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In this brief note, we quickly introduce the concept of a subharmonic
function. In standard PDE courses, one studies harmonic functions in
Rn. This of course includes the mean value property and the maximum
principles for harmonic functions. However, subharmonic functions
also encode important and intersecting information. In this document,
we hope to cover analogous results for subharmonic functions on Rn.

In this note, n ≥ 1 denotes a natural number and u is a real valued
function Ω ⊆ Rn → R that is typically assumed to be twice differen-
tiable in the interior of Ω.

Definition 1. Let Ω ⊆ Rn be an open set and u : Ω → Rn twice
continuously differentiable in Ω. We say that u is subharmonic in
Ω if −∆u ≤ 0 on Ω. This is, of course, equivalent to the condition
∆u ≥ 0 in Ω.

Note that, in particular, all harmonic functions in Ω are subhar-
monic. The set of all subharmonic functions Ω → R is denoted by
S(Ω). By definition, every subharmonic function is twice continuously
differentiable on Ω. Hence, S(Ω) ⊂ C2(Ω).

1. Mean Value Property

Throughout this section, m denotes the Lebesgue measure on Rn. If
E ⊆ Rn is a measurable set of finite, but positive measure, we define 

E

f dm :=
1

m(E)

ˆ
E

f dm (1.1)
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for all functions f ∈ L1(E,m). We similarly define the symbol
ffl

for a
surface integral. This notation simplifies greatly the statement of the
following theorem.

Theorem 1.1 (Mean Value Property). Let Ω ⊆ Rn be a non-empty
open set and f ∈ C2(Ω). The following statements are equivalent:

(1) u is subharmonic in Ω, i.e. −∆u ≤ 0 in Ω;
(2) for each x ∈ Ω there exists r > 0 such that

u(x) ≤
 
∂B(x,ρ)

u(y) dS(y) (1.2)

for all 0 < ρ < r.

The inequality in (1.2) is called the mean value formula for subhar-
monic functions.

Before we prove the above, let us perform a useful calculation. Sup-
pose only the hypothesis of the theorem, i.e. let ∅ 6= Ω ⊆ Rn be open
and let u : Ω → R be twice continuously differentiable. Fix a point
x ∈ Ω and let ε > 0 be such that B(x, ε) b Ω. Here, B(x, ε) denotes
the open ball of radius ε about x. For 0 < ρ < ε, we define

µ(ρ) :=

 
∂B(x,ρ)

u(y) dS(y).

Observe that for all such ρ there holds

µ(ρ) =

 
∂B(x,ρ)

u(y) dS(y) =
1

nωnρn−1

ˆ
∂B(x,ρ)

u(y) dS(y)

=
1

nωn

ˆ
∂B(0,1)

u(x+ ρz) dS(z).

Here, ωn denotes the volume of the unit ball in Rn. Because u ∈ C2(Ω)
we may differentiate the above with respect to ρ ∈ (0, ε). This yields;

µ′(ρ) =
∂

∂ρ

(
1

nωn

ˆ
∂B(0,1)

u(x+ ρz) dS(z)

)
=

1

nωn

ˆ
∂B(0,1)

∂

∂ρ
u(x+ ρz) dS(z)

=
1

nωn

ˆ
∂B(0,1)

∇u(x+ ρz) · z dS(z)

=
1

nωnρn−1

ˆ
∂B(x,ρ)

∇u(y) · ν(y) dS(y).
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Here, ν(y) is the outwards pointing unit normal to ∂B(x, ρ) at y. Thus,
an application of Green’s theorem grants us the following:

µ′(ρ) =
1

nωnρn−1

ˆ
B(x,ρ)

∆u(y) dm. (1.3)

It turns out that this identity will tell us plenty about µ(ρ). Let us
now give the proof of the aforementioned theorem.

Proof of Theorem. Suppose that u is not subharmonic on Ω. Thus,
there exists x ∈ Ω such that ∆u(x) < 0. By continuity, we may choose

ε > 0 such that ∆u < 0 on B(x, ε) ⊂ Ω. Consider now the function
µ(ρ) on (0, ε). We see from (1.3) that µ′(ρ) < 0 on (0, ε). Hence, µ(ρ)
is strictly decreasing on (0, ε). By continuity,

u(x) = lim
ρ↘0

 
∂B(x,ρ)

u(y) dS(y) = lim
ρ↘0

µ(ρ).

Since µ is strictly decreasing, we have

µ(ρ) =

 
∂B(x,ρ)

u(y) dS(y) < u(x)

for all 0 < ρ < ε. This proves that (2) cannot hold. By contrapositive,
we have thus shown that (2) implies (1).

Conversely, suppose that ∆u ≥ 0 on Ω. Given x ∈ Ω, let ε > 0 be
such that B(x, ε) b Ω. We now consider the function µ(ρ) on (0, ε).
Invoking (1.3), we see that

µ′(ρ) ≥ 0

on (0, ε). Hence, µ(ρ) is increasing on this interval. By continuity we
again have

u(x) = lim
ρ↘0

 
∂B(x,ρ)

u(y) dS(y) = lim
ρ↘0

µ(ρ).

Hence, u(x) ≤
ffl
∂B(x,ρ)

u(y) dS(y) for all ρ ∈ (0, ε). �

2. The Maximum Principles

Perhaps the most important consequence of the mean value property
for harmonic functions is the infamous strong maximum principle. In
this section, we prove an analogous result for subharmonic functions in
bounded domains.
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Lemma 2.1. Let Ω ⊆ Rn be non-empty and open. Let u ∈ S(Ω) be
given. For every x ∈ Ω, there exists r > 0 such that

u(x) ≤
 
B(x,ρ)

u(y) dy

for all 0 < ρ < r.

Proof. Let x ∈ Ω be given and fix r > 0 as in part (2) of the previous
theorem. If 0 < ρ < r, we calculateˆ

B(x,ρ)

u(y) dy =

ˆ ρ

0

ˆ
∂B(x,δ)

u(y) dS(y) dδ

≥
ˆ ρ

0

u(x)nωnδ
n−1 dδ

= u(x)ωnρ
n.

Hence, u(x) ≤
ffl
B(x,ρ)

u(y) dy. �

Equipped with this result, we may now give the following theorem.

Theorem 2.2 (Strong Maximum Principle). Let Ω ⊆ Rn be non-
empty, open, connected, and bounded. Let u : Ω → R be twice contin-
uously differentiable in Ω and continuous up to the boundary. Assume
in addition that u ∈ S(Ω). If there exists a point x0 ∈ Ω such that
u(x0) = maxx∈Ω u(x), then u is constant on Ω.

Proof. Let M denote the maximum of u on the compact set Ω. Define

X := {x ∈ Ω : u(x) = M} .
By assumption, X is non-empty (it contains x0). Since u is continuous,
X is closed in Rn, and hence in Ω. We now claim that X is open in Rn,
and thus in Ω. To this end, let x ∈ X be given. Choose r > 0 as in the
previous lemma and let 0 < ρ < r. Clearly,

0 = M − u(x) ≥M −
 
B(x,ρ)

u(y) dy

=

 
B(x,ρ)

(M − u(y)) dy ≥ 0.

Hence, u ≡ M on B(x, ρ). This implies that B(x, ρ) ⊆ X. It follows
that X is clopen. Since this set is non-empty, we conclude that X is all
of Ω. By continuity on Ω, we must have u ≡M on all of Ω. �

We now relax the assumption that Ω is connected. Let C be a
connected component of Ω and consider its boundary ∂C ⊆ Ω. Fix
a point x ∈ ∂C but assume that x /∈ ∂Ω. Therefore, there exists
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ε > 0 such that the open ball B(x, ε) is contained in Ω. In particular,
x ∈ Ω. Because connected open subsets of Ω can intersect only one
component, we conclude that B(x, ε) ⊆ C. Of course, this contradicts
the assumption that x ∈ ∂C. We conclude that ∂C ⊆ ∂Ω.

After breaking Ω into its connected components, we conclude the
following:

Corollary 2.3. Let Ω be a non-empty bounded open subset of Rn. Let
u ∈ S(Ω) be continuous up to the boundary of Ω. Then,

max
x∈Ω

u(x) = max
x∈∂Ω

u(x). (2.1)

The equation above is called the weak maximum principle for subhar-
monic functions.

Suppose that u is harmonic in Ω. Clearly, it is subharmonic as well.
But, −u is also subharmonic! Hence, we can also apply the weak
maximum principle to −u. Doing so gives us the following “minimum
principle”:

Corollary 2.4. Let Ω be a non-empty bounded open subset of Rn. Let
u ∈ C2(Ω) be continuous up to the boundary of Ω. If u is harmonic in
Ω, then

min
x∈Ω

u(x) = min
x∈∂Ω

u(x). (2.2)

2.1. Uniqueness to the Dirichlet Problem. Suppose we are given
an open and bounded subset Ω of Rn. We also assume that Ω is non-
empty. Given two continuous functions f : Ω → R and g : ∂Ω → R,
the associated Dirichlet problem involves finding a function u ∈ C2(Ω),
continuous up to the boundary, such that{

−∆u ≡ f in Ω,

u ≡ g on ∂Ω.
(2.3)

Whether or not there always exists a solution u to the above is a difficult
question that we shall not explore here. What we can do is show that
the problem above has at most a single solution.

Theorem 2.5. There exists at most one solution u to the Dirichlet
problem (2.3).

Proof. Suppose that u and v satisfy (2.3) and put w := u− v. Clearly,
w ∈ C2(Ω) and is continuous up to the boundary. However, direct
calculation gives −∆w ≡ f − f ≡ 0 in Ω. This means that w is
harmonic in Ω. On ∂Ω,

w ≡ u− v ≡ g − g ≡ 0.
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Hence, w vanishes on ∂Ω. Invoking (2.1)-(2.2) implies that

max
x∈Ω

w(x) = min
x∈Ω

w(x) = 0.

Thus, u ≡ v. �

2.2. The Comparison Principle. Again, let Ω ⊂ Rn be a non-empty
bounded open set. Let u, v ∈ S(Ω) both be continuous up to the
boundary. What can be said about these functions? How exactly are
they related? We partially answer this question with the following
theorem, which often proves to be useful.

Theorem 2.6. Let u, v, and Ω be as above. Assume that{
−∆u ≤ −∆v in Ω,

u ≤ v on ∂Ω.
(2.4)

Then, u ≤ v on all of Ω.

Proof. Define w := u− v and note that w ≤ 0 in ∂Ω. In Ω,

−∆w = ∆v −∆u ≤ 0

so that w ∈ S(Ω). By (2.1), we must have w(x) ≤ 0 on Ω. Equiva-
lently, u(x) ≤ v(x) on all of Ω. �
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