ��f (c )��
x − c

�����
≤

��f (x ) − f (c )��
|x − c |

=
�����
f (x ) − f (c )

x − c
− f ′(c )

�����
→ 0,

as x → c . Consequently, д′(c ) exists and is equal to 0. Conversely, assume that
д′(c ) exists. Sinceд(c ) = 0 andд is non-negative, we see that c is a local minimum
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of the functionд. Asд is assumed to be di�erentiable at c , we must haveд′(c ) = 0.
We now deduce that f ′(c ) = 0. Certainly, for all x , c ,

�����
f (x ) − f (c )

x − c

�����
=

��f (x )��
|x − c |

=
��д(x )��
|x − c |

=
�����
д(x ) − д(c )

x − c

�����
→ 0

as x → c since д′(c ) = 0. It follows that f ′(c ) = 0.

Having treated the product and chain rules for derivatives, it is natural to ask
what di�erentiation rule holds for inverse functions. Let I ⊆ R be an interval
and let f : I → R be strictly monotone and continuous on I . By the preservation
of intervals theorem, J := f (I ) is an interval in R. Moreover, there exists a
continuous inverse function д : J → I to f that is both strictly monotone and
continuous on J (see �eorem 5.6.5 in Bartle & Sherbert).

�eorem 2.3 (Inverse Rule for Derivatives). Let I ⊆ R be an interval and let
f : I → R be continuous and strictly monotone increasing. De�ne J := f (I ) and let
д : J → I be the continuous and strictly monotone inverse to f . If f is di�erentiable
at c ∈ I and f ′(c ) , 0 then д is also di�erentiable at d = f (c ). Moreover,

д′(d ) =
1

f ′(c )
=

1
f ′(д(d )

.

Proof. By Carathéodory’s criterion, there exists a function φ : I → R continuous
at c with φ (c ) = f ′(c ) such that

f (x ) − f (c ) = φ (x ) (x − c )

for all x ∈ I . By assumption, φ (c ) , 0. Since φ is continuous at c and φ (c ) , 0,
there exists δ > 0 such that φ (x ) , 0 on Vδ (c ) ∩ I . De�ne now4

U := f (Vδ (c ) ∩ I ) ⊆ f (I ) = J .

By de�nition of the inverse function д, one has f (д(y)) = y for all y ∈ J . In
particular, for all y ∈ U there holds

y − d = f (д(y)) − f (c ) = φ (д(y)) (д(y) − c )

= φ (д(y)) (д(y) − д(d )).

4Since f is strictly increasing and continuous, by the preservation of intervals theorem, U is
a non-trivial interval containing d .
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Since φ , 0 on Vδ (c ) ∩ I , it readily follows that

д(y) − д(d ) =
1

φ (д(y))
(y − d )

for all y ∈ U . Because φ (д(y)) is continuous at y = d , appealing once more to
Carathéodory’s criterion shows that д′(d ) exists and

д′(d ) =
1

φ (д(d ))
=

1
f ′(c )

=
1

f ′(д(d ))
.

�

2.1 Further Applications of the Mean Value Theorem

It is natural to ask how the behaviour of f ′ away from these endpoints a�ects the
existence of the one-sided derivatives f ′(a) and f ′(b). As the next result shows,
the existence of the one-sided limits of f ′ at a or b is enough to guarantee the
existence of f ′(a) and f ′(b), respectively.

Proposition 2.4. Let a < b be real numbers and assume that f : (a,b) → R is
di�erentiable on (a,b) and continuous on [a,b]. If

lim
x→a+

f ′(x ) = L1

exists, then f ′(a) = L1. Similarly, if

lim
x→b−

f ′(x ) = L2

then f ′(b) = L2.

Proof. Assume that f ′(x ) → L1 as x → a+. We want to show that

lim
x→a+

f (x ) − f (a)

x − a
= L1.

Let ε > 0 be given; using that limx→a+ f
′(x ) = L1, we can �nd δ > 0 such that

��f ′(x ) − L1�� < ε
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whenever 0 < x −a < δ .5 For any such x , since f is continuous on [a,x] ⊆ [a,b]
and di�erentiable on (a,x ), the mean value theorem guarantees the existence of
a point cx ∈ (a,x ) such that

f (x ) − f (a)

x − a
= f ′(cx ).

Since 0 < cx − a < x − a < δ , we obtain
�����
f (x ) − f (a)

x − a
− L1

�����
= ��f ′(cx ) − L1�� < ε .

We have therefore shown that
�����
f (x ) − f (a)

x − a
− L1

�����
< ε

whenever 0 < x − a < δ . �is proves that f ′(a) = L1. �e second part can be
veri�ed by a symmetric argument. �

Consider now a function f : R → R that is di�erentiable everywhere. In
particular, f is continuous on all of R. If we impose the additional requirement
that

lim
|x |→∞

f (x ) = 0,

then intuitively the function f should “taper o�” at in�nity. Consequently, one
may wonder whether one can also say that f ′ vanishes as |x | → ∞. Unfortu-
nately, one can make no such deduction about the derivative of f . Despite this,
we have the following:

Proposition 2.5. Let f : R → R be di�erentiable everywhere and assume that f
is bounded on R.6 �en, there exists a sequence (cn ) in (0,∞) with cn → ∞ such
that

lim
n→∞

f ′(cn ) = 0.

Similarly, there exists a sequence (dn ) in (−∞, 0) with dn → −∞ such that

lim
n→∞

f ′(dn ) = 0.
5As we are taking the limit as x → a from “above”, we are only considering points x > a.

�erefore, no absolute values are needed here!
6�is boundedness condition is in particular satis�ed when lim |x |→∞ f (x ) = 0.
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Proof. We only construct (cn ), leaving the construction of (dn ) as a similar exer-
cise. For each n ∈ N, the function f is di�erentiable on (n, 2n) and continuous on
[n, 2n]. Appealing to the Mean Value �eorem, there exists a point cn ∈ (n, 2n)
such that

f ′(cn ) =
f (2n) − f (n)

2n − n =
f (2n) − f (n)

n
.

Taking absolute values and using the triangle inequality then gives

��f ′(cn )�� =
��f (2n) − f (n)��

n
≤

��f (2n)�� + ��f (n)��
n

≤
2M
n
,

where M > 0 is such that ��f (x )�� ≤ M for all x ∈ R. By the Squeeze �eorem, it
is readily seen that f ′(cn ) → 0 as n → ∞. Finally, cn ∈ (n, 2n) implies that cn > n
for all n ∈ N. Clearly, this means that cn → ∞ as n → ∞. �

Before proceeding further, let us take a moment to justify an inequality that
we have previously made use of during the course (and the previous Math 242).

Example 2.2. We claim that |sin(x ) | ≤ x for all x ∈ R. Certainly, this is almost
an immediate consequence of the mean value theorem. Note that this inequality
is trivially true at x = 0. If x > 0, then the function sin(x ) is continuous on [0,x]
and di�erentiable on (0,x ). �erefore, there exists by the mean value theorem a
point cx ∈ (0,x ) such that

cos(cx ) =
sin(x ) − sin(0)

x − 0 =
sin(x )
x
.

�erefore,
|sin(x ) | = |cos(cx ) | |x | ≤ |x | .

If x < 0, then −x > 0. �erefore, we may write

|sin(x ) | = |− sin(−x ) | = |sin(−x ) | ≤ |−x | = |x | .

2.2 Interesting Examples and Counter Examples

In this subsection we consider some classical examples and counter examples.
First, we provide an explicit function that is di�erentiable only at a single point.
In fact, this point will be the only continuity point of this function. �is means
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that, although di�erentiability is a local property, a function f being di�eren-
tiable at a point c does not guarantee that f is di�erentiable at even a single
point di�erent from c .

Example 2.3. Consider the function f : R→ R de�ned by the rule

f (x ) :=



x2 if x ∈ Q,
0 if x < Q.

We claim that f ′(0) exists, but that f is not di�erentiable at any c , 0. Fix ε > 0
and let δ := ε . If 0 < |x | < δ , then we obtain

�����
f (x ) − f (0)

x − 0 − 0
�����
=

�����
f (x )

x

�����
=




x2

x if x ∈ Q,
0
x if x < Q.

�is gives
�����
f (x ) − f (0)

x − 0 − 0
�����
≤ |x | < δ = ε

for all x ∈ R with 0 < |x | < δ . It follows that

lim
x→0

f (x ) − f (0)
x − 0 = 0

whence f ′(0) = 0. It remains to show that f ′ does not exist at any point other
than 0. For this, it is enough to show that f is discontinuous at any point c , 0.
If c ∈ Q, then f (c ) = c2 , 0. But, because R \ Q is dense in R, we can �nd a
sequence (ξn ) of irrational numbers such that lim ξn = c . If f were continuous at
c , the sequential criterion for continuity would imply that

c2 = f (c ) = lim
n→∞

f (ξn ) = lim
n→∞

0 = 0

which is a contradiction. Consequently, f cannot be continuous at any c ∈ Q
di�erent from 0. Similarly, if c ∈ R \ Q and c , 0, we have f (c ) = 0. As
above, because Q is dense in R, there exists a sequence (rn ) of rational numbers
converging to c as n → ∞. If f were continuous at c , the sequential criterion
would yield

0 = f (c ) = lim
n→∞

f (rn ) = lim
n→∞

r 2
n = c

2 , 0.

Since this is also a contradiction, we see that f is discontinuous at any c ∈ R \Q
with c , 0. Combining these two cases implies that f is discontinuous at any
c , 0 and hence cannot be di�erentiable at any of these points.
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2.3 On the Continuity of Derivatives (Optional and Time Permi�ing)

Let I ⊆ R be an open interval and f : I → R be di�erentiable on I . In particular,
f ′ is a well de�ned function on I . We say that f is continuously di�erentiable
on I provided f ′ is continuous on I . To say that f is continuously di�erentiable
on I , we sometimes write f ∈ C1(I ). More generally, f ∈ Ck (I ) if f is k-times
di�erentiable on I and f ′, f ′′, . . . , f (k ) are continuous on I .

Example 2.4. Consider the function f : R→ R given by

f (x ) :=



x2 sin
(

1
x

)
if x , 0,

0 if x = 0.

We claim that f is di�erentiable on R, but that f ′ is not continuous at 0. Hence,
not every di�erentiable function is continuously di�erentiable. First, note that
since x2 sin

(
1
x

)
is di�erentiable away from 0, so must be the function f . In fact,

by the product and chain rules, we have

f ′(x ) = 2x sin
( 1
x

)
− cos

( 1
x

)
, ∀x , 0.

However, it is not obvious that f ′(0) exists. To see this, we �rst �x ε > 0. Take
δ := ε and let 0 < |x | < δ . A straightforward calculation gives

�����
f (x ) − f (0)

x − 0 − 0
�����
=
x2 ���sin

(
1
x

) ���
|x |

≤
x2

|x |
= |x | < δ = ε .

�erefore,
lim
x→0

f (x ) − f (0)
x − 0 = 0

so that f ′(0) = 0. We infer that f is di�erentiable on R. However, f ′ is not
continuous at 0 because

lim
x→0

f ′(x )

does not exist. To see this, consider the sequence (xn ) given by

xn := 1
πn
.

Clearly, xn , 0 and xn → 0 as n → ∞. Furthermore, for every n ∈ N,

f ′(xn ) =
2
πn

sin (πn) − cos(πn) = − cos(πn) = (−1)n+1
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which does not converge. Hence,

lim
n→∞

f ′(xn )

does not exist. If f ′ were continuous at 0, however, we would have

lim
n→∞

f ′(xn ) = f ′(0).

�is last example opens up a new question: which conditions do guarantee
the continuity of the derivative on an interval I? Clearly, mere di�erentiability is
not enough. However, as we will see below, uniform di�erentiability is su�cient.

De�nition 2.1. Let I ⊆ R be an interval. A di�erentiable function f : I → R is
said to be uniformly di�erentiable on I if, for each ε > 0, there exists δ > 0 such
that �����

f (x ) − f (y)

x − y
− f ′(y)

�����
< ε

for all x ,y ∈ I with 0 < ��x − y�� < δ .7

�e de�nition of uniform di�erentiability can be compared to that of uniform
continuity. Indeed, in the above, both x and y are allowed to “vary” when taking
the limit. Namely, we are asking that the δ > 0 obtained above be independent
of the point y at which we are taking the derivative.

Proposition 2.6. Let f : I → R be uniformly di�erentiable on I . �en, f ′ is
uniformly continuous on I . Put otherwise, f is continuously di�erentiable on I .

Proof. We must show that f ′ is uniformly continuous on I . Let ε > 0 be given.
By assumption, there exists δ > 0 such that

�����
f (x ) − f (y)

x − y
− f ′(y)

�����
<
ε

2 . (2.1)

7Uniform di�erentiability has some nice applications in numerical analysis.
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for all x ,y ∈ I with 0 < ��x − y�� < δ . Now, by the triangle inequality,

��f ′(x ) − f ′(y)�� =
�����
f ′(x ) −

f (x ) − f (y)

x − y
+

f (x ) − f (y)

x − y
− f ′(y)

�����
≤

�����
f (x ) − f (y)

x − y
− f ′(x )

�����
+

�����
f (x ) − f (y)

x − y
− f ′(y)

�����
=

�����
f (y) − f (x )

y − x
− f ′(x )

�����
+

�����
f (x ) − f (y)

x − y
− f ′(y)

�����
<
ε

2 +
ε

2 = ε,

where we have used (2.1) in this last step. Since ��f ′(x ) − f ′(y)�� < ε whenever
x ,y ∈ I are such that ��x − y�� < δ , we infer that f ′ is uniformly continuous on the
interval I . �

2.4 A Word on the Lipschitz Condition

In Proposition 1.8 we proved that if a function f is both Lipschitz continuous and
di�erentiable on an interval I , then f ′ is bounded by the Lipschitz constant on
I . As mentioned there, a converse to this statement holds. �anks to the mean
value theorem, this result is now within reach.

�eorem 2.7. Let I ⊆ R be an interval and let f : I → R be di�erentiable on I .
�en, f is Lipschitz continuous on I if and only if f ′ is bounded on I .

Proof. Note that the forward implication “ =⇒ ” is precisely what was proven
in Proposition 1.8. �erefore, we need only establish the converse. Since f ′ is
bounded on I , there exists L > 0 such that ��f ′(x )�� ≤ L for all x ∈ I . Fix now two
points x ,y ∈ I ; we want to show that

��f (x ) − f (y)�� ≤ L ��x − y�� .

Note that this inequality is trivial when x = y. �erefore, we may assume with-
out loss of generality that x < y. Clearly, we then have [x ,y] ⊆ I . �us, f is
di�erentiable on (x ,y) and continuous on [x ,y]. By the mean value theorem,
there exists a point c ∈ (x ,y) ⊆ I such that

f (y) − f (x )

y − x
= f ′(c )
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whence �����
f (y) − f (x )

y − x

�����
= ��f ′(c )�� ≤ L.

�is gives ��f (x ) − f (y)�� ≤ L ��x − y�� which completes the proof. �

Remark 2.2. �is theorem o�ers a nice characterization of Lipschitz continuous
functions when the function in question is a priori assumed to be di�erentiable.
One should not make the assumption that every Lipschitz function is di�eren-
tiable. Indeed, by the inequality

��|x | − ��y���� ≤ ��x − y�� , ∀x ,y ∈ R,
the function f (x ) = |x | is Lipschitz on R. However, f is not di�erentiable at 0.

Example 2.5. Consider the function f (x ) :=
√
x2 + 1 on R. Clearly, x 7→ x2 + 1

is di�ernetiable at every x ∈ R with derivative given by x 7→ 2x . By an example
from the previous tutorial, we know that x 7→

√
x is di�erentiable on (0,∞) with

derivative
x 7→

1
2
√
x
, x > 0.

Since x2+1 > 0 for all x ∈ R, we infer from the chain rule that f is di�erentiable
on R with

f ′(x ) =
2x

2
√
x2 + 1

=
x

√
x2 + 1

, ∀x ∈ R.

Now,
√
x2 + 1 ≥

√
x2 = |x | whence

��f ′(x )�� =
|x |

√
x2 + 1

≤ 1.

By the previous theorem, we see that f is Lipschitz continuous with constant
L = 1.

3 Third Tutorial

We continue to discuss the concept of a derivative on R. Darboux’s theorem
asserts that derivatives satisfy the intermediate value property. More precisely,
let us recall the following class result:
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�eorem 3.1 (Darboux). Let I = [a,b] and f : I → R be di�erentiable. If y is
any point between f ′(a) and f ′(b), there exists a point x between a and b such that
f ′(x ) = y.

Darboux’s theorem can sometimes make it easy to show that certain func-
tions cannot be derivatives of any di�erentiable function. Put otherwise, Dar-
boux’s theorem sometimes implies that a given a function has no antiderivative.
We provide such an example below.

Example 3.1. Consider the function

h(x ) :=



0 if x < 0,
1 if x ≥ 0.

We claim that there does not exist a di�erentiable function f : R→ R such that
f ′ = h on R. Arguing by contradiction, suppose such a function f does indeed
exist. Take a = −1 and b = 1. �en, f ′(a) = h(a) = 0 and f ′(b) = h(b) = 1. By
Darboux’s theorem, there must exist a point x ∈ (−1, 1) such that

f ′(x ) = h(x ) =
1
2 .

Clearly, no such point exists and we therefore have a contradiction. However,
although h is not the derivative of a function f : R → R that is everywhere
di�erentiable, there exist uncountably many functions f : R→ R, di�erentiable
away from 0, such that f ′(x ) = h(x ) for all x , 0. Indeed, for each x0 ∈ R,

f (x ) :=



x0 if x < 0,
x if x ≥ 0

is di�erentiable at all points c , 0 and f ′(c ) = h(c ) at all such c .

Before moving on we provide the following easy preliminary to L’Hôpital’s
rule.

Proposition 3.2. Let f ,д : (a,b) → R be such that д(x ) , 0 if x , c and �x
a point c ∈ (a,b). Assume that f ,д are di�erentiable at c and that д′(c ) , 0. If
f (c ) = д(c ) = 0, then

lim
x→c

f (x )

д(x )
=

f ′(c )

д′(c )
.
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Proof. Since f (c ) = д(c ) = 0 we may write

f (x )

д(x )
=

f (x ) − f (c )

д(x ) − д(c )
=

f (x )−f (c )
x−c

д(x )−д(c )
x−c

for all x , c . Now, because f ′(c ) and д′(c ) exist,

f ′(c ) = lim
x→c

f (x ) − f (c )

x − c
and д′(c ) =

д(x ) − д(c )

x − c
.

Finally, because д′(c ) , 0, it follows from the limit laws that

lim
x→c

f (x )

д(x )
= lim

x→c

f (x )−f (c )
x−c

д(x )−д(c )
x−c

=
f ′(c )

д′(c )
.

�is concludes the proof. �

3.1 Pathological Functions

We now discuss functions that are “pathological” in the sense that they defy intu-
ition. We begin with an example of a function that is nowhere continuous (that is,
not continuous at any �xed point) despite being given by a very straightforward
formula. More precisely, let us consider the function

f : R→ R, x 7→



1 if x ∈ Q,
0 if x ∈ R \Q.

(D)

�e function f de�ned above is known as the Dirichlet function.
Proposition 3.3. �e Dirichlet function f de�ned in (D) is nowhere continuous on
R. �at is, f is discontinuous at every c ∈ R.

Proof. We follow closely the argument used in the proof of Example 2.3. Given
c ∈ R, there are two cases to distinguish:

(1) Suppose c ∈ Q. Since R \ Q is dense in R, there exists a sequence (ξn )
in R \ Q such that ξn → c as n → ∞. Now, by de�nition of the function
f , we have f (ξn ) = 0 for all n ∈ N. Since constant sequences are always
convergent, we �nd that

f (c ) = 1 , 0 = lim f (ξn )

whence f does not satisfy the sequential criterion for continuity at c . We
infer that f is not continuous at c .
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(2) We now handle the case c < Q. As above, we can select a sequence (rn ) in
Q such that lim rn = c . Because f (x ) = 0 for all irrationals x , we obtain

f (c ) = 0 , 1 = lim 1 = lim f (rn )

which once again shows that the sequential criterion for continuity at c
does not hold true. It follows that f is discontinuous at c .

Since f is discontinuous at c in either case, we see that f is not continuous on
all of R. �

A more contrived example of a pathological function is the so-called �omaeś
function, de�ned below.

De�nition 3.1. Given x ∈ Q ∩ [0, 1] we can express it uniquely as a ratio

x =
p

q
,

where p ∈ N0 and q ∈ N are co-prime, i.e. gcd(p,q) = 1. We will agree to call this
the standard form of x . Note that since x ∈ [0, 1] we must also have p ≤ q. By
convention, we will agree to call 0

1 the standard form of 0. De�ne now a function

f : [0, 1]→ R, f (x ) :=



1
q if x ∈ Q and x =

p
q ,

0 if x < Q.

As in the previous example, it is not hard to check that f is discontinuous at
every c ∈ Q. Indeed, although f (c ) , 0, there exists by density a sequence of
irrational numbers (ξn ) in [0, 1] such that ξn → c as n → ∞. Since f (ξn ) = 0 for
each n ∈ N, we cannot have lim f (ξn ) = f (c ). �erefore, the sequential criterion
for continuity cannot hold true at c . What is surprising, however, is that this
function is continuous at all irrational numbers.

Proposition 3.4. �omae’s function described above is continuous at all irrational
numbers and discontinuous at all rational numbers.

Proof. We need only show that f is continuous an arbitrary irrational number
c ∈ (0, 1). Let ε > 0 be given. By the Archimdean property, there exists a natural
number N ∈ N such that 1

N < ε . We now assert that there exist only �nitely
many rational numbers x = p

q ∈ [0, 1] such that q ≤ N . Clearly, if x ∈ [0, 1], then

0 ≤ p

q
≤ 1
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whence 0 ≤ p ≤ q ≤ N . Hence, p,q ≤ N and so there are at most (N + 1)-
possibilities for p and q, respectively. Consequently, there can only be (N + 1)2-
possible pairs (p,q) as above such that q ≤ N . Since this is the same as counting
fractions p

q ∈ [0, 1] in standard form, we infer that there are no more than (N+1)2
rational numbers

p

q
∈ [0, 1]

in with q ≤ N . Let now Σ be the set of all these rationals, i.e.

Σ :=
{
p

q
∈ Q ∩ [0, 1] : q ≤ N

}
.

By the argument above, Σ is �nite. Fix an irrational number c ∈ (0, 1) and con-
sider the real number δ given by

δ := min
x∈Σ
|x − c | > 0.

Note that δ is indeed positive as c < Q and we are taking the minimum over a
�nite subset of Q. We now let x ∈ [0, 1] be such that |x − c | < δ . If |x − c | = 0
then x = c so that

��f (x ) − f (c )�� = 0 < ε .
Otherwise, 0 < |x − c | < δ . We now distinguish the two possible cases:

• If x < Q then, by de�nition
��f (x ) − f (c )�� = |0 − 0| = 0 < ε .

• Assume that x is rational. Since

|x − c | < δ = min
z∈Σ
|z − c | ,

we cannot have x ∈ Σ. Consequently, writing

x =
p

q

in standard form, we must have q > N . It follows that

��f (x ) − f (c )�� = ��f (x )�� =
1
q
<

1
N
< ε .

In either case we �nd that ��f (x ) − f (c )�� < ε whenever x ∈ [0, 1] is such that
|x − c | < δ . It follows that f is continuous at c . �
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3.2 The Riemann Integral

Consider a closed and bounded interval [a,b] ⊆ R and let f : [a,b] → R be an
arbitrary function. A partition of the interval I is a set of points

P = {x0, . . . ,xn}

in [a,b] such that a = x0 < x1 < · · · < xn = b. Especially, I = ⋃n
j=1[xj−1,xj].

Informally, P describes a unique way of breaking the interval [a,b] into non-
overlapping (except at the endpoints) compact intervals [xj−1,xj] ⊆ I . A tagged
partition is a partition P together with a set of points, called tags,{

x∗1 , . . . ,x
∗
n

}
such that x∗j ∈ [xj−1,xj] for each index j = 1, . . . ,n. To emphasize the fact that a
partition P is equipped with a set of tags, we will write Ṗ .

Given a (possibly un-tagged) partition P of an interval [a,b], the mesh of P is
de�ned to be the length of the largest sub-interval de�ned by P . More precisely,
we de�ne

‖P ‖ := max
1≤j≤n

(
xj − xj−1

)
> 0.

De�nition 3.2. Let [a,b] ⊂ R be a compact interval and f : [a,b] → R a
function. Given a tagged partition Ṗ of [a,b] as above, we de�ne the Riemann
sum of f over Ṗ to be the sum

S ( f ; Ṗ ) :=
n∑
j=0

f (x∗j ) (xj − xj−1). (3.1)

O�en times, we will write ∆xj = (xj − xj−1) so that S ( f ; Ṗ ) := ∑n
j=0 f (x

∗
j )∆xj .

�e function f is said to be Riemann integrable on [a,b] if there exists Λ ∈ R
such that for each ε > 0 there is δ > 0 with the property that

���S ( f ; Ṗ ) − Λ��� < ε

for all tagged partitions Ṗ of [a,b] with ‖Ṗ ‖ < δ . In this case, we call Λ the
Riemann integral of f on [a,b] and denote this quantity by

ˆ b

a
f .
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Let us take a moment to unpack the de�nition of Riemann integrability. �e
Riemann sum S ( f , Ṗ ) should be thought of as a rectangular approximation of
the area under the “curve” of the function f . Indeed, the step function

φ (x ) :=
n∑
j=1

f (x∗j )χ[x j−1,x j ) (x )

is precisely an approximation of f by a function that takes the constant values
f (x∗j ) on each subinterval [xj−1,xj ) of [a,b]. Clearly, the classical area under the
graph of φ is equal to the Riemann sum

S ( f , Ṗ ) =
n∑
j=0

f (x∗j ) (xj − xj−1).

Note that our choice of tags directly in�uences the approximations of f we ob-
tain. Luckily, the de�nition of Riemann integrability guarantees that these Rie-
mann sums S ( f , Ṗ ) converge to a meaningful real number, independently of our
choice of tags8, so long as we ensure that ‖Ṗ ‖ is su�ciently small, i.e. provided
we re�ne our approximation of f su�ciently.

We now recall some basic properties of the Riemann integral that will/have
been seen in the lectures.

�eorem 3.5. Let [a,b] ⊂ R be a compact interval and denote by R([a,b]) the
set of all Riemann integrable functions on [a,b]. �e following properties hold.

(i) If f ,д ∈ R([a,b]) then f + д ∈ R([a,b]) and
ˆ b

a
( f + д) =

ˆ b

a
f +

ˆ b

a
д.

(ii) Given f ∈ R([a,b]) and α ∈ R we have α f ∈ R([a,b]) with
ˆ b

a
(α f ) = α

ˆ b

a
f .

Let us now give a detailed example in which we verify the Riemann integra-
bility of an explicit function.

8�e mesh function ‖·‖ does not take into account the tag points, and only thinks about the
lengths of the subintervals of [a,b] that P creates.
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Example 3.2. Fix a number c ∈ (0, 1) and de�ne f : [0, 1]→ R by

f (x ) :=



0 if 0 ≤ x < c,

1 if c ≤ x ≤ 1.

We claim that f is Riemann integrable on [0, 1] with integral equal to (1−c ). Let
ε > 0 and take

δ = ε .

If Ṗ is a tagged partition of [0, 1] with ‖Ṗ ‖ < δ then every subinterval of [0, 1]
created by Ṗ has length no larger than δ . Let us now enumerate the elements of
Ṗ as

0 = x0 < x1 < · · · < xn = 1
with tags x∗j ∈ [xj−1,xj] for every j = 1, . . . ,n. Let k ≥ 1 be the unique integer
such that xk−1 < c ≤ xk . By de�nition of the function f , we have f (x∗j ) = 0 for
all j < k .9 �ere are now two cases that we will distinguish:

(1) Assume that xk−1 ≤ x∗
k
< c ≤ xk . If k = n then f (x∗j ) = 0 for all j = 1, . . . ,n

so that
���S ( f ; Ṗ ) − (1 − c )��� = |1 − c | = |xk − c | ≤




Ṗ



 < δ .

In this last step we have used that both c and xk belong to the same subin-
terval of Ṗ . If instead k < n then

���S ( f ; Ṗ ) − (1 − c )��� =
�������

n∑
j=1

f (x∗j ) (xj − xj−1) − (1 − c )
�������

=

�������

n∑
j=k+1

f (x∗j ) (xj − xj−1) − (1 − c )
�������

=

�������

n∑
j=k+1

(xj − xj−1) − (1 − c )
�������

= |(xn − xk − (1 − c ) |
= |(1 − xk ) − (1 − c ) |
= |xk − c |

< δ ,

9Indeed, if 1 ≤ j < k then x∗j ≤ xk−1 < c so that f (x∗j ) = 0.
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where we have once again used the fact that xk and c belong to the same
subinterval of Ṗ

(2) Otherwise, we have xk−1 < c ≤ x∗
k
≤ xk . �en, f (x∗

k
) = 1 so that, as above,

���S ( f ; Ṗ ) − (1 − c )��� =
�������

n∑
j=1

f (x∗j ) (xj − xj−1) − (1 − c )
�������

=

�������

n∑
j=k

f (x∗j ) (xj − xj−1) − (1 − c )
�������

=

�������

n∑
j=k

(xj − xj−1) − (1 − c )
�������

= |(xn − xk−1 − (1 − c ) |
= |xk−1 − c |

< δ .

In either case we have that
���S ( f ; Ṗ ) − (1 − c )��� < δ = ε .

Since Ṗ was an arbitrary tagged partition of [0, 1] with ‖Ṗ ‖ < δ , we see that f
is Riemann integrable on [0, 1] and thatˆ 1

0
f = (1 − c ).

4 Fourth Tutorial

Let [a,b] ⊆ R be a compact interval. Recall that a function f : [a,b] → R is
said to be Riemann integrable on [a,b] with integral

´ b
a f if, for each ε > 0, there

exists δ > 0 such that �����
S ( f ; Ṗ ) −

ˆ b

a
f

�����
< ε

for all tagged partitions Ṗ of [a,b] with ‖Ṗ ‖ < δ . We have seen that the value´ b
a f is unique when it exists and that every Riemann integrable function is nec-

essarily bounded. In addition to Example 3.2, let us also show that the “classical”
function f (x ) = 1 − x is Riemann integrable on [0, 1].
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Example 4.1. Let f : [0, 1] → R be given by f (x ) = 1 − x . We claim that
f ∈ R([0, 1]) and that ˆ 1

0
f =

1
2 .

Let ε > 0 be given and de�ne δ := ε . Let Ṗ be a tagged partition of [0, 1] with
‖Ṗ ‖ < δ . Denote the partition points of Ṗ by

0 = x0 < x1 < · · · < xn = 1

and let {x∗1 , . . . ,x∗n } be the tags of Ṗ . Let Q̇ be the tagged partition of [0, 1] formed
by taking the same partition points as Ṗ with tags

y∗j :=
xj + xj−1

2 , j = 1, . . . ,n.

An easy calculation then shows that

S ( f ; Q̇) =
n∑
j=1

f (y∗j ) (xj − xj−1) =
n∑
j=1

[
1 −

xj + xj−1

2

]
(xj − xj−1)

=

n∑
j=1

(xj − xj−1) −
1
2

n∑
j=1

(
x2
j − x

2
j−1

)
= 1 − 1

2
=

1
2 .

On the other hand, using the inequality |a1 + · · · + an | ≤ |a1 | + · · · + |an |,

���S ( f ; Ṗ ) − S ( f ; Q̇)��� =
�������

n∑
j=1

(
f (x∗j ) − f (y∗j )

)
(xj − xj−1)

�������
(4.1)

≤

n∑
j=1

���f (x
∗
j ) − f (y∗j )

��� (xj − xj−1) (4.2)

=

n∑
j=1

����x
∗
j −

xj + xj−1

2
���� (xj − xj−1). (4.3)

Since x∗j ∈
[
xj−1,xj

]
and x j+x j−1

2 is the midpoint of this same interval, we �nd that
����x
∗
j −

xj + xj−1

2
���� ≤ (xj − xj−1) ≤




Ṗ



 < δ ,
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for each index j = 1, . . . ,n. Returning to (4.3) gives

���S ( f ; Ṗ ) − S ( f ; Q̇)��� < δ
n∑
j=1

(xj − xj−1) = δ = ε .

Finally, recalling that S ( f , Q̇) = 1
2 , we see that

����S ( f ; Ṗ ) −
1
2

���� =
���S ( f ; Ṗ ) − S ( f ; Q̇)��� < ε

for all tagged partitions Ṗ of [0, 1] with 


Ṗ



 < δ .

4.1 Approximating by Riemann Sums

Given the striking similarities between the ε − δ de�nition of the limit and our
de�nition of Riemann integrability (see De�nition 3.2), it is reasonable to hope
that one can approximate

´ b
a f by simply taking a limit of Riemann sums with

the mesh of the partitions tending to zero. Informally, by su�ciently re�ning our
tagged partitions, we should be able to approximate the area under the graph of
f . �is is con�rmed by the following:

Lemma 4.1. Let f : [a,b] → R be Riemann integrable on [a,b]. If
(
Ṗn

)
is a

sequence of tagged partitions of [a,b] such that

lim 


Ṗn



 = 0,

then

lim S ( f ; Ṗn ) =

ˆ b

a
f .

Proof. Let ε > 0 be given. Since f is Riemann integrable on [a,b], there exists
δ > 0 such that �����

S ( f ; Ṗ ) −

ˆ b

a
f

�����
< ε

whenever Ṗ is a tagged partition of [a,b] with 


Ṗ



 < δ . Now, because 


Ṗn




→ 0
as n → ∞, we can �nd N ∈ N such that




Ṗn



 < δ
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for all n ≥ N . It follows that
�����
S ( f ; Ṗn ) −

ˆ b

a
f

�����
< ε

for all n ≥ N . �is shows that S ( f ; Ṗn ) →
´ b
a f as n → ∞. �

Remark 4.1. �is lemma can sometimes make it relatively easy to extend proper-
ties of Riemann sums to the Riemann integral. Informally speaking, if a certain
property holds for Riemann sums and this property is preserved by limits, one
might use the lemma above to extend this property to the integral. See the next
example for an application of such an argument.

Example 4.2. Let f ∈ R([a,b]) be such that ��f �� is also Riemann integrable on
[a,b].10 Let (Pn ) be a sequence of tagged partitions of [a,b] such that ‖Ṗn‖ → 0
as n → ∞. By the triangle inequality, one has ���S ( f ; Ṗn )

��� ≤ S
(��f �� , Ṗn

)
for each

n ∈ N. By Lemma 4.1 and the continuity of the absolute value function, we have
���S ( f ; Ṗn )

��� →
���
´ b
a f ��� and S

(��f �� , Ṗn

)
→
´ b
a

��f ��. Since non-strict inequalities are
preserved by limits, we infer that

�����

ˆ b

a
f

�����
≤

ˆ b

a

��f �� .

Note that this argument will fail if we do not know a priori that ��f �� ∈ R([a,b]).

Example 4.3. Consider the function f : [0, 1]→ R given by

f (x ) :=



1
x if x ∈ Q \ {0},
0 if x < Q or x = 0.

Let (xn ) be the sequence in [0, 1] de�ned by xn := 1
n . Clearly, f (xn ) = n for each

n ∈ N whence f is unbounded on the interval [0, 1]. Consequently, f cannot
be Riemann integrable on [0, 1]. Nonetheless, one can �nd a sequence

(
Ṗn

)
of

tagged partitions of [0, 1] such that ‖Ṗn‖ → 0 and limS ( f ; Ṗn ) exists. Indeed,
given n ∈ N, divide [0, 1] into n-subintervals of equal length and choose from
each subinterval an irrational tag (this can be done because R \Q is dense in R).
�e resulting tagged partition Ṗn will be such that ‖Ṗn‖ ≤

1
n and S ( f ; Ṗn ) = 0.

10�is condition turns out to be redundant. However, we do not yet possess the tools required
to show that f ∈ R(a,b]) implies that ��f �� ∈ R([a,b]). We therefore have no qualms about
making this assumption in our example.
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We also have the following sequential condition for non-integrability:

Corollary 4.2. Let f : [a,b]→ R be a function. Let
(
Ṗn

)
and

(
Q̇n

)
two sequences

of tagged partitions of [a,b] such that

lim 


Ṗn



 = lim 


Q̇n




 = 0.

If lim S ( f ; Ṗn ) , lim S ( f ; Q̇n ), then f is not Riemann integrable on [a,b]. More-
over, if one of these limits does not exist, then f < R([a,b]).

Proof. By way of contradiction, let us assume that f ∈ R([a,b]). Citing Lemma
4.1, we must have

lim S ( f ; Ṗn ) =

ˆ b

a
f = lim S ( f ; Q̇n )

which is a contradiction. �

Consider once more the Dirichlet function f : R→ R given by (D). We have
already seen that f is discontinuous at every point c ∈ R. Using Corollary 4.2,
we will show that f is not Riemann integrable on any interval [a,b] ⊆ R. Indeed,
let (Pn ) be any sequence of partitions of [a,b] with

‖Pn‖ ≤
b − a

n

for each n.11 From each subinterval of Pn, we choose (by density) a rational tag
and denote the resulting tagged partition by Ṗn. Similarly, from every subinter-
val of Pn we choose an irrational tag (again by density) and let Q̇n be the cor-
responding tagged partition of [a,b]. Since Ṗn and Q̇n have the same partition
points as Pn, it is easy to see that

lim 


Ṗn



 = lim 


Q̇n




 = 0.

On the other hand, because every tag of Ṗn is rational, we have S ( f ; Ṗn ) = 1 for
each n ∈ N. But, as every tag of Q̇n is irrational, we instead have S ( f ; Q̇n ) = 0
for each n ∈ N. Citing Corollary 4.2, we infer that f < R([a,b]).

11Such a sequence (Pn ) can be obtained by dividing [a,b] into n-subintervals of equal length.
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4.2 Cauchy’s Criterion for Riemann Integrability

We begin by recalling the following �eorem from class:

�eorem 4.3 (Cauchy’s Criterion). Let f : [a,b] → R be a function. �en, f is
Riemann integrable on [a,b] if and only if for every ε > 0 there exists δ > 0 such
that ���S ( f ; Ṗ ) − S ( f ; Q̇)��� < ε

for all tagged partitions Ṗ, Q̇ of [a,b] such that ‖Ṗ ‖ < δ and ‖Q̇‖ < δ .

Negating the condition given above, we see that a function f : [a,b] → R
is not Riemann integrable on [a,b] if and only if there exists ε0 > 0 such that,
for every δ > 0, one can �nd tagged partitions Ṗδ and Q̇δ of [a,b], each having
mesh strictly less than δ , such that

���S ( f ; Ṗδ ) − S ( f ; Q̇δ )
��� ≥ ε0.

In this case, taking δ := 1
n gives two tagged partitions Ṗn and Q̇n such that




Ṗn



 <

1
n

and 


Q̇n



 <

1
n

with ���S ( f ; Ṗn ) − S ( f ; Q̇n )
��� ≥ ε0. Conversely, assume that we are given two se-

quences of tagged partitions Ṗn and Q̇n such that

lim 


Ṗn



 = lim 


Q̇n




 = 0

but ���S ( f ; Ṗn ) − S ( f ; Q̇n )
��� ≥ ε0 > 0 for each n ∈ N. Can we conclude from this

that f < R([a,b])? Indeed, for any δ > 0, there exists N ∈ N such that



Ṗn




 < δ and 


Q̇n



 < δ

for all n ≥ N . In particular, for n = N we have



ṖN




 < δ and 


Q̇N



 < δ .

On the other hand, ���S ( f ; ṖN ) − S ( f ; Q̇N )
��� ≥ ε0.

Taking Ṗδ := ṖN and Q̇δ := Q̇n, we see that the negation of Cauchy’s criterion
holds true and f is not Riemann integrable on [a,b]. To summarize, we have
proven the following:
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Corollary 4.4. Let f : [a,b]→ R be a function. �en, f is not Riemann integrable
on [a,b] if and only if there exists ε0 > 0 and two sequences (Ṗn ), (Q̇n ) of tagged
partitions of [a,b] such that

(i) ‖Ṗn‖ → 0 and ‖Q̇n‖ → 0 as n → ∞;

(ii) ���S ( f ; Ṗn ) − S ( f ; Q̇n )
��� ≥ ε0 for all n ∈ N.

Example 4.4. �is criterion makes it possible to show that a large class of func-
tions are not Riemann integrable. Let д : Q → R be a function such that
д(x ) ≥ ε0 > 0 for all x ∈ Q and some ε0 > 0. De�ne f : [a,b]→ R by

f (x ) :=



д(x ) if x ∈ Q,
0 if x < Q.

Note that by taking д = 1 we recover the Dirichlet function in (D). We now claim
that f is not Riemann integrable on [a,b]. To prove this, we will make use of the
criterion proven in Corollary 4.4. For each n ∈ N we can create an untagged par-
tition Pn of [a,b] by dividing [a,b] into n-subintervals of equal length. Clearly,
this gives us a sequence of partitions of [a,b] such that

‖Pn‖ =
b − a

n
→ 0

as n → ∞. For �xed n ∈ N we can choose by density a rational tag from each
subinterval of Pn; doing so gives us a tagged partition Ṗn of [a,b] having only
rational tags and the same partition points as Pn. Similarly, we build from Pn a
tagged partition Q̇n of [a,b] having only irrational tags and the same partition
points as Pn. Since Ṗn and Q̇n have the same partition points as Pn, it is obvious
that

lim 


Ṗn



 = lim 


Q̇n




 = 0.

On the other hand, because f vanishes at every irrational number, S ( f ; Q̇n ) = 0
for all n ∈ N. Consequently, le�ing x0, . . . ,xk and

{
x∗j

}k
j=1 be the partition points
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and tags (respectively) of Ṗn for �xed n, we infer that

���S ( f ; Ṗn ) − S ( f ; Q̇n )
��� =

���S ( f ; Ṗn )
��� =

�������

k∑
j=1

f (x∗j ) (xj − xj−1)

�������

=

�������

k∑
j=1

д(x∗j ) (xj − xj−1)

�������

=

k∑
j=1

д(x∗j ) (xj − xj−1)

≥ ε0

k∑
j=1

(xj − xj−1)

= ε0(b − a).

Since n ∈ N was arbitrary, we see from Corollary 4.4 that f cannot be Riemann
integrable on [a,b].

4.3 A Warning about Compositions

Composition has thus far interacted nicely with the analytic concepts we have
explored. For instance, composition preserves continuity, uniform continuity,
and even di�erentiability. Unfortunately, Riemann integrability is not a member
of this club, as the next example dictates.

Example 4.5. Consider the function

f : [0, 1]→ R, f (x ) :=



1 if x , 0,
0 if x = 0.

Clearly, f is Riemann integrable on [0, 1]. Next, let д be �omae’s function de-
scribed in De�nition 3.1. It is also known (see Bartle & Sherbert §7.1) that д is
Riemann integrable on [0, 1]. Note that д([0, 1]) ⊆ [0, 1] and so f ◦ д is well
de�ned on [0, 1]. However,

f (д(x )) =



1 if x ∈ Q,
0 if x < Q
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which is precisely the non-integrable Dirichlet function from (D). Hence, f ◦ д
is not an element of R([0, 1]) despite being the composition of two Riemann
integrable function.12

5 Fi�h Tutorial

Let us �rst recall some of what we have discussed in the lectures. We know that
if f : [a,b] → R is Riemann integrable on [a,b], then modifying the function f

at �nitely many points does not a�ect the integrability of f or the value
´ b
a f .13

Furthermore, you have proven in your fourth assignment that the Riemann in-
tegral is monotone in the following sense:

Proposition 5.1 (Monotoncity of the Integral). Let f ,д ∈ R([a,b]) and assume
that f (x ) ≤ д(x ) for all x ∈ [a,b]. �en,

ˆ b

a
f ≤

ˆ b

a
д.

Let us introduce one more piece of notation. Given an interval [a,b] ⊂ R
and a subset E ⊆ [a,b], the indicator function (or characteristic function) of E is
a function 1E (x ) (sometimes denoted χE (x )) de�ned on [a,b] that is equal to 1
on E and 0 outside of E. Symbolically,

1E : [a,b]→ R, 1E (x ) :=



1 if x ∈ E,
0 if x < E.

For any subinterval [c,d] of [a,b], you have proven (also in your fourth assign-
ment) that the function

1[c,d](x ) :=



0 if a ≤ x < c,

1 if c ≤ x ≤ d,

0 if d < x ≤ b

12Broadly speaking, the problem is that the function f is not everywhere continuous. In the
future, we will see that the integrability of д is preserved provided f is continuous.

13One should note that modifying f at countably many points need not preserve the integra-
bility of f . Indeed, the Dirichlet function given in (D) is obtained by modifying the constant
function f ≡ 0 on the countable set Q.
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is Riemann integrable with
´ b
a 1[c,d] = d − c . Since modifying the values of Rie-

mann integrable functions at �nitely many points does not a�ect integrability or
alter the value of the integral, we see that the functions 1(c,d ), 1[c,d ) and 1(c,d] are
all integrable on [a,b] with integral equal to d − c . Consequently, we obtain the
following:

Corollary 5.2. If φ is a step function on [a,b], φ is Riemann integrable on [a,b].

Proof. A step function φ on [a,b] is by de�nition a �nite linear combination of
functions having the for 1(c,d ), 1[c,d ) or 1(c,d]. Since �nite linear combinations of
Riemann integrable functions are integrable, the assertion follows. �

Remark 5.1. Step functions are o�en used to approximate a Riemann integrable
function (and therefore to approximate the value of its integral). Such approxi-
mations are particularly useful since the integral of a step function is very easy
to compute. For instance, the step function

φ : [0, 2]→ R, φ (x ) :=



0 if x ∈ [0, 1],
1 if x ∈ (0, 1),
2 if x ∈ [1, 2]

can be wri�en as φ (x ) = 1(0,1) + 21[1,2]. �en,
ˆ 1

0
φ =

ˆ 2

0
1(0,1) + 2

ˆ 2

0
1[1,2] = 1 + 2 = 3.

However, we should note that there exists functions φ, taking only �nitely many
values, that are not step functions. Indeed, the Dirichlet function in (D) takes
only the values 0, 1 but is not a step function.

Proposition 5.3. Let f : [a,b] → R be a function and let S ( f ; Ṗ ) be a Riemann
sum of f . �ere exists a step function φ : [a,b]→ R such that

´ b
a φ = S ( f ; Ṗ ).

Proof. Let
a = x0 < · · · < xn = b

denote the partition points of Ṗ and let x∗1 , . . . ,x∗n be the tags of Ṗ . By de�nition,

S ( f ; Ṗ ) =
n∑
j=1

f (x∗j ) (xj − xj−1).
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Consider the step function

φ (x ) :=
n∑
j=1

f (x∗j )1(x j−1,x j ].

�en, φ ∈ R([a,b]) and
ˆ b

a
φ =

n∑
j=1

f (x∗j )

ˆ b

a
1(x j−1,x j ] =

n∑
j=1

f (x∗j ) (xj − xj−1) = S ( f ; Ṗ ).

�

5.1 The Squeeze Theorem

In addition to the Cauchy Criterion in �eorem 4.3, we possess the following
criterion for Riemann integrability:

�eorem 5.4 (Squeeze �eorem). Let f : [a,b] → R be a function. �en, f is
Riemann integrable on [a,b] if and only if, for each ε > 0, there exists two Riemann
integrable functions αε ,ωε : [a,b]→ R such that

αε (x ) ≤ f (x ) ≤ ωε (x ), ∀x ∈ [a,b],

and ˆ b

a
(ωε − αε ) < ε .

To see how �eorem 5.4 can be used in practice, let us consider the following
example.

Example 5.1. Consider the function f : [0, 1] → R given by x 7→ x . Using the
Squeeze �eorem, we will prove that f is Riemann integrable on [0, 1] and that´ 1

0 x = 1
2 . Given a n ∈ N, let Pn be the partition of [0, 1] obtained by dividing

[0, 1] into n-subintervals of equal length. Clearly,

lim ‖Pn‖ = lim 1
n
= 0.

Fix any n ∈ N. �e partition points of Pn are given by

xj =
j

n
, j = 0, . . . ,n
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De�ne two functions αn,ωn on [0, 1] by

αn (x ) :=



j−1
n if j−1

n ≤ x < j
n ,

1 if x = 1,
and ωn (x ) :=




j
n if j−1

n ≤ x < j
n ,

1 if x = 1.

and note that αn ≤ f ≤ ωn on [0, 1]. Since step functions are always integrable,
αn andωn are both Riemann integrable on [0, 1]. Now, a direct calculation shows
that

(ωn − αn ) (x ) =



1
n if j−1

n ≤ x < j
n ,

0 if x = 1

whence ˆ 1

0
(ωn − αn ) =

n∑
j=1

1
n

( j
n
−
j − 1
n

)
=

1
n2

n∑
j=1

1 = 1
n
.

In particular, for any n such that 1
n < ε , one has

αn ≤ f ≤ ωn and
ˆ 1

0
(ωn − αn ) < ε .

It follows from the Squeeze theorem that f ∈ R([0, 1]) and that
´ 1

0 f exists. Now,
note that

ˆ 1

0
αn =

n∑
j=1

j − 1
n
·

1
n
=

1
n2

n∑
j=1

(j − 1) = 1
n2

[
n(n + 1)

2 − n

]

=
1
2 −

1
n
.

Similarly, ˆ 1

0
ωn =

n∑
j=1

j

n
·

1
n
=

1
n2

(
n(n + 1)

2

)
=

1
2 +

1
2n .

By monotonicity of the integral,

1
2 −

1
n
=

ˆ 1

0
αn ≤

ˆ 1

0
f ≤

ˆ 1

0
ωn =

1
2 +

1
2n .

Since n ∈ N was arbitrary, we can take the limit as n → ∞ and deduce from the
Squeeze �eorem (for sequences) that

´ 1
0 f = 1

2 .
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5.2 Integrating Continuous Functions

We know that all monotone increasing functions [a,b] → R are Riemann in-
tegrable. Perhaps even more importantly, it has been proven that continuous
functions are always Riemann integrable. �e Riemann integral enjoys much
nicer properties when restricted to continuous functions. Namely, much more
can be said about

´ b
a f when f is assumed to be continuous on [a,b]. Since com-

positions of continuous functions are continuous, ��f �� is Riemann integrable on
[a,b] whenever f is a continuous function on [a,b]. Recalling Example 4.2, we
obtain the following:

Proposition 5.5. Let f : [a,b] → R be continuous. �en f , ��f �� are Riemann
integrable on [a,b] and

�����

ˆ b

a
f

�����
≤

ˆ b

a

��f �� .

�eorem 5.6 (Mean Value �eorem for Integrals). Let f : [a,b] → R be contin-
uous. �en, there exists a point c ∈ [a,b] such that

1
b − a

ˆ b

a
f = f (c ).

Proof. Since [a,b] is compact and f is continuous, there f achieves an absolute
minimum m and an absolute maximum M on [a,b]. By your fourth assignment
(see Problem 4 there), we must have

m(b − a) ≤

ˆ b

a
f ≤ M (b − a).

Consequently,

m ≤
1

b − a

ˆ b

a
f ≤ M .

By the intermediate value theorem, f must achieve every value in [m,M]. In par-
ticular, there exists a point c ∈ [a,b] such that f (c ) = 1

b−a

´ b
a f . �is completes

the proof. �

Corollary 5.7. Let f ,д : [a,b] → R be continuous. If
´ b
a f =

´ b
a д, there exists a

point c ∈ [a,b] such that f (c ) = д(c ).
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Proof. Applying the Mean Value �eorem for Integrals to f −д implies the exis-
tence of a point c ∈ [a,b] such that

( f − д) (c ) = f (c ) − д(c ) =
1

b − a

ˆ b

a
( f − д) =

´ b
a f −

´ b
a д

b − a
= 0.

�at is, f (c ) = д(c ). �

5.3 Riemann Sums and the Darboux Integral

Let f : [a,b] → R be Riemann integrable and let
(
Ṗn

)
be a sequence of tagged

partitions of [a,b] such that ‖Ṗn‖ → 0, as n → ∞. Lemma 4.1 states that the
Riemann sums S ( f ; Ṗn ) converge to

´ b
a f , i.e.

lim S ( f ; Ṗn ) =

ˆ b

a
f .

As demonstrated in Example 4.2, this can sometimes help us extend properties
of Riemann sums to the Riemann integral. �is type of argument is very com-
mon in analysis and is extremely useful. We provide another application of this
argument below:

Proposition 5.8. Let a > 0 and f : [−a,a] → R be continuous. In particular,
f is Riemann integrable on every closed subinterval of [−a,a]. If f is even, i.e. if
f (x ) = f (−x ) for all x ∈ [−a,a], then

ˆ a

−a
f = 2

ˆ a

0
f .

Proof. For each n ∈ N we construct a partition Pn of [0,a] by dividing this in-
terval in to n-subintervals of equal length. Clearly, ‖Pn‖ =

a
n for each n ∈ N.

Let x∗1 , . . . ,x∗k be any set of tags for Pn and let Ṗn denote the resulting tagged
partition of [a,b]. Let

0 = x0 < · · · < xn = a

be the partition points of Ṗn. Let Qn be the tagged partition of [−a,a] with
partition points

−a = −xn < −xn−1 < · · · < −x1 < x0 < · · · < xn = a.
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Finally, we give Qn the tags




x∗j ∈
[
xj−1,xj

]
1 ≤ j ≤ n,

−x∗j ∈
[
−xj ,−xj−1

]
1 ≤ j ≤ n.

�en, Q̇n is tagged partition of [−a,a] with ‖Q̇n‖ = ‖Ṗn‖ =
a
n . Since f is an even

function,

S ( f ; Q̇n ) =
n∑
j=1

f (−x∗j )
(
−xj−1 − (−xj )

)
+

n∑
j=1

f (x∗j ) (xj − xj−1)

=

n∑
j=1

f (x∗j ) (xj − xj−1) +
n∑
j=1

f (x∗j ) (xj − xj−1)

= 2S ( f ; Ṗn ).

As n ∈ N was arbitrary, this gives us a sequence of tagged partitions Ṗn of [0,a],
and a related sequence Q̇n of tagged partitions of [−a,a], such that

lim 


Q̇n



 = lim 


Ṗn




 = lim a

n
= 0.

Consequently, two applications of Lemma 4.1 implies
ˆ a

−a
f = lim S ( f ; Q̇n ) = 2 lim S ( f ; Ṗn ) = 2

ˆ a

0
f .

�

A similar argument will allow us to obtain the following:

Proposition 5.9. Let a > 0 and f : [−a,a] → R be continuous. In particular,
f is Riemann integrable on every closed subinterval of [−a,a]. If f is odd, i.e. if
−f (x ) = f (−x ) for all x ∈ [−a,a], then

ˆ a

−a
f = 0.

Proof. For each n ∈ N we de�ned tagged partitions Ṗn and Q̇n as in the proof of
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the Proposition 5.8. However, in this case, we obtain

S ( f ; Q̇n ) =
n∑
j=1

f (−x∗j )
(
−xj−1 − (−xj )

)
+

n∑
j=1

f (x∗j ) (xj − xj−1)

= −

n∑
j=1

f (x∗j ) (xj − xj−1) +
n∑
j=1

f (x∗j ) (xj − xj−1)

= 0.

By the same argument as before, Lemma 4.1 yields
ˆ a

−a
f = lim S ( f ; Q̇n ) = 0.

�

In Example 5.1, we proved that the function f (x ) = x is Riemann integrable
on [0, 1] using the Squeeze �eorem. �ere, we approximated f above and below
by conveniently chosen step functions. More precisely, we divided [0, 1] into n-
subintervals {Ij }nj=1 of equal length and de�ned two step functions αn and ωn by
taking αn to be the minimum of f over Ij and ωn to be the maximum. In this
sense, we approximating f from above and below by step functions taking on
the extrema of f (on these Ij). �is is precisely the idea behind the Darboux
integral, which we brie�y discuss.

Let I = [a,b] be a compact interval and let P be a partition of [a,b]. Let

a = x0 < · · · < xn = b

be the partition points of P . Given a bounded function f : [a,b] → R, we can
de�ne the upper and lower Darboux sums of f on P , respectively, by

L( f ;P ) :=
n∑
j=1

mj (xj − xj−1), mj := inf
x∈[x j−1,x j ]

f (x ), (5.1)

U ( f ;P ) :=
n∑
j=1

Mj (xj − xj−1), Mj := sup
x∈[x j−1,x j ]

f (x ). (5.2)

Since mj ≤ Mj for all j = 1, . . . ,n, we see that L( f ;P ) ≤ U ( f ;P ). Furthermore,
let M > 0 be such that −M ≤ f (x ) ≤ M on [a,b]. �en, L( f ;P ) is bounded from
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above independently of P . Indeed,

L( f ;P ) =
n∑
j=1

mj (xj − xj−1) ≤
n∑
j=1

M (xj − xj−1) = M (b − a).

Similarly,

U ( f ;P ) ≥
n∑
j=1
−M (xj − xj−1) = −M (b − a).

Hence, U ( f ;P ) is bounded from below independently of P .
De�nition 5.1. Let I = [a,b] and f : I → R be a bounded function. Denote by
P (I ) the collection of all partitions P of [a,b]. �e lower and upper Darboux
integrals of f are de�ned, respectively, by

L( f ) := sup
P∈P (I )

L( f ;P ) and U ( f ) := inf
P∈P (I )

U ( f ;P ).

Note that these quantities exist by our previous argument. We say that f is
Darboux integrable on [a,b] ifU ( f ) = L( f ). In this case the Darboux integral of
f on [a,b] is de�ned as: ˆ b

a
f := U ( f ) = L( f ).

One can show (see Bartle §7.4) that a function is Darboux integrable on [a,b] if
and only if it is Riemann integrable.

Unlike the Riemann integral, the Darboux integral declares a function f to
be integrable if it can be approximated from above and below by step functions.
Put otherwise, a bounded function f is considered integrable if and only if if can
be “squeezed” between two step functions. �is bears a notable resemblance to
the statement of the squeeze theorem 5.4.

Although the Riemann and Darboux integrals are equivalent, the Riemann
one is “be�er” in the sense that it more easily generalizes. By making a minor
modi�cation to the de�nition of the Riemann integral (replacing δ with some-
thing called a gauge), one obtains the so-called gauge integral. As with the
Riemann integral, the gauge integral is de�ned on intervals. In fact, the gauge
integral can be de�ned on unbounded intervals. On an interval I , it turns out
that the gauge integral is more general than the Lebesgue integral. However, the
Lebesgue integral can be de�ned in much more general se�ings than the gauge
integral. For instance, the Lebesgue integral can be de�ned on subsets of R that
are not intervals.
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5.4 A Remark About Additivity

You will shortly see in the lectures that the Riemann integral is additive in the
following sense:

�eorem 5.10. Let f : [a,b] → R be a function. �en, f is Riemann integrable
on [a,b] if and only if, for each a < c < b, f is Riemann integrable on [a, c] and on
[c,b]. In this case, one has

ˆ b

a
f =

ˆ c

a
f +

ˆ b

c
f .

Let f : [a,b] → R be a function and assume that f ∈ R([c,b]) for all c ∈
(a,b). Does it follow that f ∈ R([a,b])? Unfortunately, one cannot conclude
that f is Riemann integrable on [a,b]. Consider the function

f (x ) :=



1
x if x , 0,
0 if x = 0.

Since f is continuous on [c, 1] for every 0 < c < 1, we see that f is Riemann
integrable on [c, 1] for each such c . On the other hand, because f is unbounded
on [0, 1], it cannot be Riemann integrable there.

6 Sixth Tutorial

We begin by recalling two major results that are very familiar to us from single
variable calculus. Paired together, these two theorems are o�en referred to as
the fundamental theorem of calculus.

�eorem 6.1 (Fundamental �eorem of Calculus Form 1). Let f , F : [a,b] → R
be functions and assume there exists a �nite set E ⊂ [a,b] such that

(1) F is continuous on [a,b];

(2) F ′(x ) exists for all x < E;

(3) F ′(x ) = f (x ) for each x < E.

�en, if f is Riemann integrable on [a,b],
ˆ b

a
f = F (b) − F (a).
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Example 6.1. Consider the Lipschitz continuous function f (x ) := |x | on R.
Given a < b, we have

ˆ b

a
f =




b2−a2

2 if 0 ≤ a < b,
b2+a2

2 if a < 0 < b,
a2−b2

2 if a < b ≤ 0.

Indeed, when 0 ≤ a < b we have f (x ) := x on [a,b] whence the Fundamental
�eorem of Calculus with F (x ) = 1

2x
2 gives

ˆ b

a
f = F (b) − F (a) =

b2 − a2

2 .

When a < b ≤ 0 we instead �nd that f (x ) := −x on [a,b]. �erefore, the
Fundamental �eorem with F (x ) := −1

2x
2 implies that

ˆ b

a
f = F (b) − F (a) =

a2 − b2

2 .

Finally, if a < 0 < b, the additivity theorem together with the previous two cases
shows that

ˆ b

a
f =

ˆ 0

a
f +

ˆ b

0
=
a2 − 02

2 +
b2 − 02

2 =
a2 + b2

2 .

Example 6.2. We claim that there does not exist a continuously di�erentiable
function

f : [0, 2]→ R

such that f (0) = −1, f (2) = 4 and f ′(x ) ≤ 2 on [0, 2]. To justify this, we proceed
by contradiction. If such a function f exists, then f ′must be Riemann integrable
on [0, 2] by continuity. �e Fundamental �eorem of Calculus would then imply

5 = f (2) − f (0) =
ˆ 2

0
f ′ ≤

ˆ 2

0
2 = 4

which is absurd.

We also have the following counterpart to �eorem 6.1.
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�eorem 6.2 (Fundamental �eorem of Calculus Form 2). Let f : [a,b]→ R be
Riemann integrable on [a,b] and set

F : [a,b]→ R, F (x ) :=
ˆ x

a
f .14

�e function F is Lipschitz continuous on [a,b]. Furthermore, if f is continuous at
a point c ∈ [a,b], then F ′(c ) exists and is equal to f (c ).

We should point out that, without the continuity assumption of f at c , one
need not have F ′(c ) = f (c ). Indeed, consider the function

f (x ) :=



1 if x ∈
{

1
n : n ∈ N

}
,

0 otherwise.

You have proven in your ��h assignment that f is Riemann integrable on [0, 1]
and that

´ 1
0 f = 0. Fix a point x ∈ [0, 1] and note that, because f ≥ 0,

0 ≤ F (x ) =

ˆ x

0
f ≤

ˆ x

0
f +

ˆ 1

x
f =

ˆ 1

0
f = 0.

Put otherwise, F is the constant function F ≡ 0. In particular, F is di�erentiable
on [0, 1] with F ′ ≡ 0.

• Note that f is discontinuous at 0. To see this, observe that

f (0) = 0 , 1 = lim f
( 1
n

)
.

�at is, f does not obey the sequential criterion for continuity at 0 and
therefore cannot be continuous at 0. Despite this, F ′(0) = f (0).

• On the other hand, by a similar argument, f is discontinuous at 1
n for each

n ∈ N. Moreover,
F ′

( 1
n

)
= 0 , 1 = f

( 1
n

)
.

Especially, this example shows that the continuity assumption in of �eorem 6.2
cannot be dropped. Before proceeding, there is a monotonicity argument in the
above example that deserves to be acknowledged:

14By convention, we de�ne
´ a
a f = 0.
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Lemma 6.3. Let f ∈ R([a,b]) be such that f ≥ 0 on all of [a,b]. �en, for any
x ∈ [a,b], one has ˆ x

a
f ≤

ˆ b

a
f .

Proof. Since f is Riemann integrable on [a,b], the Additivity �eorem ensures
that f is Riemann integrable on [a,x] and [x ,b]. �en, because the integral is
monotone (see your assignments),

ˆ b

x
f ≥

ˆ b

x
0 = 0.

Consequently, by the Additivity �eorem,
ˆ b

a
f =

ˆ x

a
f +

ˆ b

x
f ≥

ˆ x

a
f .

�is completes the proof. �

6.1 Null Sets

We now introduce the notion of a null set. �is concept is intimately related
to the Lebsegue measure (and therefore measure theory) and is of fundamental
importance to the theory of integration.

De�nition 6.1 (Null Sets). Let Z ⊆ R. We say that Z is a null set (or of Lebesgue
measure zero) if, for each ε > 0, one can �nd countably15 many open intervals
{Ik }k such that

Z ⊆
⋃
k

Ik

and ∑
k

|Ik | ≤ ε,

where Ik = (ak ,bk ) and |Ik | = bk − ak is the length of the interval Ik .

One can think of null sets as being “small” in the sense of “volume”. �is
intuitive description is partially motivated by the following example:

15We allow for the possibility of a countably in�nite family.
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Example 6.3. We claim that every subset of a null set is also a null set. Let Z
be a null set and �x Y ⊆ Z . Given ε > 0, there exists a countable family {Ik }k of
open intervals such that Z ⊆ ⋃

k Ik and ∑
k |Ik | ≤ ε . Since Y ⊆ Z , we also have

Y ⊆
⋃

k Ik . As ε > 0 was arbitrary, we see that Y is a null set.

Perhaps the most intuitive examples of null sets are the �nite subsets of R.
�is precisely what we discuss in the next example.

Example 6.4. We claim that every �nite set is a null set. Indeed, let {x1, . . . ,xn}
be a �nite set. Given ε > 0, de�ne for each k = 1, . . . ,n the open interval

Ik :=
(
xk −

ε

2n ,xk +
ε

2n

)
.

Since xk ∈ Ik for every index k , we have {x1, . . . ,xn} ⊆
⋃n

k=1 Ik . Furthermore,

n∑
k=1
|Ik | =

n∑
k=1

ε

n
= ε .

We infer that {x1, . . . ,xn} is a null set.

One should be aware that null sets can be in�nite, and even unbounded. As
it turns out, there are many examples of such sets (e.g. Z and Q). In fact every
countable set is necessarily a null set. To establish this, we recall an elementary
identity. Fix r ∈ (0, 1) and note that

(1 − r ) (1 + r + r 2 + · · · + rn ) = 1 − rn+1.

Especially,

n∑
k=0

rk =
1 − rn+1

1 − r . (6.1)

Lemma 6.4. Every countable subset of R is a null set.

Proof. In our previous example we showed that �nite sets are null. �erefore, we
must only show that every countably in�nite set is null. Let E ⊂ R be countably
in�nite and enumerate its elements as

x1, . . . ,xn, . . . .
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Let ε > 0 be given. For each natural number n let us de�ne

In :=
(
xn −

ε

2n+1 ,xn +
ε

2n+1

)
.

Clearly, xn ∈ In and so E = {xn : n ∈ N} ⊆ ⋃
n∈N In. Moreover, by (6.1),

∞∑
n=1
|In | =

∞∑
n=1

ε

2n = lim
N→∞

N∑
n=1

ε

2n = ε lim
N→∞

N∑
n=1

(1
2

)n
= ε lim

N→∞



N∑
n=0

(1
2

)n
− 1



= ε lim
N→∞



1 −
(

1
2

)N+1

1 − 1
2

− 1


= ε


1
1
2 − 1

− 1


= ε .

It follows that Z is null. �

Corollary 6.5. �e set of rational numbers Q is a null set (i.e. Q has Lebesgue
measure zero).

Remark 6.1. We have shown that every countable set is a null set. It is, however,
not true that every null set is countable. An example of a set which is not null is
the set of irrational numbers R \Q.

Let A ⊆ R and let f : A → R be a function. We say that f is continuous
almost everywhere on A if the set of points of discontinuities of f is a null set.
�at is, if

D := {
x ∈ A : f is discontinuous at x }

is a null set. As a sanity check we note that because the empty set ∅ is null, a
continuous function f : A→ R is, in particular, continuous almost everywhere.
What is perhaps more surprising, however, is that every monotone function also
satis�es this property:
�eorem 6.6. Let f : [a,b] → R be monotone. �en, f is continuous almost
everywhere on [a,b]. More precisely, the set of discontinuity points

D := {
d ∈ A : f is discontinuous at d

}
is countable.
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Proof. By replacing f with −f , we may assume without loss of generality that
f is monotone increasing on [a,b]. Namely, we may assume that x ≤ y implies
f (x ) ≤ f (y). If D is empty then there is nothing to prove. Otherwise, choose a
point d ∈ D. Since f is continuous at d if and only if

lim
x→d−

f (x ) = lim
x→d+

f (x ),

we must have
lim
x→d−

f (x ) < lim
x→d+

f (x ).

Using that Q is dense in R, we can �nd a rational number rd such that

lim
x→d−

f (x ) < rd < lim
x→d+

f (x ).

Doing allows us to associate a rational number rd to each d ∈ D such that the
above holds. Next, we consider the mapping

Γ : D → Q, d 7→ rd .

We claim that Γ is injective. To this end, let d, e ∈ D be such that d , e . Without
loss of generality, we can assume that d < e . Since f is monotone increasing on
[a,b], we have

rd < lim
x→d+

f (x ) ≤ lim
x→e−

f (x ) < re .

In particular, rd , re . �at is, Γ(d ) , Γ(e ) whenever d , e . It follows that Γ is
indeed and injection from D into Q. Since there exists an injection from D into a
countably in�nite set, we see that D is countable. �is completes the proof. �

Consider once more the Dirichlet function f : R → R de�ned in (D). �is
function was shown to be discontinuous at every point in R. �erefore, the set
of discontinuities of the Dirichlet function f is exactly equal to R, which can be
shown to not be null. Consequently, f is an example of a function that is not
continuous almost everywhere.

6.2 Lebesgue’s Integrability Criterion

�us far we have proven several conditions guaranteeing the Riemann integra-
bility of certain functions on compact intervals [a,b]. Some of this are easy to
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apply (e.g. checking whether the function is monotone or continuous) but are
unfortunately merely su�cient conditions for integrability. Furthermore, the “if
and only if” conditions we possess for Riemann integrability are typically very
technical and tedious to apply (e.g. Cauchy’s Criterion and the Squeeze �eo-
rem). Ideally, one would like a necessary and su�cient condition for Riemann
integrability that can be veri�ed by simply inspecting the function is question.
�is is precisely what Lebesgue’s criterion achieves:

�eorem 6.7 (Lebesgue). Let f : [a,b] → R be a bounded function. �en f is
Riemann integrable on [a,b] if and only if f is continuous almost everywhere on
[a,b]. �at is, f ∈ R([a,b]) if and only if{

x ∈ [a,b] : f is discontinuous at x
}

is a null set.

Corollary 6.8. Every monotone function f : [a,b]→ R is Riemann integrable.

Proof. A monotone function f on [a,b] is clearly bounded. Furthermore, it is a
consequence of �eorem 6.6 that f is continuous almost everywhere on [a,b]. It
then follows from Lebesgue’s criterion that f is Riemann integrable on [a,b]. �

Example 6.5. Lebesgue’s Criterion implies at once the Riemann integrability of
�omae’s function from De�nition 3.1. Indeed, it was proven in Proposition 3.4
that �omae’s function was continuous at every irrational number in [0, 1] and
discontinuous at each rational number of [0, 1]. �erefore, the set of discontinu-
ities of �omae’s function is precisely equal to Q∩ [0, 1] ⊆ Q. Since Q∩ [0, 1] is
countable and hence a null set, it follows that �omae’s function is continuous
almost everywhere on [0, 1].

Lebesgue’s criterion is followed by a myriad of applications. In fact, Lebesgue’s
�eorem allows for a short and elegant proof of the following major property of
integration:

�eorem6.9 (Composition �eorem). Let f : [a,b]→ R be a Riemann integrable
function on [a,b] and let J ⊇ f ([a,b]). If φ : J → R is continuous on J , the
composition φ ◦ f is Riemann integrable on [a,b].

Corollary 6.10. Let f : [a,b] → R be Riemann integrable. �en, ��f �� ∈ R([a,b])
and �����

ˆ b

a
f

�����
≤

ˆ b

a

��f �� . (6.2)

57



Proof. Taking φ (x ) := |x | in �eorem 6.9 implies the Riemann integrability of
��f �� = φ ◦ f . �e identity (6.2) follows at once from Example 4.2. �

Corollary 6.11. Let f ,д ∈ R([a,b]).

(i) �e product f д is Riemann integrable on [a,b].

(ii) max( f ,д) and min( f ,д) are both Riemann integrable on [a,b].

Proof. First, takingφ (x ) := x2 in �eorem 6.9 shows that f 2 = φ◦ f andд2 = φ◦д
are Riemann integrable on [a,b]. Since R([a,b]) is a closed under �nite linear
combinations it follows that

f д =
( f + д)2 − f 2 − д2

2

is Riemann integrable on [a,b]. �is establishes (i). Now, since f +д ∈ R([a,b]),
we see from Corollary 6.10 that ��f + д�� ∈ R([a,b]). Writing

max ( f ,д) =
f + д + ��f + д��

2 ,

we get that max( f ,д) is Riemann integrable as well. Similarly, because

min( f ,д) = f + д − ��f − д��
2 ,

we infer that min( f ,д) ∈ R([a,b]). �

7 Seventh Tutorial/Review

In preparation for the midterm exam, we will give a brief summary of what we
have covered thus far and solve various problems related to this material. Af-
ter having reviewed the notions of uniform continuity, di�erentiability and the
Riemann integral, we will quickly cover the concept of uniform convergence and
provide a worked out example. Note that the bare bones of uniform convergence
is examinable.
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7.1 Uniform Continuity

Let f : A ⊆ R → R be a function. Recall that f is called uniformly continuous
on A if, for each ε > 0, there exists δ > 0 such that ��f (x ) − f (y)�� < ε whenever
x ,y ∈ A satisfy ��x − y�� < δ . Clearly, if f is uniformly continuous then it is also
continuous. �e main di�erence between uniform continuity and continuity is
that the δ > 0 stated above can only depend on ε , i.e. it cannot depend on the
point y. �is makes uniform continuity a global property rather than a local
property. Below we list some important properties that uniformly continuous
functions satisfy:

• Uniformly continuous functions always map Cauchy sequences to Cauchy
sequences. �is need not be the case for continuous functions.

• If A ⊆ R is bounded and f : A→ R is uniformly continuous on A, then f
is bounded. �is fails for functions that are merely continuous (e.g. 1/x on
(0, 1)).

• Sums and compositions of uniformly continuous functions remain uni-
formly continuous. However, products of uniformly continuous functions
are not necessarily uniformly continuous. Indeed, f (x ) = x is uniformly
continuous (even Lipschitz continuous) on R but x 7→ x2 is not.

• If K ⊂ R is compact and f is continuous on K , then f must be uni-
formly continuous on K . �is of course need not hold if K is not closed
and bounded.

Example 7.1. We claim that f (x ) :=
√
x2 + 1 is uniformly continuous on R. For

this, it is enough to show that f is Lipschitz continuous. To see this, let x ,y ∈ R
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be arbitrary and observe that

����
√
x2 + 1 −

√
y2 + 1

���� =
������

(√
x2 + 1 −

√
y2 + 1

)
·

√
x2 + 1 +

√
y2 + 1

√
x2 + 1 +

√
y2 + 1

������

=

���x
2 − y2���

√
x2 + 1 +

√
y2 + 1

=
��x + y�� ��x − y��

√
x2 + 1 +

√
y2 + 1

≤ *
,

|x | + ��y��
√
x2 + 1 +

√
y2 + 1

+
-

��x − y��

≤ *
,

|x |
√
x2 + 1

+
��y��√
y2 + 1

+
-

��x − y��

≤ 2 ��x − y�� .

We infer that f is Lipschitz with constant L = 2.

Since working directly from the de�nition of uniform continuity is di�cult
when establishing non-uniform continuity, the following two-sequence criterion
should be well understood:

Proposition 7.1 (Two Sequence Criterion). Let f : A ⊆ R → R be a function.
�e following are equivalent:

(i) f is not uniformly continuous on A;

(ii) there exists ε0 > 0 and two sequences (xn ), (yn ) in A such that

lim ��xn − yn�� = 0

but ��f (xn ) − f (yn )�� ≥ ε0 for all n ∈ N.

Remark 7.1 (One Sequence Test). Because uniformly continuous functions nec-
essarily take Cauchy sequences to Cauchy sequences, it is also enough to exhibit
a Cauchy sequence (xn ) in A such that ( f (xn )) is not Cauchy. However, this is
not an “if and only if” test as above.
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Example 7.2. We prove that the function

f (x ) := sin
( 1
x

)
is not uniformly continuous on (0,∞) using both the Two Sequence Criterion and
the One Sequence Test. For the Two Sequence Criterion, consider the sequences

xn := 1
2πn + π

2
, yn := 1

2πn .

Clearly, xn,yn → 0 and so lim(xn − yn ) = 0. In particular, lim ��xn − yn�� = 0.
However,

��f (xn ) − f (yn )�� =
����sin

(
2πn + π2

)
+ sin (2πn)

���� = |1| = 1.

Hence, we can apply the criterion with ε0 := 1. If we instead want to use the One
Sequence Test, we de�ne

xn := 1
πn
.

Since xn → 0, it is convergence and therefore Cauchy in (0,∞). However,
f (xn ) = sin(πn) = (−1)n which diverges and therefore cannot be Cauchy.

Example 7.3. Similarly, we can see that the function

f (x ) :=
����sin

( 1
x

) ����
is not uniformly continuous on (0,∞). Indeed, de�ne

xn := 1
2πn + π

2
, yn := 1

2πn

so that ��xn − yn�� → 0 as n → ∞. �en, as in the previous example, one has
��f (xn ) − f (yn )�� = 1 for every n ∈ N. We infer from the two sequence criterion
that f is not uniformly continuous on (0,∞).

7.2 Di�erentiation

Let I ⊆ R be an interval, f : I → R a function, and �x a point c ∈ I . We say that
f is di�erentiable at c with derivative f ′(c ) if the limit

f ′(c ) := lim
x→c

f (x ) − f (c )

x − c
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exists. If f ′(c ) exists at all points c ∈ I then we say that f is di�erentiable on I
and the function x 7→ f ′(x ) is called the derivative of f on I . As above, we list
some important properties below.

• If f is di�erentiable at c , then it must also be continuous there. Certainly,
we have

lim
x→c

( f (x ) − f (c )) = lim
x→c

[
f (x ) − f (c )

x − c
· (x − c )

]

= lim
x→c

f (x ) − f (c )

x − c
· lim
x→c

(x − c )

= f ′(c ) lim
x→c

(x − c )

= 0.

�us, limx→c f (x ) = f (c ) whence f is continuous at c .

• Linear combinations of di�erentiable functions are di�erentiable. Indeed,
if f ,д : I → R are di�erentiable at c ∈ I then, for each α , β ∈ R, the
function (α f + βд) is di�erentiable at c and moreover

(α f + βд)′(c ) = α f ′(c ) + βд′(c ).

• Similarly, if f ,д are di�erentiable at c ∈ I , then ( f д)′(c ) exists and is given
by

( f д)′(c ) = f ′(c )д(c ) + f (c )д′(c ).

• Let f : I → R be di�erentiable at c and let J ⊇ f (I ) be an interval. If д is
di�erentiable at f (c ), then the composition д ◦ f is also di�erentiable at c
with

(д ◦ f )′(c ) = д′( f (c )) f ′(c ).

Perhaps the most important result of this section is the Mean Value �eo-
rem. �is theorem lives at the very heart of many important results including
Darboux’s theorem and the Fundamental �eorem of Calculus. We restate and
prove the Mean Value �eorem below.

�eorem 7.2 (Mean Value �eorem). Let f : [a,b] → R be continuous on [a,b]
and di�erentiable on (a,b). �en, there exists a point c ∈ (a,b) such that

f ′(c ) =
f (b) − f (a)

b − a
.
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Proof. Consider the function

д(x ) :=
(
f (b) − f (a)

b − a

)
(x − a) − ( f (x ) − f (a)) .

Clearly, д is continuous on [a,b] and is di�erentiable on the open interval (a,b).
Since д(b) = д(a) = 0, an application of Rolle’s theorem implies the existence of
a point c ∈ (a,b) such that д′(c ) = 0. However,

0 = д′(c ) = f (b) − f (a)

b − a
− f ′(c )

yields
f ′(c ) =

f (b) − f (a)

b − a
,

as was required. �

We now list several important consequences of the Mean Value �eorem.
In each of these, unless stated otherwise, I ⊆ R is an arbitrary interval and
f : I → R is a di�erentiable function.

• �e function f is increasing on I if and only if f ′ ≥ 0 on I . Similarly, f is
decreasing if and only if f ′ ≤ 0 on I .

• Let f : [a,b] → R be continuous and di�erentiable on (a,b). If f ′(c ) = 0
for all c ∈ (a,b), then f is constant on I . Indeed, given any point x ∈ [a,b]
with x > a we can apply the Mean Value �eorem on the interval [a,x] to
obtain a point c ∈ (a,x ) ⊆ (a,b) with the property that

f ′(c ) =
f (x ) − f (a)

x − a
.

Since f ′(c ) = 0, this forces f (x ) = f (a). �is proves that f is constant.

• Darboux’s �eorem states that derivatives, despite not necessarily being
continuous, obey the intermediate value property. �is is sometimes useful
when proving that certain functions cannot be derivatives.

Example 7.4. Let I be an interval and f : I → R a di�erentiable function. If
f ′(x ) > 0 for all x ∈ I , then f is strictly increasing on I . Indeed, �x x < y in
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I . Since f is continuous on [x ,y] and di�erentiable on (x ,y), the Mean Value
�eorem guarantees the existence of a point c ∈ (x ,y) ⊆ I such that

f (y) − f (x )

y − x
= f ′(c ).

Or, rather, f (y)− f (x ) = f ′(c ) (y−x ) > 0. �is proves that f is strictly increasing
on I . However, the converse does not hold. Certainly, the function f (x ) := x3 is
strictly increasing on R but f ′(0) = 0.

Example 7.5. Let I be an interval and f : I → R a di�erentiable function on I .
We show that if f ′ is bounded on I then f is Lipschitz on I . To this end, let L > 0
be such that

��f ′(x )�� ≤ L

for all x ∈ I . Fix x ,y ∈ I with x , y. We may assume without loss of generality
that x < y. Since f is continuous on [x ,y] and di�erentiable on (x ,y), we may
apply the Mean Value �eorem to obtain a point c ∈ (x ,y) such that

f ′(c ) =
f (y) − f (x )

y − x
.

�erefore, �����
f (y) − f (x )

y − x

�����
= ��f ′(c )�� ≤ L.

It follows that ��f (y) − f (x )�� ≤ L ��y − x �� for all x , y in I . Since this holds trivially
for x = y, we see that f is Lipschitz continuous on I .

7.3 Riemann Integration

A function f : [a,b] → R is said to be Riemann integrable on an interval [a,b]
if there exists a real number

´ b
a f having the property that, for each ε > 0, there

exists δ > 0 such that �����
S ( f ; Ṗ ) −

ˆ b

a
f

�����
< ε

whenever Ṗ is a tagged partition of [a,b] with ‖Ṗ ‖ < δ .

Example 7.6. Fix c ∈ (0, 1) and let f : [0, 1]→ R be given by

f (x ) :=



1 if 0 ≤ x < c,

0 if c ≤ x ≤ 1.
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We claim that f is Riemann integrable on [0, 1] with
´ 1

0 f = c . To see this, let
ε > 0 be given and let δ := ε . Let Ṗ be a tagged partition of [0, 1] with ‖Ṗ ‖ < δ .
Denote the partition points of Ṗ by

0 = x0 < · · · < xn = 1

and let x∗1 , . . . ,x∗n be the tag points. Let k := min
{
j ≥ 1 : xj ≥ c

}
. Note that

c ∈ (xk−1,xk]. If j > k then we must have x∗j ≥ xj−1 ≥ xk whence f (x∗j ) = 0. It
follows that

S ( f ; Ṗ ) =
n∑
j=1

f (x∗j ) (xj − xj−1) =
k∑
j=1

f (x∗j ) (xj − xj−1).

If k = 1 then the above is simply

S ( f ; Ṗ ) = f (x∗1 ) (x1 − x0) = f (x∗1 )x1 =



x1 if f (x∗1 ) = 1,
x0 if f (x∗1 ) = 0.

We now assume that k > 1. �en, f (x∗j ) = 1 for all 1 ≤ j < k . Indeed, by the
minimality of k we must have xj < c . Consequently, x∗j ≤ xj < c . �is gives

S ( f ; Ṗ ) =
k∑
j=1

f (x∗j ) (xj − xj−1) =
k−1∑
j=1

f (x∗j ) (xj − xj−1) + f (x∗k ) (xk − xk−1)

=

k−1∑
j=1

(xj − xj−1) + f (x∗k ) (xk − xk−1)

= (xk−1 − x0) + f (x∗k ) (xk − xk−1)

=



xk if f (x∗
k
) = 1,

xk−1 if f (x∗
k
) = 0.

�us, no ma�er the value of k , we obtain

S ( f ; Ṗ ) =



xk if f (x∗
k
) = 1,

xk−1 if f (x∗
k
) = 0.

Finally, we obtain

���S ( f ; Ṗ ) − c ��� =



|xk − c | if f (x∗
k
) = 1,

|xk−1 − c | if f (x∗
k
) = 0

so that ���S ( f ; Ṗ ) − c ��� ≤ ‖Ṗ ‖ < δ = ε . �is completes the proof.
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Having given an example using only the de�nition, we should reiterate all
the important results we have gathered for the Riemann integrable. Note that
many of these properties were proven by you in your assignments!

• Every Riemann integrable function is bounded. Furthermore, every mono-
tone function on a compact interval is Riemann integrable there. �e same
can be said for continuous functions.

• We know that all step functions are Riemann integrable.

• If f ,д are Riemann integrable on [a,b], then so is α f +βд (where α , β ∈ R).
Moreover, ˆ b

a
(α f + βд) = α

ˆ b

a
f + β

ˆ b

a
д.

• If f ,д ∈ R([a,b]) with f ≤ д on [a,b] then
´ b
a f ≤

´ b
a д.

• Modifying a Riemann integrable function at �nitely many points does not
a�ect the integrability of the function or the value of its integral.

By way of a practice example, we re-prove the following lemma about ap-
proximating by Riemann sums.

Lemma 7.3. Let f : [a,b]→ R be Riemann integrable on [a,b] and let
(
Ṗn

)
be a

sequence of tagged partitions of [a,b] such that

lim 


Ṗn



 = 0.

�en,

lim S
(
f ; Ṗn

)
=

ˆ b

a
f .

Proof. Let ε > 0. Because f is Riemann integrable on [a,b], there exists by
de�nition some δ > 0 such that

�����
S ( f ; Ṗ ) −

ˆ b

a
f

�����
< ε (7.1)

for all tagged partitions Ṗ of [a,b] with mesh strictly less than δ . On the other
hand, because ‖Ṗn‖ → 0 as n → ∞, there exists a natural number N ∈ N such
that 


Ṗn




 =
���



Ṗn




 − 0��� < δ
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for all n ≥ N . Using Ṗn in (7.1) we see that

�����
S ( f ; Ṗn ) −

ˆ b

a
f

�����
< ε

for all n ≥ N . By de�nition, this means that S ( f ; Ṗn ) →
´ b
a f as n → ∞. �

Next we provide an example in which the squeeze theorem can be used to
establish the integrability of a function. �is next example is very similar to two
problems you’ve already handed in, but the idea behind the proof is extremely
versatile.

Example 7.7. We prove (using the Squeeze �eroem) that

f (x ) :=



���sin
(

1
x

) ��� if x , 0,
0 if x = 0.

is Riemann integrable on [0, 1]. Fix an arbitrary ε > 0 and let N ≥ 2 be such that
1
N <

ε
2 .16 Since f is continuous on

[
1
N , 1

]
, it must be integrable there. Now, it is

clear that 0 ≤ f (x ) ≤ 1 on
[
0, 1

N

]
. Furthermore,

ˆ 1
N

0
(1 − 0) = 1

N
< ε

Consider the functions

αε (x ) :=



0 if 0 ≤ x < 1
N ,

f (x ) if 1
N ≤ x ≤ 1

and ωε (x ) :=



1 if 0 ≤ x < 1
N ,

f (x ) if 1
N ≤ x ≤ 1.

Clearly, αε ≤ f ≤ ωε on all of [0, 1]. Since f is Riemann integrable on
[

1
N , 1

]

and αε = f there, αε is also Riemann integrable on
[

1
N , 1

]
. On the other hand, αε

is equal to a constant function on
[
0, 1

N

]
except at the one point x = 1

N . �us,
αε is integrable on the interval

[
0, 1

N

]
. By the Additivity �eorem, we infer that

16I only want N ≥ 2 to guarantee that 1
N < 1. �is way, both [0, 1/N ] and [1/N , 1] are

non-trivial intervals.
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αε ∈ R([0, 1]). Similarly, ωε ∈ R([0, 1]). Finally, another application of the
Additivity �eorem gives

ˆ 1

0
(ωε − αε ) =

ˆ 1/N

0
(ωε − αε ) +

ˆ 1

1/N
(ωε − αε )

=

ˆ 1/N

0
(1 − 0) +

ˆ 1

1/N
0

=
1
N
< ε .

By the Squeeze �eorem, we infer that f ∈ R([0, 1]).

7.4 The Bare-Bones of Uniform Convergence

We now come to the last examinable topic of the midterm exam. In future tu-
torials we will cover the concept of uniform convergence in greater depth and
detail. For now, we will focus on explicit examples to help with the intuition and
general idea.

De�nition 7.1 (Pointwise Convergence). Let A ⊆ R and ( fn ) be a sequence of
functions de�ned on A. �at is, for each n ∈ N we have an associated function
fn : A → R. We say that ( fn ) converges pointwise to a function f : A → R (as
n → ∞) if

lim
n→∞

fn (x ) = f (x )

for every �xed x ∈ A. Here, as x is �xed, the limit above is understood as the
limit of a sequence of real numbers.

For example, let us consider the sequence of functions on [0, 1] de�ned by

fn (x ) := xn .

At x = 0, one has fn (x ) = fn (0) = 0 for each n ∈ N. �erefore, fn (0) is
the constant sequence fn (0) = 0 and therefore limn→∞ fn (0) = 0. Similarly,
limn→∞ fn (1) = limn→∞ 1 = 1. Now, if 0 < x < 1, we have seen in analysis 1 that
xn → 0 as n → ∞. �erefore,

lim
n→∞

fn (x ) = lim
n→∞

xn = 0.
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Combining all possible cases for x , we see that

lim
n→∞

fn (x ) = f (x ) :=



0 if 0 ≤ x < 1,
1 if x = 1.

�is means that fn → f pointwise on [0, 1].

De�nition 7.2. Let A ⊆ R and ( fn ) a sequence of functions de�ned on A. We
say that fn converges uniformly to a function f : A → R (as n → ∞) if for each
ε > 0, there exists N ∈ N such that for all x ∈ A and all n ≥ N there holds

��fn (x ) − f (x )�� < ε .

Note that here the natural number N is not allowed to depend on the point x .
Equivalently, we say that fn → f uniformly on A provided, for each ε > 0, one
can �nd N ∈ N such that

sup
x∈A

��fn (x ) − f (x )�� ≤ ε

for all n ≥ N .

Example 7.8. De�ne on R the sequence of functions

fn (x ) :=
√
x2 +

1
n2 .

Clearly, each fn is continuous (even di�erentiable) on all of R. Now, for each
�xed x ∈ R, the standard limit laws show that

lim
n→∞

fn (x ) = lim
n→∞

√
x2 +

1
n2 =

√
x2 = |x | .

Le�ing f (x ) := |x |, we see that fn → f pointwise on R. We now inspect the
possible uniform convergence of this sequence. First, we observe that

|x | =
√
x2 ≤ fn (x ) =

√
x2 +

1
n2 ≤

√
|x |2 +

2 |x |
n
+

1
n2

=

√(
|x | +

1
n

)2

= |x | +
1
n
.

69



In particular, for each x ∈ R and all n ∈ N,

|x | −
1
n
≤ fn (x ) ≤ |x | +

1
n

whence
��fn (x ) − f (x )�� ≤

1
n
, ∀x ∈ R and ∀n ∈ N.

Given ε > 0, we can �nd N ∈ N such that 1
N < ε . �en, for all n ≥ N and all

x ∈ R,
��fn (x ) − f (x )�� ≤

1
n
≤

1
N
< ε .

�is shows that fn → f uniformly on R.

We also recall the following theorem proven yesterday in class. In general,
this result makes it much easier to show that certain pointwise convergences
cannot be uniform.

�eorem 7.4. Let A ⊆ R and let ( fn ) be a sequence of functions de�ned on A
converging uniformly to a function f : A→ R on the setA. If each fn is continuous
at a point c ∈ A, then so is f .

Proof. Let ε > 0. Since fn → f uniformly on A, there exists N ∈ N such that

��fn (x ) − f (x )�� <
ε

3
for all x ∈ A and every n ≥ N . Now, fN is continuous at the point c ∈ A. �us,
there exists δ > 0 such that

��fN (x ) − fN (c )�� <
ε

3
for all x ∈ A with |x − c | < δ . Finally, note that the triangle inequality implies

��f (x ) − f (c )�� = ��f (x ) − fN (x ) + fN (x ) − fN (c ) + fN (c ) − f (c )��
≤ ��f (x ) − fN (x )�� + ��fN (x ) − fN (c )�� + ��fN (c ) − f (c )��
<

2ε
3 +

��fN (x ) − fN (c )�� .

If in addition |x − c | < δ , then

��f (x ) − f (c )�� <
2ε
3 +

��fN (x ) − fN (c )�� < ε .

�is completes the proof. �
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Corollary 7.5. Let A ⊆ R and let ( fn ) be a sequence of functions de�ned on A
converging uniformly to a function f : A→ R on the setA. If each fn is continuous
on A, then so is f .

Equipped with this result, let us once again consider the sequence of func-
tions de�ned in Example 7.8.

Example 7.9. By the chain rule, every function fn de�ned in the previous ex-
ample is di�erentiable on R with derivative given by

f ′n (x ) =
x√

x2 + 1
n2

.

However, the uniform limit of these fn’s is not di�erentiable at 0. Indeed, the
function f (x ) = |x | does not have a derivative at x = 0. Despite this, the func-
tions f ′n still converge pointwise on R. More precisely,

lim
n→∞

f ′n (x ) = lim
n→∞

x√
x2 + 1

n2

=




0 if x = 0,
1 if x > 0,
−1 if x < 0.

But, is it true that f ′n converges uniformly to this function described above? To
answer this, denote by д the pointwise limit of ( f ′n ), i.e.

д(x ) :=



0 if x = 0,
1 if x > 0,
−1 if x < 0.

We claim that f ′n does not converge uniformly to д on any compact interval
[−a,a]. To see this, we argue by way of contradiction. Assume that f ′n → д uni-
formly on [−a,a]. Since every f ′n is continuous on [−a,a], the previous Corollary
implies that the uniform limit д must be continuous on [−a,a] as well. However,
д is clearly discontinuous at 0. Hence, the convergence cannot be uniform.

To further illustrate why certain sequences may converge pointwise but not
uniformly, we o�er one last example. Here, however, the pointwise limit will
indeed be continuous. �erefore, we will not be able to apply Corollary 7.5 to
directly obtain a contradiction (as in the previous example).
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Example 7.10. Consider the sequence of functions fn de�ned by

fn (x ) := nx

1 + x2n2

on R. Clearly, for every �xed x ∈ R \ {0}, we have

0 ≤ fn (x ) =
nx

1 + x2n2 ≤
nx

x2n2 =
1
x
·

1
n

where 1
n → 0 as n → ∞. By the Squeeze �eorem for sequences, we see that

fn (x ) → 0 as n → ∞. �is is simply the statement that fn → 0 pointwise on
R \ {0}. Since fn (0) = 0→ 0 as n → ∞, we see that fn → 0 pointwise on all of R.

Let a > 0 be given; we claim that fn → 0 uniformly on [a,∞). Indeed, for all
x ∈ [a,∞) and every n ≥ 1 one has

��fn (x ) − 0�� = fn (x ) =
nx

1 + x2n2 ≤
nx

n2x2 =
1
nx
≤

1
na
.

By the Archimedean property, there exists N ∈ N such that 1
Na < ε , where ε > 0

is arbitrary but �xed. �en, for all n ≥ N and all x ∈ [a,∞),

��fn (x ) − 0�� ≤
1
na
≤

1
Na
< ε .

It follows that fn → 0 uniformly on [a,∞) for all a > 0. Nonetheless, fn does not
converge uniformly to 0 on [0,∞).17 To see this, assume by contradiction that
fn → 0 uniformly on [0,∞). By de�nition, one could �nd N ∈ N such that

��fn (x ) − 0�� =
nx

1 + x2n2 <
1
2

for all n ≥ N and every x ∈ [0,∞). In particular, for each n ≥ N ,

1
2 =

����fn
( 1
n

)
− 0

���� <
1
2

which is a contradiction. �is shows that fn does not converge to 0 uniformly on
[0,∞).

17Note that because the pointwise limit д = 0 is continuous, we cannot apply Corollary 7.5.
Instead, we must resort to a more technical argument.
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Remark 7.2. �is last example shows that one must sometimes resort to direct
methods when showing that a sequence of functions does not converge uni-
formly. Although this was not necessary for Example 7.9, it is still helpful to
see how one could solve this example using only the de�nition of uniform con-
vergence. More precisely, how can one show that f ′n 6→ д uniformly on [−a,a]
using only the de�nition of uniform convergence (and not Corollary 7.5)?

By way of contradiction, let us assume that f ′n → д uniformly on [−a,a].
�en, taking ε := 1

2 we can �nd N ∈ N such that

��f ′n (x ) − д(x )�� <
1
2 , ∀n ≥ N ,

and all x ∈ [−a,a]. In particular, for all n ≥ N and every x ∈ (0,a],

���f
′
N (x ) − д(x )

��� <
1
2 .

However, this implies that

��������

x√
x2 + 1

N 2

− 1
��������
<

1
2 , ∀x ∈ (0,a].

Consider now the sequence (xk ) given by xk := 1
k . Since xk → 0 as k → ∞, there

exists K ∈ N such that xk ∈ (0,a] ⊆ [−a,a] for all k ≥ K .18 �erefore,

��������

xk√
x2
k
+ 1

N 2

− 1
��������
=

���f
′
N (xk ) − д(xk )

��� <
1
2

for all k ≥ K . Taking the limit as k → ∞, we �nd that

|0 − 1| =
��������
lim
k→∞

xk√
x2
k
+ 1

N 2

− 1
��������
= lim

k→∞

��������

xk√
x2
k
+ 1

N 2

− 1
��������
≤

1
2

which is a contradiction. �erefore, f ′n does not converge to д uniformly.
18By the ε − N de�nition of convergence for sequences, there exists K ∈ N such that |xk | < a

for all k ≥ K . �us, xk ∈ (0,a) for all k ≥ K .
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8 Eighth Tutorial

In this tutorial, we continue to cover examples and applications of uniform con-
vergence. We recall that a given sequence of functions fn : A → R converges
uniformly to a function f : A → R, as n → ∞, if for each ε > 0 there exists
N ∈ N such that

��fn (x ) − f (x )�� < ε
for all x ∈ A and all n ≥ N . In practice, to show that ( fn ) converges uniformly to
f on A, we try to �nd a sequence (an ) converging to 0 such that

��fn (x ) − f (x )�� ≤ an

for all x ∈ A and all n ∈ N. �is is su�cient because, for each ε > 0, one can �nd
N ∈ N such that an < ε for all n ≥ N . Consequently, for all n ≥ N and all x ∈ A
there holds

��fn (x ) − f (x )�� ≤ an < ε

whence fn → f uniformly on A. We restate this below in the form of a lemma:

Lemma 8.1. LetA ⊆ R and ( fn ) be a sequence of functions onA and �x a function
f : A→ R. Assume that there exists a sequence (an ) such that

��fn (x ) − f (x )�� ≤ an

for all n ∈ N and every x ∈ A. If an → 0 as n → ∞, then fn → f uniformly as
n → ∞.

Example 8.1. Consider the sequence of functions ( fn ) on R de�ned by

fn (x ) := x

1 + nx2 .

To identify the uniform limit of these fn’s (if it exists), we should �rst try and
determine their pointwise limit. Clearly, for every �xed x , 0 we have

��fn (x )�� ≤
|x |

1 + nx2 ≤
|x |

nx2 =
1

n |x |

n→∞
−−−−→ 0.

�us, if x , 0 is �xed, then the Squeeze �eorem for sequences implies that

lim
n→∞

fn (x ) = 0.
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Moreover,
lim
n→∞

fn (0) = lim
n→∞

0 = 0.

We infer that fn (x ) → 0, as n → ∞, for each x ∈ R. �is is precisely the
statement that fn → 0 pointwise on R. We now assert that fn → 0 uniformly on
R. For this, we will require the following identity:

|t |

1 + t2 ≤
1
2 , ∀t ∈ R. (8.1)

To prove (8.1), it su�ces to check that

t2 − 2 |t | + 1 ≥ 0, ∀t ∈ R.
However, t2 − 2 |t | + 1 = ( |t | − 1)2 ≥ 0 for all t ∈ R. �is veri�es (8.1). Returning
to the example, we can apply (8.1) with t =

√
nx to obtain the following uniform

estimate:

��fn (x ) − 0�� =
|x |

1 + nx2 =
1
√
n
·

√
n |x |

1 + nx2

=
1
√
n
·

���
√
nx ���

1 +
(√

nx
)2

(8.1)
≤

1
2
√
n

for all x ∈ R and every n ∈ N. Applying Lemma 8.1 with an := 1
2
√
n

then shows
that fn → 0 uniformly.

Remark 8.1. We have seen in the lectures and tutorials that uniform convergence
does not imply the uniform convergence of the derivatives. As is turns out,
counter examples to such a statement are typically neither rare nor contrived.
In fact, the example above is yet another instance of such a sequence. Indeed,
by the chain rule and quotient rule, each fn is continuously di�erentiable with
derivative given by

f ′n (x ) =
(1 + nx2) − 2nx2

(1 + nx2)2
=

1 − nx2

(1 + nx2)2
.

Clearly,
lim
n→∞

f ′n (0) = lim
n→∞

1 = 1.
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On the other hand, if x , 0 is �xed,
�����

1 − nx2

(1 + nx2)2

�����
≤

1 + nx2

(1 + nx2)2
=

1
1 + nx2 ≤

1
nx2

which tends to 0 as n → ∞. Hence, f ′n (x ) → 0, as n → ∞, for all x , 0. Put
otherwise,

f ′n (x ) → д(x ) :=



1 if x = 0,
0 if x , 0.

However, de�ning f (x ) := 0 on R, we have shown above that fn → f uniformly.
Despite this, f ′n (0) 6→ f ′(0). �us, f ′n 6→ f ′ pointwise on R even though f ′n does
converge pointwise. Furthermore, ( f ′n ) does not converge uniformly to д on R
since д is discontinuous at 0.

8.1 Uniform Convergence of the Derivatives

It should now be clear that uniform convergence does not imply the uniform
convergence of the derivatives. In fact, if ( fn ) is a sequence of di�erentiable
functions converging uniformly to a di�erentiable function f , the sequence ( f ′n )
may not even converge pointwise to f ′. �erefore, deducing properties about
the convergence of ( f ′n ) using the uniform convergence of ( fn ) can in general be
quite tricky. However, the reverse does sometimes hold. Namely, under very rea-
sonable assumptions, one can show that fn → f uniformly if f ′n → f ′ uniformly.
To establish this, we �rst recall the following class result:

�eorem 8.2. Let ( fn ) be a sequence of Riemann integrable functions on [a,b]
converging uniformly to a function f : [a,b] → R on [a,b]. �en, f is Riemann
integrable on [a,b] and

lim
n→∞

ˆ b

a
fn =

ˆ b

a
f .

In fact, one can say slightly more:

Corollary 8.3. If ( fn ) is a sequence of Riemann integrable functions on [a,b] con-
verging uniformly to a function f : [a,b] → R on [a,b], then f is Riemann inte-
grable on [a,b] and

lim
n→∞

ˆ b

a

��fn − f �� = 0.
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Proof. Since fn is Riemann integrable for every n ∈ N and f ∈ R([a,b]) by the
previous theorem, ( fn − f ) is a sequence of Riemann integrable functions on
[a,b]. By Corollary 6.10, ��fn − f �� is also Riemann integrable on [a,b]. Because
fn → f uniformly if and only if ��fn − f �� → 0 uniformly, another application of
the previous theorem ensures that

lim
n→∞

ˆ b

a

��fn − f �� =
ˆ b

a
0 = 0.

�

�eorem 8.4. Let ( fn ) be a sequence of continuously di�erentiable functions on
[a,b] and let f : [a,b] → R be a Riemann integrable function such that fn → f
pointwise on [a,b]. Let д : [a,b] → R be a function such that f ′n → д uniformly
on [a,b]. �en, f is continuously di�erentiable with f ′ = д on [a,b]. Moreover,
fn → f uniformly on [a,b] as n → ∞. In fact,

f (x ) = f (a) +

ˆ x

a
д (8.2)

for all x ∈ [a,b].

Proof. We begin by establishing (8.2). Fix a point x ∈ [a,b]; by the Fundamental
�eorem of Calculus we may write

fn (x ) = fn (a) +

ˆ x

a
f ′n . (8.3)

Since fn → f pointwise on [a,b], we have

fn (x ) → f (x ) and fn (a) → f (a)

as n → ∞. Note that by assumption every f ′n is continuous on [a,b]. �en, as the
uniform limit of continuous functions, д is continuous on [a,b]. Furthermore,
f ′n → д uniformly on [a,x] for each x ∈ [a,b]. Invoking �eorem 8.2, we obtain

lim
n→∞

ˆ x

a
f ′n =

ˆ x

a
д.

Using all of this in (8.3),

f (x ) = lim
n→∞

fn (x ) = lim
n→∞

(
fn (a) +

ˆ x

a
f ′n

)
= f (a) +

ˆ x

a
д.
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�is veri�es (8.2). We now prove the main result. Since д is continuous on [a,b],
the Fundamental �eorem of Calculus implies that x 7→

´ x
a д is di�erentiable on

[a,b] with derivative given by д(x ), for each x ∈ [a,b]. Because f (a) is just a
constant, it follows from (8.2) that

f ′(x ) = д(x )

on all of [a,b]. As д is continuous, this means that f is continuously di�eren-
tiable. It only remains to check that fn → f uniformly on [a,b]. To this end,
we �x ε > 0. Since f ′n → д uniformly on [a,b], and application of Corollary 8.3
shows that

lim
n→∞

ˆ b

a

��f ′n − д�� = 0.

�us, there exists N1 ∈ N such that
ˆ b

a

��f ′n − д�� <
ε

2

for all n ≥ N1. Since fn → f pointwise, there exists (as above) N2 ∈ N such that

��fn (a) − f (a)�� <
ε

2
for all n ≥ N2. Let now N := max(N1,N2) and �x n ≥ N . For any such n, (8.2)
and (8.3) together with Corollary 6.10 assert that

��fn (x ) − f (x )�� =
�����

(
fn (a) −

ˆ x

a
f ′n

)
−

(
f (a) −

ˆ x

a
д

) �����
≤ ��fn (a) − f (a)�� +

�����

ˆ x

a

(
f ′n − д

) �����
≤ ��fn (a) − f (a)�� +

ˆ x

a

��f ′n − д��

≤ ��fn (a) − f (a)�� +
ˆ b

a

��f ′n − д�� .

In this last step, we have made use of Lemma 6.3. It follows that

��fn (x ) − f (x )�� <
ε

2 +
ε

2 = ε

for any such n and all x ∈ [a,b]. We infer that fn → f uniformly on [a,b]. �
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8.2 More On of Uniform Limits

At this point it is quite convincing that uniform limits enjoy nicer properties than
simple pointwise limits. �is section explores more of these nice properties, the
�rst of which is an elegant boundedness result.

Proposition 8.5. Let A ⊆ R and ( fn ) be a sequence of functions converging uni-
formly to a function f : A → R on the set A. If each fn is bounded, then so is f .19

�at is, uniform limits of bounded functions are bounded.

Proof. Let ε = 1. Since fn → f uniformly on A, there exists N ∈ N such that

��fn (x ) − f (x )�� < 1

for all n ≥ N and every x ∈ A. Since fN is bounded, one has

��f (x )�� = ��f (x ) − fN (x ) + fN (x )�� ≤ ��f (x ) − fN (x )�� + ��fN (x )��
< 1 +MN

for any x ∈ A. �is is precisely the statement that f is bounded on A. �

We also o�er a slight improvement of our previous statement:

Corollary 8.6. Let ( fn ) be a sequence of functions, each de�ned on a set A ⊆ R,
converging uniformly to a function f : A→ R onA. If each fn is bounded, then the
sequence ( fn ) is uniformly bounded. More precisely, if there exists for each n ∈ N
someMn > 0 such that

��fn (x )�� ≤ Mn, ∀x ∈ A,
then there existsM > 0 such that

��fn (x )�� ≤ M

for all x ∈ A and all n ∈ N. Moreover,

��f (x )�� ≤ M

for every x ∈ A.
19Here we assume that, for each n ∈ N, there exists Mn > 0 such that ��fn (x )�� ≤ Mn for all

x ∈ A. It is allowed that these Mn depend on the index n of the sequence!
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Proof. Citing the previous proposition, the uniform limit f is bounded on A.
�us, there exists a constant C > 0 such that ��f (x )�� ≤ C for all x ∈ A. Now,
as fn → f uniformly on A, there exists N ∈ N such that

��fn (x ) − f (x )�� < 1

for all n ≥ N and each x ∈ A. In particular, we have

��fn (x )�� ≤ ��fn (x ) − f (x )�� + ��f (x )�� < 1 +C

for every n ≥ N and any x ∈ A. Since ��fn�� ≤ Mn on A for every n ∈ N, it follows
from the above that, given any n ∈ N,

��fn (x )�� ≤ max {M1,M2, . . . ,MN−1, 1 +C} =: M .

for every point x ∈ A. It follows that ��fn (x )�� ≤ M for every x ∈ A and all n ∈ N.
Since ��f (x )�� ≤ C < 1 +C ≤ M on A, we are done. �

By a similar argument to the proof of Proposition 8.5, we also obtain the
following:

Proposition 8.7. Let A ⊆ R and ( fn ) be a sequence of functions converging uni-
formly to a function f : A → R on the set A. If every fn is unbounded, then f is
also unbounded.

Proof. We argue by contradiction. Assuming that f is bounded onA, there exists
a constant M > 0 such that ��f (x )�� ≤ M for all x ∈ A. For ε := 1, we can also �nd
N ∈ N such that

��fn (x ) − f (x )�� < 1
for all n ≥ N and every x ∈ A. In particular,

��fN (x )�� = ��fN (x ) − f (x ) + f (x )�� ≤ ��fN (x ) − f (x )�� + ��f (x )�� < 1 +M

for every x ∈ A. �is implies that fN is bounded on A, which is a contradiction.
�

We have proven that uniform limits of continuous functions are continuous.
More precisely, we proved in �eorem 7.4 that if fn → f uniformly and every
fn is continuous at a point c , then so is the limit f . It is therefore reasonable to
ask whether uniform limits also preserve points of discontinuitiy. �is answer is
negative and this is justi�ed by the following example:
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Example 8.2. For each n ∈ N consider the function

fn : R→ R, x 7→



1
n if x ∈ Q,
0 if x < Q.

We claim that every fn is discontinuous on all of R. Indeed, if fn were continuous
at a point c ∈ R, then so would be the function nfn. However, nfn is precisely the
Dirichlet function from (D), which was shown to be everywhere discontinuous
in Proposition 3.3. Hence, fn is discontinuous at every point c ∈ R.

Despite this, fn → 0 uniformly on R, where the constant function x 7→ 0 is
everywhere continuous (even in�nitely di�erentiable). To see this, note that for
each n ∈ N one has

��fn (x )�� = fn (x ) ≤
1
n

for all x ∈ R. By Lemma 8.1, it follows that fn → 0 uniformly on R.
Proposition 8.8 (Composition �eorem for Uniform Convergence). Let A ⊆ R
and let ( fn ) be a sequence of functions converging uniformly to a function f on A.
Assume that every fn is bounded on A. If д : R→ R is continuous, then

д ◦ fn → д ◦ f

uniformly on A.

Proof. By virtue of Corollary 8.6, there exists M > 0 such that ��fn (x )�� ≤ M and
��f (x )�� ≤ M for every n ∈ N and each x ∈ A. Let ε > 0 be given. Since [−M,M]
is compact, д is uniformly continuous on [−M,M]. �us, there exists δ > 0 such
that

��д(y) − д(v )�� < ε (8.4)
for all y,v ∈ [−M,M] with ��y −v �� < δ . On the other hand, because fn → f
uniformly on A, there exists N ∈ N such that

��fn (x ) − f (x )�� < δ
for all n ≥ N . For any such n and all x ∈ A, we see from (8.4) (with y := fn (x )
and v := f (x )) that

��(д ◦ fn ) (x ) − (д ◦ f ) (x )�� = ��д( fn (x )) − д( f (x ))�� < ε .
Since this holds for all n ≥ N and every x ∈ A, it follows that д ◦ fn → д ◦ f
uniformly on A. �

Remark 8.2. Note that the result above continues to hold if д is merely assumed
to be continuous on the interval [−M,M].
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8.3 Uniform Limits of Uniformly Continuous Functions

Having shown that uniform limits preserve certain local properties (e.g. continu-
ity), we now ask which global properties survive limit. Having already seen that
boundedness is preserved by uniform limits, we now check that uniform limits
of uniformly continuous functions are still uniformly continuous.

Proposition 8.9. Let A ⊆ R and f : A→ R be a function. Let ( fn ) be a sequence
of uniformly continuous functions de�ned onA and assume that fn → f uniformly
on A. �en, f is uniformly continuous on A.

Proof. We can use the same proof as in �eorem 7.4. Given ε > 0, there exists
N ∈ N such that, for all n ≥ N and each t ∈ A,

��fn (t ) − f (t )�� <
ε

3 .

For any x ,u ∈ A there holds

��f (x ) − f (u)�� = ��f (x ) − fN (x ) + fN (x ) − fN (u) + fN (u) − f (u)��
≤ ��f (x ) − fN (x )�� + ��fN (x ) − fN (u)�� + ��fN (u) − f (u)��
≤

2ε
3 +

��fN (x ) − fN (u)�� .

Now, fN is uniformly continuous on A. �us, there exists δ > 0 such that

��f (x ) − f (u)�� <
ε

3
whenever |x − u | < δ . So, if |x − u | < δ , our calculations above indicate that

��f (x ) − f (u)�� ≤
2ε
3 +

��fN (x ) − fN (u)�� < ε

whence f is uniformly continuous on A. �

9 Ninth Tutorial

Let (an ) be a sequence of real numbers. We say that the series ∑∞
n=1 an converges

to a number S ∈ R, provided the sequence of partial sums (SN ) de�ned by

SN :=
N∑
n=1

an
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converges to S as N → ∞. �at is, ∑∞n=1 an converges to S ∈ R if and only if

lim
N→∞

SN = S .

In this case, we will write ∑∞
n=1 an to denote the limit of the partial sums, i.e.

∞∑
n=1

an := lim
N→∞

SN .

Additionally, we say that the series ∑∞
n=1 an converges absolutely whenever ∑∞n=1 |an |

converges in the traditional sense. Before stating some of the various conver-
gence tests we have seen in the lectures, we recall an example of a series that we
encountered previously when discussing null sets in §6.1.

Example 9.1. Let |r | < 1. �en, the series ∑∞
n=0 r

n is convergent, with limit
∞∑
n=0

rn =
1

1 − r .

Now, if a series ∑∞
n=1 an is convergent, then the sequence of terms (an ) must

also converge to 0 as n → ∞. �is can be reformulated as follows:

�eorem9.1 (Divergence Test). Let (an ) be a sequence of real numbers. If
∑∞

n=1 an
is convergent, then liman = 0. �erefore, if an 6→ 0 as n → ∞, then

∑∞
n=1 an does

not converge.

�e so-called Divergence Test is easy to use when it applies. As seen in the
lectures, this provides us with an easy proof that the alternating series ∑∞

n=1(−1)n
diverges. We provide another straightforward example using the Divergence
Test below.

Example 9.2. �e series
∞∑
n=1

n3 + 3
2n3 + 1

does not converge. Indeed, it is not hard to see that

lim n3 + 3
2n3 + 1 =

1
2 , 0.

�us, ∑∞n=1
n3+3
2n3+1 diverges by the Divergence Test.
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We should carefully note that the Divergence Test is not an “if and only if”
condition. More precisely, �eorem 9.1 asserts that ∑∞

n=1 an diverges whenever
an 6→ 0 as n → ∞. �is theorem does not claim that the series converges when
an → 0. In fact, this implication cannot possibly be true. Certainly, the harmonic
series

∞∑
n=1

1
n

is divergent despite the fact that lim 1
n = 0.

Proposition 9.2. Let
∑∞

n=1 an be a convergent series with an ≥ 0 for each n ∈ N.
Let (bn ) be a bounded sequence of non-negative real numbers. �en,

∞∑
n=1

anbn

converges.

Proof. Let L > 0 be such that 0 ≤ bn ≤ L for all n ∈ N. Given N ∈ N, we de�ne
SN to be the partial sum

SN :=
N∑
n=1

anbn .

�e statement amounts to proving that the sequence (SN ) is convergent. Now,
since anbn ≥ 0 for every natural number n, the sequence of partial sums (SN )
is increasing in N . Consequently, by the Monotone Convergence �eorem, (SN )
converges if and only if it is bounded. Using that ∑∞n=1 an is convergent, it follows
that the partial sums

N∑
n=1

an

converge and are hence bounded by some constant M > 0.20 �erefore, given
N ∈ N there holds

0 ≤ SN =
N∑
n=1

anbn ≤ L
N∑
n=1

an ≤ LM < ∞.

It follows that (SN ) is a bounded increasing sequence, whence the Monotone
Convergence �eorem implies that (SN ) converges as N → ∞. �

20In fact, since the partial sums ∑N
n=1 an are increasing, we can take M to be the value of the

series ∑∞
n=1 an . However, this is not necessary for our argument.
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Let us now take a moment to point out several important consequences of
this result.
Corollary 9.3. Let

∑∞
n=1 an converge absolutely and let (bn ) be a bounded sequence

of real numbers. �en,
∑∞

n=1 anbn converges absolutely.

Proof. By de�nition of absolute convergence, ∑∞n=1 |an | is convergent. Since (bn )
is bounded, the sequence ( |bn |) is also bounded. �erefore, the series

∞∑
n=1
|anbn | =

∞∑
n=1
|an | |bn |

converges by the previous proposition. By de�nition, this means that ∑∞
n=1 anbn

converges absolutely. �

Corollary 9.4. Let
∑∞

n=1 an and
∑∞

n=1 bn be two convergent series with an,bn ≥ 0
for all n ∈ N. �en, the series

∞∑
n=1

anbn

converges.

Proof. By �eorem 9.1, we have limbn = 0. In particular, (bn ) is bounded. Hence,
Proposition 9.2 applies. �

Corollary 9.5. Let
∑∞

n=1 an be a convergent series with an ≥ 0 for all n ∈ N. �en,
the series

∞∑
n=1

a2
n

is convergent.

Proof. �is follows from Corollary 9.4 with bn := an. �

9.1 Linearity of Series

In this subsection we ask whether the convergence of series is a linear property.
Perhaps the most glaring question here is whether multiplication by a constant
alters the convergence of a series. Namely, given λ ∈ R and a convergent series∑∞

n=1 an, what can be said about ∑∞n=1 λan? Clearly, if λ ≥ 0 and each an ≥ 0, then
the series ∑∞

n=1 λan converges as a consequence of Proposition 9.2. However, this
does not give us any information about the value of ∑∞

n=1 λan. Furthermore, it
is reasonable to expect this type of property to hold without making any sign
assumptions on (an ) and λ.
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�eorem 9.6. Let
∑∞

n=1 an be a convergent series and �x λ ∈ R. �en,
∑∞

n=1 λan
converges. Moreover,

∞∑
n=1

λan = λ
∞∑
n=1

an .

Proof. Given N ∈ N, we denote by SN the partial sum

SN :=
∑
n=1

λan .

Since this is a �nite sum, we see that

SN = λ
N∑
n=1

an,

where ∑N
n=1 an →

∑∞
n=1 an as N → ∞ because the series ∑∞

n=1 an is assumed to be
convergent. Consequently, by the limit laws for sequences, (SN ) converges and

lim
N→∞

SN = lim
N→∞

*
,
λ

N∑
n=1

an+
-
= λ lim

N→∞

N∑
n=1

an = λ
∞∑
n=1

an .

�is is precisely the statement that ∑∞
n=1 λan = λ

∑∞
n=1 an. �

Remark 9.1. In the previous result, we employed an argument that is very com-
mon throughout analysis. In fact, we have seen similar arguments when treating
the Riemann integral (see Example 4.2 and Corollary 6.10). Essentially, we ob-
served that a constant can be “pulled out” of a �nite sum, and li�ed this property
to series by taking a limit. In general, if a property that is preserved by limits
holds for �nite sums, then it holds for series by taking a limit.

Similarly, we obtain the following:

�eorem 9.7. Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent series. �en,
∑∞

n=1 (an + bn )
converges and

∞∑
n=1

(an + bn ) =
∞∑
n=1

an +
∞∑
n=1

bn .

Proof. We exploit the proof-strategy described in Remark 9.1. Given any N ∈ N,
we have

N∑
n=1

(an + bn ) =
N∑
n=1

an +
N∑
n=1

bn,
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where ∑N
n=1 an →

∑∞
n=1 an and ∑N

n=1 bn →
∑∞

n=1 bn as N → ∞. �erefore, by the
limit laws for sequences,

lim
N→∞

N∑
n=1

(an + bn ) = lim
N→∞

N∑
n=1

an + lim
N→∞

N∑
n=1

bn =
∞∑
n=1

an +
∞∑
n=1

bn .

�is completes the proof. �

If ∑∞n=1 an is convergent, then we know from �eorem 9.1 an → 0, as n → ∞.
We now show that, if (an ) is decreasing and non-negative, then more can be said
about the limiting behaviour of the terms an.

Proposition 9.8. Let
∑∞

n=1 an be a convergent series such that

(i) an ≥ 0 for all n ∈ N;

(ii) (an ) is decreasing.

�en, limnan = 0.

Proof. De�ne bn := nan; we must show that bn → 0. For this, it is enough to
show that both the subsequences b2n and b2n+1 converge to 0 as n → ∞. To this
end, we consider the partial sums

SN :=
N∑
n=1

an

which form, by assumption, a convergent sequence. Especially, (SN ) is Cauchy.
�erefore, given ε > 0, we can �nd K ∈ N such that

|SM − SN | <
ε

2 (9.1)

whenever N ,M ≥ K . In particular, if 2N > N ≥ K ,

|S2N − SN | = S2N − SN =
2N∑

n=N+1
an <

ε

2 .

Since the sequence (an ) is decreasing, it follows that

2Na2N = 2
2N∑

n=N+1
a2N ≤ 2

2N∑
n=N+1

an < ε .
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Since this holds for all N ≥ K and ε > 0 was arbitrary, we infer that

b2N = 2Na2N → 0

as N → ∞. On the other hand, if 2N + 1 > N ≥ K , then

(2N + 1)a2N+1 < 2(N + 1)a2N+1 = 2
2N+1∑
n=N+1

a2N+1

≤ 2
2N+1∑
n=N+1

an < ε,

where in this last step we have applied (9.1) with M := 2N + 1. As before, since
this holds for all N > K , it follows that b2N+1 → 0 as N → ∞. Because b2N and
b2N+1 both converge to 0 as N → ∞, we must have limbN = 0. �at is,

limnan = 0.

�

9.2 Convergence Tests and Examples

We begin by recalling the most important convergence tests we have seen thus
far. Perhaps the most intuitive test to which we have access, is the comparison
test. For the sake of completeness, we restate this result below.

�eorem9.9 (Comparison Test). Let (an ) and (bn ) be two sequences of non-negative
real numbers and assume that an ≤ bn for all n ∈ N.

(1) If
∑∞

n=1 bn converges, then so does
∑∞

n=1 an.

(2) If
∑∞

n=1 an diverges, then so does
∑∞

n=1 bn

We should also take a moment to recall the limit comparison test:

�eorem 9.10 (Limit Comparison Test). Let (an ) and (bn ) be two sequences of
non-negative real numbers. Assume further that

L := lim
(
an
bn

)
exists.
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(1) If L > 0, then ∑∞
n=1 an converges if and only if

∑∞
n=1 bn converges.

(2) If L = 0 and
∑∞

n=1 bn converges, then so does
∑∞

n=1 an.

As previously mentioned, the Divergence Test an only test for non-convergence.
�is next test, due to Cauchy, o�ers a characterization of convergence for a large
class of series.

�eorem 9.11 (Cauchy’s Condensation Test). Let (an ) be a decreasing sequence
of non-negative real numbers. �en, the series

∞∑
n=1

an

converges if and only if the series

∞∑
n=1

2na2n

is convergent.

We now provide several examples in which we analyze the convergence of
series. However, we �rst recall that the p-series

∞∑
n=1

1
np

is known to be convergent if and only if p > 1. In fact, when p is an even integer,
it is possible to explicitly compute the value of ∑∞

n=1
1
np . On the other hand, the

precise value of this series is not known for any odd integer p.

Example 9.3. We prove by comparison that the series
∞∑
n=1

1
2(n + 1)

diverges. Indeed, note that

lim
1

2(n+1))
1
n

= lim n

2n + 2 =
1
2 > 0.
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�erefore, by the Limit Comparison Test, the series
∞∑
n=1

1
2(n + 1)

is divergent.

Example 9.4. Consider the series
∞∑
n=1

√
n + 1 −

√
n

n
.

Multiplying by the conjugate, we see that
∞∑
n=1

√
n + 1 −

√
n

n
=

∞∑
n=1

1
n

(√
n + 1 +

√
n
)

where every term is a non-negative real number. Clearly,
1

n
(√

n + 1 +
√
n
) < 1

n
√
n
=

1
n3/2 , ∀n ∈ N.

�erefore, the series
∞∑
n=1

√
n + 1 −

√
n

n

converges by comparison with the p-series
∞∑
n=1

1
n3/2 .

A slight modi�cation to this series can, unfortunately, spoil its convergence.

Example 9.5. We claim that the series
∞∑
n=1

√
n + 1 −

√
n

√
n

is divergent. To see this, �rst note that
∞∑
n=1

√
n + 1 −

√
n

√
n

=

∞∑
n=1

1
√
n

(√
n + 1 +

√
n
) .
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Now, for every n ∈ N,
1

√
n

(√
n + 1 +

√
n
) ≥ 1
√
n + 1

(√
n + 1 +

√
n + 1

) = 1
2(n + 1) .

By comparison with the series
∞∑
n=1

1
2(n + 1)

treated in Example 9.3, we infer that
∞∑
n=1

√
n + 1 −

√
n

√
n

is divergent.

Example 9.6. Using the Cauchy condensation test, we will prove that the p-
series

∞∑
n=1

1
np

converges if and only if p > 1. First, note that the terms of our series are de-
creasing in n for any p ≥ 1. �erefore, Cauchy’s Condensation Test does indeed
apply. Now, the p-series above converges if and only if

∞∑
n=1

2n
(2n )p

converges. For p = 1, this reduces to the series
∞∑
n=1

2n
(2n )p =

∞∑
n=1

1

which diverges by �eorem 9.1. If p > 1, we instead obtain
∞∑
n=1

2n
(2n )p =

∞∑
n=1

1
(2p−1)n

which is a convergent geometric series since

0 < 1
2p−1 < 1.
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Remark 9.2. If we omit the assumption that the terms of the series ∑∞
n=1 an are

decreasing, then the Cauchy Condensation Test may fail. To see this, consider
the series

∞∑
n=1

an

where each an is given by

an :=



0 if n = 2k for some k ∈ N,
1 otherwise.

Clearly,
∞∑
n=1

2na2n =
∞∑
n=1

0 = 0

is convergent. However, the series ∑∞
n=1 an cannot converge because it fails the

Divergence Test (�eorem 9.1). Indeed, the sequence (an ) has in�nitely many
terms equal to 1, and hence contains a subsequence that does not converge to 0.

10 Tenth/Final Tutorial

As this will be the �nal tutorial, we will �rst review some of the important con-
vergence tests we covered in the previous section. Additionally, we will use this
as an opportunity to provide additional examples.
�eorem 10.1 (Comparison Test). Let (an ) and (bn ) be two sequences of non-
negative real numbers and assume that an ≤ bn for all n ∈ N.

(1) If
∑∞

n=1 bn converges, then so does
∑∞

n=1 an.

(2) If
∑∞

n=1 an diverges, then so does
∑∞

n=1 bn

We should also take a moment to recall the limit comparison test. Unlike its
predecessor, it does not assume the inequality an ≤ bn for all n ∈ N.
�eorem 10.2 (Limit Comparison Test). Let (an ) and (bn ) be two sequences of
non-negative real numbers. Assume further that

L := lim
(
an
bn

)
exists.
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(1) If L > 0, then ∑∞
n=1 an converges if and only if

∑∞
n=1 bn converges.

(2) If L = 0 and
∑∞

n=1 bn converges, then so does
∑∞

n=1 an.

�ere is also the Cauchy Condensation test, which is o�en applicable when
the series involves a logarithm.

�eorem 10.3 (Cauchy’s Condensation Test). Let (an ) be a decreasing sequence
of non-negative real numbers. �en, the series

∞∑
n=1

an

converges if and only if the series
∞∑
n=1

2na2n

is convergent.

�ankfully, we now have access to several additional tests, especially some
that merely test for convergence (and not necessarily absolute convergence). �e
�rst of these new tests is the infamous alternating series test below:

�eorem 10.4 (Alternating Series Test). A series of the form
∞∑
n=1

(−1)nan

is said to be alternating provided every an has the same sign. If ( |an |) is monotone
decreasing and liman = 0, then the series

∑∞
n=1(−1)nan converges.

Remark 10.1. Note that this theorem does not assert that the series ∑∞
n=1(−1)nan

converges absolutely. Indeed, by the Alternating Series Test, the series
∞∑
n=1

(−1)n
n

converges. However, the series cannot be absolutely convergent because
∞∑
n=1

�����
(−1)n
n

�����
=

∞∑
n=1

1
n

is the harmonic series.
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A �rst example is now in order:

Example 10.1. We claim that the series

∞∑
n=1

cos(πn)
n1/3

is convergent. Indeed, cos(πn) = (−1)n for each n ∈ N whence the series above
is equivalently given by

∞∑
n=1

(−1)n

n1/3 .

Since the sequence
|an | = an =

1
n1/3

is monotone decreasing and an → 0 as n → ∞, it follows from the Alternating
Series Test that

∞∑
n=1

cos(πn)
n1/3

converges.

10.1 The Ratio and Root Tests

Here we recall and discuss the root and ratio tests for series. Unfortunately, it is
only in rare cases that the root test proves to be useful. However, the opposite
can be said about the ratio test.

�eorem 10.5 (Root Test). Let ∑∞
n=1 an be a series of real numbers and assume

that the limit
lim
n→∞

n
√
|an | = C .

If C < 1 then the series converges absolutely. IfC > 1, then the series must diverge.
Nothing can be said if C = 1.

Example 10.2. Consider the series

∞∑
n=1

(
sin(n2)

π 3n!

)n
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In situations like this (when there is an exponent n a�ached to every term in the
series), the root test is worth trying out. Clearly,

lim n

√
�����

(
sin(n2)

π 3n!

)n�����
= lim

�����
sin(n2)

π 3n!
�����
= lim

���sin(n2)���
π 3n! → 0

by the Squeeze �eorem for sequences. Hence, the root test implies that our
series converges.

As is the case above, the examples that use the root test can feel somewhat
arti�cial. We now recall the statement of the ratio test, which will be much more
useful in practice than the root test.

�eorem 10.6 (Ratio Test). Let ∑∞n=1 an be a series and assume that

L := lim
�����
an+1
an

�����
exists.

(1) If L < 1, then the series
∑∞

n=1 an converges absolutely.

(2) If L > 1, then the series
∑∞

n=1 an diverges.

As with the root test, the test is inconclusive when L = 1.

10.2 Abel’s Test

We now treat examples relating to Abel’s test, which we recall below from the
class notes.

�eorem 10.7 (Abel’s Test). Let ∑∞n=1 an be a convergent series and let (bn ) be a
bounded monotone sequence. �en, the series

∞∑
n=1

anbn

is convergent.
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Example 10.3. Consider the series
∞∑
n=1

(−1)n
n
·

(
1 + 1

n

)n
.

�is can be wri�en as
∞∑
n=1

anbn

where
an := (−1)n

n
and bn :=

(
1 + 1

n

)n
.

Now, the sequence
|an | =

1
n

is monotone decreasing and converges to 0. �erefore, the Alternating Series
Test ensures that ∑∞

n=1 an is convergent. If we can show that (bn ) is bounded
and monotone, it will follow from Abel’s test that the original series ∑∞

n=1 anbn
converges. Luckily for us, this is already a known fact! Certainly, it was proven
Analysis 1 that

bn =
(
1 + 1

n

)n
is monotone increasing with limbn = e .

Example 10.4. We prove that the series
∞∑
n=1

*
,

2n2 − 3n + 1
4n5 − 3

n∑
k=1

1
k2

+
-

is convergent. With the hope of applying Abel’s test, we will write this series as∑∞
n=1 anbn where

an := 2n2 − 3n + 1
4n5 − 3 and bn :=

n∑
k=1

1
k2 .

To successfully apply Abel’s test, the following must be veri�ed:

(i) ∑∞
n=1 an converges;

(ii) (bn ) is monotone;
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(iii) (bn ) is bounded.

Let us �rst verify (ii)-(iii). Clearly, for each n ∈ N,

bn =
n∑

k=1

1
k2 ≤

n+1∑
k=1

1
k2 = bn+1

whence (bn ) is monotone increasing. Now, every bn is a partial sum for the series∑∞
k=1

1
k2 which was shown to be convergent in the previous section (or tutorial).

Consequently, (bn ) is convergent and hence bounded. �erefore, it only remains
to establish (i). Here we will make use of the Limit Comparison Test. By the
p-test, we know that

∞∑
n=1

1
n3

is convergent. Since

lim
2n2−3n+1

4n5−3
1/n3 = lim

n3
(
2n2 − 3n + 1

)
4n5 − 3 = lim 2n5 − 3n4 + 1

4n5 − 3

=
1
2 > 0

it follows from the Limit Comparison Test that ∑∞
n=1 an converges. By our previ-

ous remarks and Abel’s test, we infer that ∑∞
n=1 anbn is convergent.

10.3 Dirichlet’s Test

�eorem10.8 (Dirichlet’s Test). Let (an ) be a decreasing sequence of real numbers
such that liman = 0. Let (bn ) be a sequence such that there exists M > 0 with the
property that

������

N∑
n=1

bn

������
≤ M

for all N ≥ 1. �en,
∞∑
n=1

anbn

is convergent.
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Example 10.5. We will prove that the series
∞∑
n=1

cos(πn)
lnn

is convergent using Dirichlet’s test. For this, we de�ne

an := 1
lnn and bn := cos(πn).

Clearly, (an ) is monotone decreasing and converges to 0 as n → ∞. �erefore, to
apply Dirichlet’s test, we need only check that there exists M > 0 such that

������

N∑
n=1

bn

������
=

������

N∑
n=1

cos(πn)
������
≤ M

for all N ∈ N. To see this, we note that

• ∑1
n=1 cos(πn) = cos(π ) = −1;

• ∑2
n=1 cos(πn) = cos(π ) + cos(2π ) = −1 + 1 = 0;

• ∑3
n=1 cos(πn) = cos(π ) + cos(2π ) + cos(3π ) = −1 + 1 − 1 = −1;

• ∑4
n=1 cos(πn) = cos(π ) + cos(2π ) + cos(3π ) + cos(4π ) = −1+ 1− 1+ 1 = 0.

By induction, it follows that

������

N∑
n=1

bn

������
=

������

N∑
n=1

cos(πn)
������
≤ 1

for all N ∈ N. Hence, Dirichlet’s test applies.

Example 10.6. Consider the series
∞∑
n=1

22nn2

enn!
1

ln
√
n + 1

.

Using Dirichlet’s test, we will show that the series above converges. To this end,
we de�ne

an := 1
ln
√
n + 1

and bn := 22nn2

enn! .
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Clearly, since
√
x and lnx are both increasing on (0,∞), we have

an+1 =
1

ln
√
n + 2

≤
1

ln
√
n + 1

= an .

Hence, (an ) is decreasing. Furthermore, it is clear that an → 0 as n → ∞. For
Dirichlet’s test to apply, we need only show that the partial sums

(∑N
n=1 bn

)
are

bounded independently of N . For this, it is enough to show that the series

∞∑
n=1

bn

is convergent. Indeed, observe that

lim
�����
bn+1
bn

�����
= lim

22(n+1) (n+1)2
en+1 (n+1)!

22nn2

enn!
= lim

(
22(n+1) (n + 1)2
en+1(n + 1)! ·

enn!
22nn2

)
= lim 22(n + 1)2

e (n + 1)n2

=
4
e

lim n + 1
n2

=
4
e

lim
( 1
n
+

1
n2

)
= 0.

�erefore the series ∑∞
n=1 bn converges by the ratio test. In particular, the partial

sums ∑N
n=1 bn are bounded.

Example 10.7. Consider the series

∞∑
n=1

cn
√
n

where (cn ) = (1,−4, 1, 2, 1,−4, 1, 2, 1, . . . ). Using Dirichlet’s test, we will prove
that this series is convergent. Clearly, 1√

n
is a decreasing sequence of real num-

bers converging to 0. It remains to show that the partial sums ∑N
n=1 cn are bounded

in N . As before, we try to notice a pa�ern in these partial sums:

• For N = 1 we have ∑N
n=1 cn = 1;
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• For N = 2 we have ∑N
n=1 cn = 1 − 4 = −3;

• For N = 3 we have ∑N
n=1 cn = 1 − 4 + 1 = −2;

• For N = 4 we have ∑N
n=1 cn = 1 − 4 + 1 + 2 = 0;

• For N = 4 we have ∑N
n=1 cn = 1 − 4 + 1 + 2 + 1 = 1;

and so forth. �erefore,
������

N∑
n=1

cn

������
≤ 3

for all N ∈ N. Dirichlet’s test thus yields the convergence of our series.

Example 10.8. Consider the series

1 + 1
2 −

1
3 +

1
4 +

1
5 −

1
6 +

1
7 +

1
8 −

1
9 + · · ·

Namely, we consider the harmonic series where each 3rd term is negative. By way
of contradiction, let us assume that this series converges. Let (SN ) denote the
sequence of partial sums. By assumption, (SN ), and hence (S3N ), is convergent.
Now, each S3N is given by

S3N =
N∑
n=1

( 1
3n − 2 +

1
3n − 1 −

1
3n

)
.

Since lim S3N exists by assumption, we see that the series
∞∑
n=1

( 1
3n − 2 +

1
3n − 1 −

1
3n

)
=

∞∑
n=1

9n2 − 2
3n(3n − 2) (3n − 1) .

must be convergent. Note that every term of the series
∞∑
n=1

9n2 − 2
3n(3n − 2) (3n − 1)

is non-negative. On the other hand,

lim
9n2−2

3n(3n−2) (3n−1)
1
n

= lim 9n3 − 2n
3n(3n − 2) (3n − 1) =

1
3 > 0.
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Using the Limit Comparison Test with the divergent harmonic series ∑∞
n=1

1
n , we

infer that the series
∞∑
n=1

9n2 − 2
3n(3n − 2) (3n − 1)

is divergent. �is contradiction shows that (SN ) cannot be convergent.
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