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This collection of notes grew our of preparation for the final examination of an
introductory course in partial differential differential equations at McGill univer-
sity. This course does not assume familiarity with mathematical analysis beyond
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multivariate calculus, and as such most results will not be proven. Nonetheless,
we try to emphasize rigor when it is possible.

The first part of these notes is qualitative: the results presented and the exam-
ples are, in some sense, computational and geared towards determining explicit
solutions to various elementary/classical PDE. This includes the use of Fourier
transforms and series together with the method of characteristics. Using these
techniques, we will study the wave, transport and Schrödinger equations.

The second part consists of more qualitative results. We introduce random
walks and give examples where they lead to diffusion equations. We study “gen-
eralized functions” and show how they can be used to define derivatives for all
locally integrable functions–this also makes the notion of the Dirac delta “func-
tion” precise. Finally, we examine Harmonic functions in Rn and Green’s function
for the Laplacian.

Part 1. Quantitative Analysis of Solutions

As mentioned above, through this part of the notes we look for explicit solutions
to PDE. Thus, we will always be assuming that the functions involved are smooth
(or at least C2). We begin with a quick discussion of the Fourier transform.

1. The Fourier Transform

The Fourier transform is just as useful in the study of ODE as it is in PDE theory.
The idea is to transform a PDE into a simpler ODE. Once we have solved this ODE,
(that is, if we can solve it) we perform an “inverse transform” to get back to the
solution of our original PDE.

Definition 1. Let f ∈ L1(Rn). The Fourier transform of f , denoted f̂ , is the
function Rn → C given by

f̂(ξξξ) :=

ˆ
Rn

f(x)e−ix·ξξξ dx. (1.1)

Then operator F which takes L1(Rn) 3 f 7→ f̂ is a linear map.

There are several properties to be noted at this point. Suppose that a ∈ Rn, then
for every f ∈ L1(Rn) there holds

̂f(x− a) = e−ix·ξξξf̂(ξξξ) and ̂[e−ia·xf(x)] = f̂(ξξξ − a). (F1)

If c > 0 is fixed, we define

gc(y) :=
1

cn
g (y/c)
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where g : Rn → C is given. Then, if f ∈ L1(Rn)

f̂(cx)(ξξξ) =
[
f̂
]
c
(ξξξ) and f̂c(ξξξ) = f̂(cξξξ). (F2)

These properties are not hard to prove directly from the definition. Hence, we
leave these as exercises to the interested reader. Given a Fourier transform f̂ , we
can sometimes recover the original function f (when this is true is a topic best left
to a course in analysis).

Theorem (Fourier Inversion). Let f ∈ L1(Rn) be such that f̂ ∈ L1(Rn). Then,

f(x) =
1

(2π)n

ˆ
Rn

f̂(ξξξ)eix·ξξξ dξξξ

for x ∈ Rn. We then adopt the notation f =
(
f̂
)∨

.

Given two functions f, g ∈ L1(Rn) define their convolution to be

(f ∗ g)(x) :=

ˆ
R
f(y)g(x− y) dy = (g ∗ f)(x).

This communicates nicely with the Fourier transform since

f̂ ∗ g(ξξξ) = f̂(ξξξ)ĝ(ξξξ). (F3)

Perhaps even more interesting is how the Fourier transform responds to differen-
tiation. If α = (α1, . . . , αn) is a multi-index, then

∂̂αf(ξξξ) = i|α|ξξξαf̂(ξξξ). (F4)

If ξξξ = (ξ1, . . . , ξn) then we define ξξξα to be

ξξξα := ξα1
1 · · · ξαn

n .

1.1. Examples of Fourier Transforms in Practice. Our examples will be based
upon ODEs, as the principle is the same but the calculations are much less per-
verse. The identities (F1)-(F4) will be the main points to remember.

Example 1.1. Suppose that y(x) is a smooth function that satisfies the following
ODE

y(4) + 4y(2) + y = f(x),

where f(x) is some continuous function of compact support. Use the Fourier
transform to compute ŷ(ξ) (note that the expression will involve f̂(ξ)).
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Solution. Taking the Fourier transforms of both sides of the ODE, we deduce from
that linearity of F that

F
[
y(4)
]

+ 4F
[
y(2)
]

+ F [y] = F [f ].

Using (F4), it follows that

i4ξ4ŷ(ξ) + 4i2ξ2ŷ(ξ) + ŷ(ξ) = f̂(ξ).

Therefore,

ŷ(ξ) =
f̂(ξ)

ξ4 − 4ξ2 + 1
.

�

Example 1.2. Show that the Fourier transform of

f(x) :=
e−|x|

2
is

1

1 + ξ2
.

Solution. This is a straightforward calculation. First, observe that f is in L1(R)
and the question makes sense. For every ξ ∈ R there holds

f̂(ξ) =

ˆ
R

e−|x|

2
e−iξx dx =

ˆ 0

−∞

ex

2
e−iξx dx+

ˆ ∞
0

e−x

2
e−ixξ dx

=

ˆ 0

−∞

ex−iξx

2
dx+

ˆ ∞
0

e−(x+iξx)

2
dx

=
1

2

[ˆ 0

−∞
ex(1−iξ) dx+

ˆ ∞
0

e−x(1+iξ) dx

]
.

We now computeˆ 0

−∞
ex(1−iξ) dx =

ex(1−iξ)

(1− iξ)

∣∣∣∣0
−∞

=
1

1− iξ
− lim

x→−∞

ex(1−iξ)

1− iξ
=

1

1− iξ
.

Here we have used the fact that∣∣∣∣ex(1−iξ)

1− iξ

∣∣∣∣ =

∣∣∣∣ex e−xiξ1− iξ

∣∣∣∣ =

∣∣∣∣ ex

1− iξ

∣∣∣∣ · ∣∣e−ixξ∣∣︸ ︷︷ ︸
≤1

to deduce that

lim
x→−∞

ex(1−iξ)

1− iξ
= 0.

A similar calculation givesˆ ∞
0

e−x(1+iξ) dx =
e−x(1+iξ)

−(1 + iξ)

∣∣∣∣∞
0

=
1

1 + iξ
.
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This means that

f̂(ξ) =
1

2

(
1

1− iξ
+

1

1 + iξ

)
=

2

2(1− iξ)(1 + iξ)
=

1

1 + iξ − iξ − i2ξ2
=

1

1 + ξ2
.

�

Example 1.3. Using the Fourier transform, solve the ODE

y′′(x)− y(x) = f(x).

For some given function f ∈ C(R) ∩ L1(R).

Solution. As in the previous example, we take the Fourier transform of both sides
of the equation to obtain the following

i2x2ŷ(ξ)− ŷ(ξ) = f̂(ξ).

Or, rather,
−ŷ(ξ)(ξ2 + 1) = f̂(ξ)

which means

f̂(ξ) = − f̂(ξ)

1 + ξ2
.

Let g(x) :=
e−|x|

2
; by the previous example we may write the equation above as

ŷ(ξ) = −f̂(ξ)ĝ(ξ) = −f̂ ∗ g(ξ).

Taking the Fourier inverse of both sides yields:

y(x) = ŷ∨ = −
(
f̂ ∗ g(ξ)

)∨
= (f ∗ g)(x) =

1

2

ˆ
R
f(y) exp(|x− y|) dy.

�

2. Fourier Series

The reader familiar with Taylor series has a good idea of what is about to come.
The Fourier series is a method for “decomposing” a sufficiently into an infinite
sum of trigonometric functions.

The problem goes as follows: suppose we are given a continuous function φ on
some interval (0, l), we wish to find coefficients bn such that

φ(x) =
∞∑
n=1

bn sin
(πnx

l

)
, ∀x ∈ (0, l).

We mostly skip the theory of Fourier series; it is a very deep subject that we cannot
even begin to cover in these short notes. However, we can give the values of bn
such that the above decomposition holds true.
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Definition 2. Let φ be defined on the interval (0, l). The Fourier sine series for
φ, on (0, l), is defined by

∞∑
n=1

bn sin
(πnx

l

)
, ∀x ∈ (0, l)

where for n ∈ N we define

bn :=
2

l

ˆ l

0

φ(x) sin
(πnx

l

)
dx.

The following “orthogonality identity” will also be very useful when solving
problems: ˆ l

0

sin
(πnx

l

)
sin
(πmx

l

)
dx =

{
0, if n 6= m,

l/2, if n = m.
(2.1)

We also point out that one can proceed similarly with cosines in order to obtain
a cosine series for φ. This is summarized below.

Definition 3. Given a function φ on (0, l), we define its cosine Fourier series to
be

a0

2
+
∞∑
n=1

an cos
(πnx

l

)
, ∀x ∈ (0, l)

where we put

an :=
2

l

ˆ l

0

φ(x) cos
(πnx

l

)
dx, ∀n ∈ N0.

Our analogous orthogonality holds for n ∈ N0 and is given below
ˆ l

0

cos
(πnx

l

)
cos
(πmx

l

)
dx =

{
0, if n 6= m,

l/2, if n = m.
(2.2)

2.1. The Full Fourier Series. Suppose that we are instead given a function φ de-
fined on (−l, l) for some l > 0. The full Fourier series is

a0

2
+
∞∑
n=1

[
an cos

(πnx
l

)
+ bn sin

(πnx
l

)]
where

an :=
1

l

ˆ l

−l
φ(x) cos

(πnx
l

)
and bn :=

1

l

ˆ l

−l
φ(x) sin

(πnx
l

)
.

For the an, we allow n ≥ 0 whilst the bn’s are only defined for n ≥ 1.
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2.2. Eigenfunctions and the Spectrum of ∂2. This subsection is devoted to the
eigenvalue problem {

X ′′(x) + λX(x) ≡ 0, in (0, l),

X(0) = X(l) = 0.
(2.3)

We seek to see which non-trivial functions solve the boundary value problem
above. That is, we find the spectrum and eigenspaces of the operator d2

dx2
on an

open bounded interval. We denote this operator by ∂2, for the sake of simplicity.
Suppose that λ = 0. Then the ODE simply becomes the statement that X(x) =

ax+ b for some a, b ∈ R. However, since X(0) = 0 we recover b = 0. Furthermore,
X(l) = al = 0 implies a = 0. Therefore, X ≡ 0 which means that 0 /∈ σ(∂2).

The case of λ < 0 is fairly simple. Since we wish to solve X ′′(x) = −λX(x), with
−λ > 0, this amounts to X(x) being of the form

X(x) = Ae
√
−λx +Be−

√
−λx

for some constants A,B ∈ R. The condition X(0) = 0 implies A + B = 0 whilst
we must have

A
√
−λl +Be−

√
−λl = 0

since X(l) = 0. Therefore, we necessarily have

A
(
e
√
−λl − e−

√
−λl
)

= 0.

Since ex is injective, we find that A = −B = 0 whence X(x) ≡ 0 once again.
Therefore, ∂2 has no negative eigenvalues.1

So far we have nothing, but there is one last possibility: λ > 0 (and we will find
non-trivial eigenfunctions). In this case the possible solutions are all of the form

X(x) = A sin
(√

λx
)

+B cos
(√

λx
)

for some constants A,B ∈ R. Notice that X(0) = 0 forces B = 0. Since X(l) = 0
we have

X(l) = sin
(√

λl
)

= 0

which occurs if and only if
√
λl = πn, n ∈ Z.

This implies that λ is always of the form

π2n2

l2
, n ∈ N.

1Those of you with some background in functional analysis will not be surprised by this fact.
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This gives us a countable family of eigenfunctions and eigenvalues:

Xn(x) = sin
(πnx

l

)
, λn =

π2n2

l2
.

Similarly, we consider the following Neumann eigenvalue problem{
X ′′(x) + λX(x) ≡ 0, in (0, l),

X ′(0) = X ′(l) = 0.
(2.4)

The case λ = 0 gives X(x) = ax + b. But, X ′(l) forces a = 0. Therefore, X(x) is
a constant function. If λ < 0 we once again find

X(x) = Ae
√
−λx +Be−

√
−λx

for some constants A and B. Since X ′(0) = 0 = X ′(l), we recover
√
−λA−B

√
−λ = 0,

√
−λAe

√
λl −B

√
−λe−

√
λl = 0.

The first equation gives A = B whilst the second implies that

A = B = 0.

Hence, this problem has no negative eigenvalues. As in the case of (2.1), we pro-
ceed with the more interesting case of λ > 0. The general solution to (2.2) in this
case will be of the form

X(x) = A sin
(√

λx
)

+B cos
(√

λx
)
.

Now, X ′(0) = 0 means that

0 = A
√
λ cos(0)−B

√
λ sin(0)

whence A = 0. Since X ′(l) = we must have

sin(λl) = 0

which give us the same eigenvalues as before. Although we also allow for the
case n = 0 as this gives us a non-trivial eigenfunction (any constant function).
Therefore,

Xn(x) = cos
(πnx

l

)
, λn =

(πn
l

)2

These properties will soon come in handy.
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2.3. Convergence Properties of Fourier Series. We have defined multiple Fourier
series, but we have not yet considered their behaviour relative to their generating
function φ. Given a function f : [−L,L] → R, we say that f is piecewise smooth
if f is bounded and there exists a finite set Ξ ⊂ [−L,L] such that f is smooth on
[−L,L] r Ξ. If f is has a discontinuity point at x we also assume that both limits

f(x+) := lim
ε↘0

f(x+ ε) and f(x−) := lim
ε↘0

f(x− ε)

exists and are finite.

Theorem (Pointwise Convergence Theorem). Let f be piecewise smooth on a non-
trivial interval (−l, l).

(1) The full Fourier series of f will converge pointwise, to the periodic extension of
f(x) , at all points where the periodic extension of f(x) is continuous.

(2) More generally, if the periodic extension of f is discontinuous at a point x, then
the full Fourier series of f converges pointwise to

f(x+) + f(x−)

2
.

A stronger result holds when we assume that φ is nicer.

Theorem (Uniform Convergence). Suppose that φ is continuous and piecewise C1

on (−l, l) with φ(−l) = φ(l). Then the classical full Fourier series converges uniformly
and absolutely to the periodic extension of φ on all of R.

We conclude with the statement of Parseval’s identity.

Theorem (Parseval). Let φ ∈ L2((a, b)) and let {Xn}n and An be respectively the
eigenfunctions and Fourier coefficients for any Fourier series of φ. Then,∑

n

A2
n

ˆ b

a

Xn(x)2 dx =

ˆ b

a

φ(x)2 dx

where

An =
〈φ,Xn〉
‖Xn‖2 .

Here 〈·, ∗〉 is the standard L2(X) inner product and ‖·‖ is the L2(X) norm.

2.4. Examples. Fourier series are useful in obtaining numerical solutions to PDE.
However, they are also of interest in their own right. One can use Fourier series
to establish some surprising facts such as

∞∑
n=1

1

n2
=
π2

6
.
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Example 2.1. Define a function φ : [0, 4]→ C by

φ(x) :=


1, 0 < x ≤ 1,

2, 1 < x ≤ 2,

3, 2 < x ≤ 3,

4, 3 < x ≤ 4.

Extend now φ periodically to R, i.e. set φ(x + 4) := φ(x) and consider the full
Fourier series for φ:

a0

2
+
∑
n∈N

[
an cos

(πnx
4

)
+ bn sin

(πnx
4

)]
.

(1) To what values will the Fourier series converge to at x = 0, 1, 4, 7.4 and 40?
(2) Does the Fourier series converge uniformly to φ?
(3) Compute a0.

Solution. Clearly, φ(0) = 4 but φ(0−) = 4 and φ(0+) = 1. Therefore, the full
Fourier series will converge to

φ(0+) + φ(0−)

2
=

5

2
at x = 0.

At x = 1, we have φ(1+) = 2 but φ(1−) = 1 whence the Fourier series converges
(pointwise) to

φ(1+) + φ(1−)

2
=

3

2
at x = 1.

Just as for x = 0, the Fourier series will converge to 5/2 at x = 4. Since 7.4 lies
in the interior of the interval (7, 8), where φ is continuous and identical to 4, we
conclude that the Fourier series converges to 4 at x = 7.4. Finally, at x = 40, we
have the same case as at x = 0 (by periodicity).

As for (2), we argue by contradiction. If the Fourier series converges uniformly
to φ, then it converges pointwise to φ(x) at every point x, which we know to be
false by the first part.

For (3) we compute the value of a0 directly. That is,

a0 =
1

4

ˆ 4

−4

φ(x) dx =
1

2

ˆ 4

0

φ(x) dx =
1 + 2 + 3 + 4

2
= 5.

�

Perhaps a deterministic example would be helpful. We begin with a useful
lemma.

Lemma 1. Let f : (−l, l)→ R be an odd function, i.e. f(−x) = −f(x). Then the full
Fourier series of f is precisely the sine Fourier series.
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Proof. It suffices to check that an = 0 for all n ≥ 0. If n = 0 then a0 = 1
l

´ l
−l f(x) dx

whereˆ l

−l
f(x) dx =

ˆ 0

−l
f(x) dx+

ˆ l

0

f(x) dx =

ˆ l

0

f(−x) dx+

ˆ l

0

f(x) dx = 0.

Thus, a0 = 0. If n ≥ 1 then,ˆ l

−l
f(x) cos

(πnx
l

)
dx =

ˆ 0

−l
f(x) cos

(πnx
l

)
dx+

ˆ l

0

f(x) cos
(πnx

l

)
dx

=

ˆ 0

−l
f(x) cos

(πnx
l

)
dx+

ˆ l

0

f(x) cos
(πnx

l

)
dx

=

ˆ l

0

−f(x) cos
(πnx

l

)
dx+

ˆ l

0

f(x) cos
(πnx

l

)
dx

which vanishes. �

For the sake of consistency:

Lemma 2. Let f : (−l, l)→ R be an even function. The full Fourier series is the cosine
series for f .

Proof. Argue as in the previous lemma. �

Example 2.2. Define φ : (−1, 1)→ R by φ(x) = x. Determine the full Fourier series

Solution. Since φ is odd, we need only compute the Fourier sine series for φ. The
series we seek looks like

∞∑
n=1

bn sin (πnx) , n ∈ N.

Now, if n ∈ N is given we find that

bn =

ˆ 1

−1

φ(x) sin(πnx) dx =

ˆ 1

−1

x sin(πnx) dx

= − x cos(πnx)

πn

∣∣∣∣1
−1

+
1

πn

ˆ 1

−1

cos(πnx) dx

where ˆ 1

−1

cos(πnx) dx =
sin(πnx)

πn

∣∣∣∣1
−1

= 0.

Therefore,

bn = − x cos(πnx)

πn

∣∣∣∣1
−1

= −cos(πn) + cos(πn)

πn
= −2(−1)n

πn
=

2(−1)n+1

πn
.
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It follows that the Fourier series we seek is given by
∞∑
n=1

2(−1)n+1

πn
sin(πnx).

�

Example 2.3. Using Parseval’s identity, show that
∞∑
n=1

1

n2
=
π2

6
.

Proof. Consider the function f(x) = x on the interval [0, 1]. We will make use
of Parseval’s identity. Since f(x) is an odd function, it is wise to use the family
{Xn(x)}∞n=1 = {sin(πnx)}∞n=1.

For n ≥ 1, integration by parts will give

〈Xn, Xn〉 =

ˆ 1

0

sin2(πnx) dx =
1

2
.

Furthermore,

〈f,Xn〉 =

ˆ 1

0

x sin(πnx) dx = −x cos(πnx)

πn

∣∣∣∣x=1

x=0

+
1

πn

ˆ 1

0

cos(πnx) dx

=
(−1)n+1

πn
+

sin(πnx)

(πn)2

∣∣∣∣x=1

x=0

=
(−1)n+1

πn
.

This means that, for each n ≥ 1, one has

A2
n =

1

π2n2
· 1

1/22
=

4

π2n2
. (2.5)

An easy computation also givesˆ 1

0

f(x)2 dx =

ˆ 1

0

x2 dx =
1

3
.

This together with Parseval’s identity and (2.5) yields

1

3
=
∞∑
n=1

A2
n

ˆ 1

0

Xn(x)2 dx =
∞∑
n=1

4

π2n2
· 1

2
=
∞∑
n=1

2

π2n2
.

A rearrangement then implies that
∞∑
n=1

1

n2
=
π2

2
· 1

3
=
π2

6
.
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�

Remark. By following the procedures used in the two examples given here, one
can ‘easily’ compute ζ(2k), for any k ∈ N, where ζ(s) is the Riemann zeta function.
However, we do not know the explicit value of ζ(2k + 1) for any k ≥ 1.

2.5. Separation of Variables. The separation of variables algorithm is a proce-
dure for solving PDE that makes use of Fourier series and the assumption that
a solution u(x, t) to a PDE in two variables is the product of two single variable
functions. That is, we use the assumption u(x, t) = X(x)T (t) for two functions
X and T to reduce the PDE to a system of eigenvalue problems that we can solve
using Fourier series. This is best demonstrated rather than explained.

Example 2.4. Let ` > 0. Use separation of variables and Fourier series to solve the
Schrödinger equation

ut = iuxx, (x, t) ∈ (0, `)× (0,∞),

u(0, t) = 0 = u(`, t), t > 0,

u(x, 0) = f(x), x ∈ (0, `).

(2.6)

Solution. Suppose that u(x, t) solves the problem above and assume that one may
write u(x, t) = X(x)T (t) for two functions X and T of a single variable. Then,

T ′(t)X(x) = ut(x, t) = iuxx(x, t) = iX ′′(x)T (t), (x, t) ∈ (0, `)× (0,∞).

This may be written as
T ′(t)

iT (t)
≡ X ′′(x)

X(x)
.

Since the left hand side of the above depends only on t, and the right side depends
only on x, we conclude that the above expression is constant. It therefore reduces
to the two problems

X ′′ + λX ≡ 0, (2.7)
T ′(t) + iλT (t) ≡ 0. (2.8)

For any λ, solving (2.8) is no problem. Indeed, for any λ ∈ R we know that a
solution T (t) is

T (t) = e−λit.

Notice that, to avoid the trivial solutions, the boundary condition

0 = X(0)T (t) = X(`)T (t), ∀t > 0
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makes (2.7) into an eigenvalue problem that we have studied before. We know
that a basis for the solution space is

Xn(x) = sin
(πnx

`

)
, λn :=

(πn
`

)2

.

For a fixed index n we may also take

Tn(t) = exp

(
π2n2it

`2

)
.

Hence, each un(x, t) = Xn(x)Tn(t) will satisfy

ut = iuxx ≡ 0, u(0, t) = u(`, t) = 0.

Therefore, an infinite sum of the form

u(x, t) :=
∞∑
n=1

bn sin
(πnx

`

)
exp

(
π2n2it

`2

)
will also satisfy this system. Notice also that

u(x, 0) =
∞∑
n=1

bn sin
(πnx

`

)
and by choosing bn to be the Fourier sine coefficients

bn :=
2

`

ˆ `

0

f(x) sin
(πnx

`

)
dx, n ∈ N,

we can make it so that u(x, 0) = f(x) for x ∈ (0, `). �

Example 2.5. Using separation of variables, solve the Schrödinger with Neumann
boundary conditions:

ut = iuxx, (x, t) ∈ (0, `)× (0,∞),

ux(0, t) = 0 = ux(`, t), t > 0,

u(x, 0) = f(x), x ∈ (0, `)

(2.9)

with ` > 0 fixed.

Solution. The procedure is just as in the previous example: we seek an infinite
family of solutions that are orthogonal and form a basis for a solution space. As-
sume that u(x, t) can be written as a product X(x)T (t), for two functions of a
single variable X and T . Then,

X(x)T ′(t) = ut = iuxx = iX ′′(x)T (x).
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Once again, this means that
T ′(t)

iT (t)
≡ X ′′(x)

X(x)

is a constant. This reduces our PDE system to two eigenvalue problems

T ′(t) + iλT (t) ≡ 0, (2.10)
X ′′(x) + λX(x) ≡ 0. (2.11)

This first equation is trivial to solve in general, and we focus on the second. Now,
we know that

ux(x, t) = X ′(x)T (t)

so that the boundary conditions imply

X ′(0) = X ′(`) = 0.

This is once again a problem we have already solved! We know that one may
choose for n ∈ N0 the following eigenvalues and eigenfunctions:

Xn(x) := cos
(πnx

`

)
, λn :=

(πn
l

)2

.

For any such n ∈ N0, we solve for an associated Tn(t) directly. We have the condi-
tion

T ′n(t) = −λniTn(t)

which implies that

Tn(t) = Cn exp

(
−iπ

2n2

l2
t

)
.

For the sake of simplicity, we take Cn = 1 in the above. Hence, to each n ∈ N0 we
associate a solution

un(x, t) := cos
(πnx

`

)
exp

(
−iπ

2n2

l2
t

)
.

Observe that for any coefficients {bn}∞n=0 in R, the function

u(x, t) :=
∞∑
n=0

bnun(x, t)

will satisfy
ut = iuxx ux(0, t) = ux(`, t) ≡ 0, t > 0.

However, in taking t = 0 we recover

u(x, 0) =
∞∑
n=0

bn cos
(πnx

`

)
,
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and we want this to evaluate to f(x). This is simple, as we only need to choose the
bn to the coefficients for the cosine series of f . �

2.6. Other Boundary Problems. This method of using Fourier series is useful
in solving various types of boundary value problems, and not only those of the
Dirichlet and Neumann type. We summarize the strategy for various types of
equations below.

X(x) is a solution to X ′′(x)+λX(x) = 0 on (0, `). We list eigenfunctions and
eigenvalues for particular boundary conditions.

• Dirichlet Conditions: X(0) = 0 = X(`)

Xn(x) = sin
(πnx

`

)
, λn :=

(πn
`

)2

, n ∈ N.

These correspond to the components of the Fourier sine series on
(0, `).
• Neumann Conditions: X ′(0) = 0 = X ′(`):

Xn(x) = cos
(πnx

`

)
, λn :=

(πn
`

)2

, n ∈ N0.

These correspond to the components of the Fourier cosine series on
(0, `).
• Periodic Conditions: X(−`) = X(`) and X ′(−`) = X ′(`):

Xn(x) = cos
(πnx

`

)
, λn :=

(πn
`

)2

, n ∈ N0

and
Yn(x) = sin

(πnx
`

)
, n ∈ N.

These components correspond to those of the full Fourier series on
(−`, `).

3. Wave Equations

We now turn our attention towards a different PDE that is ever-present in physics:
the wave equation. We focus on the spatial dimensions 1 and 3. In one dimension,
the wave equation is given by

ut ≡ c2uxx,

where u is a C2 function of two variables x and t. Here c 6= 0 is real and is modeled
by the ratio T/ρ, where T is the uniform tension in a string and ρ is the volume
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density. In three dimensions, this generalizes to

ut ≡ c2∆u.

where ∆ is the 3-dimensional Laplacian. Recall that in Rn the Laplacian ∆ is the
linear operator described by

∆ :=
n∑
j=1

∂2

∂x2
j

.

It will often be convenient to denote ∂
∂xj

by ∂j and the reader should keep track
of this notation. The Laplacian will also play a crucial role in the next part of
this text. We begin by considering the 1 dimensional wave equation and its cor-
responding initial value problems. Throughout this section you may assume all
functions are smooth (or, say, C2).

3.1. The One-Dimensional Variant. Here we are interested in solutions to the
one dimensional wave equation

ut ≡ c2uxx, c 6= 0. (3.1)

The associated initial value problem goes as
utt = c2uxx, x ∈ R, t > 0,

u(x, 0) = φ(x), x ∈ R,
ut(x, 0) = ψ(x), x ∈ R.

(3.2)

Theorem (d’Alembert). Let u be a solution to (3.1). Then
(1) There exist functions f and g such that

u(x, t) = f(x+ ct) + g(x− ct).

(2) If u satisfies the IVP (3.2) then

u(x, t) =
φ(x+ ct)− φ(x− ct)

2
+

1

2c

ˆ x+ct

x−ct
ψ(τ) dτ.

The formula above continues to hold (to a certain degree) when we introduce a
“source term” to the IVP (3.2). Consider the IVP

utt − c2uxx ≡ f(x, t), x ∈ R, t > 0,

u(x, 0) = φ(x), x ∈ R,
ut(x, 0) = ψ(x), x ∈ R.

(3.3)

Then we have the following analogue of Theorem 3.1.
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Theorem. If u solves (3.3) then

u(x, t) =
φ(x+ ct)− φ(x− ct)

2
+

1

2c

ˆ x+ct

x−ct
ψ(τ) dτ +

1

2c

ˆ
D

f(y, s) dA.

Here D is the domain of dependence associated with (x, t).

The domain of dependence is the triangle in the (x, t)-plane with coordinates

{(x− ct, 0), (x+ ct, 0), (x, t)} .
This also extends to problems involving semi-infinite strings. These are fixed at
one end (traditionally, at x = 0). The corresponding problem for a semi-infinite
string is given below 

vtt ≡ c2vxx, x ≥ 0, t > 0,

v(x, 0) = φ(x), x ≥ 0,

vt(x, 0) = ψ(x), x ≥ 0,

v(0, t) = 0, t ≥ 0.

(3.4)

Theorem. If v satisfies (3.4) then

u(x, t) =
1

2


φ(x+ ct) + φ(x− ct) +

1

c

ˆ x+ct

x−ct
ψ(τ) dτ, x ≥ ct,

φ(x+ ct)− φ(ct− x) +
1

c

ˆ x+ct

ct−x
ψ(τ) dτ, 0 < x ≤ ct.

To help drill all of this in, we now provide some examples of solved exercises.

3.2. Examples for the 1DWave Equation.

Example 3.1. Let E(x, y, z, t) and B(x, y, z, t) be smooth electric and magnetic fields,
respectively. They are governed by Maxwell’s equations:

∇× E = −∂tB, ∇×B = µε∂tE, ∇ · E = 0, ∇ ·B = 0.

in the above µ and ε are constants (that you likely encountered in physics). Show
that if

E(x, y, z, t) = (0, 0, E(x, t)) and B(x, y, z, t) = (0, B(x, t), 0)

then both E(x, t) and B(x, t) satisfy the wave equation:

∂ttu− c2∂xxu ≡ 0, c = (µε)−1/2.

Solution. We first relate B(x, t) to E(x, t) using Maxwell’s equations. Observe that

(0,−Bt(x, t), 0) = −∂tB(x, y, z, t) = ∇× E(x, y, z, t) = (0,−Ex(x, t), 0).
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Thus, Bt(x, t) = Ex(x, t) . In like,

µε(0, 0, Et(x, t)) = ∇×B(x, y, z, t) = (0, 0, Bx(x, t)).

Thus, µεEt(x, t) = Bx(x, t). Finally,

Exx(x, t) = ∂xBt(x, t) = Btx(x, t) = ∂tBx(x, t) = µε∂Et(x, t) = µεEtt(x, t).

Similarly, B(x, t) satisfies the wave equation. �

Example 3.2. Fix a time t > 0 and assume φ1,2, ψ1,2 are bounded functions defined
on R. Let ui, for i = 1, 2, denote the solution to

∂ttui − c2∂xxu ≡ 0, ui(x, 0) = φi(x), ∂tui(x, 0) = ψ(x).

Prove that for every ε > 0 there exists δ > 0 such that

‖φ1 − φ2‖ < δ and ‖φ1 − φ2‖ < δ =⇒ ‖u1 − u2‖∞ < ε.

Solution. Applying d’Albembert’s formula, we find that

u1(x, t) =
1

2
(φ1(x+ ct) + φ1(x− ct)) +

1

2c

ˆ x+ct

x−ct
ψ1(σ) dσ

u2(x, t) =
1

2
(φ2(x+ ct) + φ2(x− ct)) +

1

2c

ˆ x+ct

x−ct
ψ2(σ) dσ.

This implies, in particular, that for t > 0 fixed:

|u1(x, t)− u2(x, t)| ≤ |φ1(x+ ct)− φ2(x+ ct)|+ |φ1(x− ct)− φ2(x− ct)|
2

+
1

2c

ˆ x+ct

x−ct
|ψ1(σ)− ψ2(σ)| dσ.

Especially,

|u1(x, t)− u2(x, t)| ≤ ‖φ1 − φ2‖∞ +
1

2c

ˆ x+ct

x−ct
‖ψ1 − ψ2‖∞ dσ.

Fix ε > 0 and take δ > 0 such that δ(1 + t) < ε. Then, for each x:

|u1(x, t)− u2(x, t)| ≤ δ +
δ

2c
· 2ct = δ(1 + t) < ε.

Take now the supremum over x ∈ R; this yields

‖u1 − u2‖∞ ≤ δ(1 + t) < ε.

�
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Example 3.3. Consider a vibrating infinite string with initial disturbance at t = 0
in the intervals [1, 2] and [4, 5]. At t = 10, at which positions will one feel these
disturbances?

Solution. Applying d’Alembert’s formula with t = 10 shows that we wish to know
for which x:

[x− 10, x+ 10] ∩ ([1, 2] ∩ [4, 5]) 6= ∅.
First, note that [x− 10, x+ 10] intersects [1, 2] if and only if

x+ 10 ≥ 1 and x− 10 ≤ 2.

That is, if and only if x ∈ [−9, 12]. Similarly, [x− 10, x + 10] intersects [4, 5] if and
only if x ∈ [−6, 15]. Hence, we feel the disturbance for x ∈ [−9, 15]. �

Example 3.4. Consider the 1D wave equation utt = uxx for (x, t) ∈ R × (0,∞)
together with the initial constraints

φ(x) = 0, ut(x, 0) = ψ(x)

where

ψ(x) =

{
1, if |x− 3| ≤ 1 or |x+ 3| ≤ 1,

0, else.

(i) At the time t = 1 where on the string is the displacement non-zero?
(ii) At time t = 10 which points have maximal displacement?

(iii) Compute u(0, t).

Solution. Before we proceed, we note that by d’Alembert’s formula any solution is
of the form

u(x, t) =
1

2

ˆ x+t

x−t
ψ(σ) dσ.

(i). At time t = 1 we obtain u(x, 1) = 1
2

´ x+t

x−t ψ(σ) dσ which is non-zero if and only
if

(x− 1, x+ 1) ∩ {x : |x− 3| ≤ 1 or |x+ 3| ≤ 1} 6= ∅.
Note that |x− 3| ≤ 1 if and only if−1 ≤ x − 3 ≤ 1 which is equivalent to saying
2 ≤ x ≤ 4. Similarly, |x+ 3| ≤ 1 if and only if −4 ≤ x ≤ −2. Therefore, we seek
points x such that

(x− 1, x+ 1) ∩ [[−4,−2] t [2, 4]] 6= ∅.
Clearly, (x − 1, x + 1) ∩ (−4,−2) is non-empty if and only if x − 1 < −2 and
x + 1 > −4. That is, if and only if x ∈ (−5,−1). In like, (x − 1, x + 1) intersects
(2, 4) if and only if x− 1 < 4 and x+ 1 > 2. Thus, if and only if x ∈ (1, 5).
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(ii) The solution u(x, 10) will have maximal displacement whenever (x−10, x+10)
covers [[−4,−2] t [2, 4]]. This will occur if and only if x− 10 ≤ −4 and x+ 10 ≥ 4.
Thus, if and only if x ∈ [−6, 6].

(iii). The “difficulty” lies in computing
´ t
−t ψ(σ) dσ. If t ≤ 2 then clearly (−t, t) does

not intersect (−4,−2) t (2, 4) which implies that u(0, t) = 0. On the other-hand, if
t ≥ 4 then (−t, t) engulfs (−4,−2) t (2, 4) which would imply that

1

2

ˆ t

−t
ψ(σ) dσ =

2 + 2

2
= 2.

Suppose now that t ∈ (2, 4). Then,

u(0, t) =
t− 2 + (−2 + t)

2
= t− 2.

That is,

u(0, t) =


0, if t ≤ 2,

t− 2, if 2 < t < 4,

2, if t ≥ 4.

�

3.3. The 3-DimensionalWave Equation. This section mostly lists results for func-
tions u(x, t), with x ∈ R3 and t > 0, that satisfy the 3D wave equation

utt = c2∆u (3.5)

and the corresponding initial value problem
utt ≡ c2uxx, x ∈ R,3 t > 0,

u(x, 0) = φ(x), x ∈ R3,

ut(x, 0) = ψ(x), x ∈ R3.

(3.6)

As we shall soon see, solution to (3.2) behave differently than those to (3.1).

Theorem (Kirchoff). Let u solve (3.6). Then

u(x, t) =
1

4πc2t2

¨
∂B(x,t)

[φ(y) + (y − x) · ∇φ(y) + tψ(y)] dSy.

We illustrate this with some examples.

Example 3.5. Assume a phenomenon propagates in 3-dimensional space according
to the equation utt − ∆u ≡ 0. Suppose a disturbance at x = 0 creates an initial
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change in velocity according to

ψ(x) =

{
1, if |x| ≤ 1,

0, else.
.

Evaluate u(0, t) for t ≥ 0

Solution. Kirchoff’s formula yields that for (x, t) ∈ R× (0,∞):

u(0, t) =
1

4πt

¨
∂B(0,t)

ψ(y) dS =
1

4πt

¨
∂B(0,t)∩B(0,1)

dS

Thus, since ∂(0, t) does not intersect B(0, 1) for t > 1, it follows that u(0, t) van-
ishes for t > 1. Otherwise, if 0 < t < 1:

u(0, t) =
4πt2

4πt
= t.

�

Example 3.6. Suppose that the propagation due to a pressure disturbance in 3D is
modeled by the 3D wave equation: utt = ∆u. At time t = 0 an explosion occurs at
position x = 0 inducing the initial conditions:

φ(x) ≡ 0, ψ(x) = 1|x|≤1(x).

(i) What is the value of u(x, 10) where x = (10, 0, 0)?
(ii) At t = 10, what is the value of u at the point x = (20, 8, 17)?

(iii) At what times will u((20, 20, 20, ), t) be non-zero?

Solution. Before we proceed, we apply Kirchoff’s formula to obtain an explicit
representation of u:

u(x, t) =
1

4πt

¨
∂B(x,t)

ψ(y) dS.

(i). Directly taking x = (10, 0, 0) and t = 10:

(x, t) 7→ 1

40π

ˆ
∂B((10,0,0),10)∩B(0,1)

dS

(ii). We shall show that |y − x| = 10 implies that |y| > 1. This will imply that u
evaluates to zero at (x, 10). Indeed,

|x| − |y| ≤ 10 =⇒ |y| > 1.

(iii). It is easier to determine at which points the displacement vanishes. This is
equivalent to saying that

|y − x| = t =⇒ |y| ≥ 1.
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This can occur only if

0 ≤ t <≤
√

1200− 1, t ≥
√

1200 + 1.

�

4. Method of Characteristics

The method of characteristics is a computational approach to solving transport-
type PDE in Rn. This is difficult to explain, and we instead provide a simple (but
detailed) example as an introduction for the reader.

Example 4.1. Determine a general solution u(x, y) to the PDE

aux + buy ≡, (x, y) ∈ R2

where a, b ∈ Rr {0}.

Solution. Notice that the PDE may alternatively be written as (a, b) · ∇u ≡ 0. This
is precisely the statement that any solution u is constant in the direction (a, b)!
Alternatively, this means the value of u is constant along any curve parametrized
by

(x(s), y(s))

such that ẋ(s) = a and ẏ(s) = b. All such curves are of the form

(x(s), y(s)) = (as+ c1, bs+ c2)

for some constants c1 and c2. Now, any such curve can also be written as

y(x) =
b

a
x+ C.

Now, any solution uwill be constant along any such curve. Furthermore, the value
of u at a point (x, y) depends only on which of these curves the point (x, y) is. Since
such curves are determined completely and uniquely by the trailing constant C it
follows that

u(x, y) = f(bx− ay)

for some function f of a single variable. �

Of course, there is a more algorithmic approach to solving such equations that
does not rely on geometric intuition. We illustrate this below in several examples.

Example 4.2. Use the method of characteristics to solve

ut + uux ≡ 1, u(x, 0) = x, in t ≥ 0.
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Solution. As in the previous problem, we first find curves along which we have
information. Define

ṫ(s) = 1, ẋ(s) = z(s)

where z(s) = u(x(s), t(s)) in terms of some dummy variable s. Then,

ż(s) = utṫ(s) + uxẋ(s) ≡ 1.

Therefore, z(s) = s + A for some constant A. Choose t(s) = s so that t(0) = 0.
Then, we necessarily have

x(s) =
s2

2
+ As+B.

Now,

z(0) = A = u(x(0), t(0)) = x(0) = B.

Thus,

x(s) = x(t) =
t2

2
+ A(t+ 1).

Now, z(s) = u(x(s), t) = t+ A. The above, however, states that

2x− t2

2(t+ 1)
= A

and thus

u(x, t) = t+
2x− t2

2(t+ 1)
.

�

Part 2. Qualitative Behaviour of Solutions

Throughout this part of the text, we focus on properties governing the be-
haviour of solutions to certain simple PDE. Also, this part will make heavy use
of mathematical analysis and will also include derivations of PDE. We begin con-
sidering random walks and their relationship with diffusion equations. Following
this, we introduce distributions and discuss weak solutions to partial differential
equations.

We then consider harmonic functions in Rn and state (without proof, unfortu-
nately) some of their properties. A brief study of Green’s functions and funda-
mental solutions will follow afterwards.
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5. RandomWalks and Diffusion Equations

First let us fix a sufficiently smooth function f : (a, b) → R and let x ∈ (a, b) be
given. By considering the Taylor expansion of f , one can check that

lim
4x→0

f(x+4x) + f(x−4x)− 2f(x)

24x
= f ′′(x).

Setting. Consider a random walk on a line with time and distance increments4x
and4t and let p(x, t) denote the probability of being at the position x at the given
time t. Suppose that at a time t we move to the right by4x with probability 1

2
and

move to the left by4x with probability 1
2
. If as our increments are such that

(4x)2

4t
= 4, (†)

determine a diffusion equation that governs p(x, t).

The probability of being at a position x at a time t + 4t, for 4t > 0, is given
formally as p(x, t+4t). Now, we can only reach this position if we are at a position
(x±4x) at time t. If we are at position x+4x then we have a 1/2 chance of moving
to the left and so forth. Thus,

p(x, t+4t) =
1

2
p(x−4x, t) +

1

2
p(x+4x, t).

In this case, we find that
p(x, t+4t)− p(x, t)

4t
=
p(x−4x, t) + p(x+4x, t)− 2p(x, t)

24t
.

By letting4x,4t→ 0, we will extract a differential equation from the above. This
is where we use the information encoded in the ratio

(4x)2

4t
= 4.

It then follows that
p(x, t+4t)− p(x, t)

4t
= 2

p(x−4x, t) + p(x+4x, t)− 2p(x, t)

(4x)2
.

Therefore,

pt(x, t) = lim
4t→0

p(x, t+4t)− p(x, t)
4t

= lim
4x→0

2
p(x−4x, t) + p(x+4x, t)− 2p(x, t)

(4x)2

= 2pxx(x, t).
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We conclude that such a random walk can be modeled with a diffusion equation.

A somewhat more involved example is in order.

Example 5.1. Let g be defined as in the previous problem and consider the smooth
(you do not have to prove this) function f(x) :=

´
R
g(x−y)
1+y6

dy. Compute f (4).

Solution. Denote by h(x) := 1/(1 + x6). Then f(x) = (h ∗ g)(x) = (g ∗ h)(x). In
more explicit terms, this is to say that

f(x) =

ˆ
R

g(y)

1 + (x− y)6
dy.

Using that f is smooth, we may differentiate under the integral sign to obtain

f (4)(x) =

ˆ
R

∂4

∂x4

[
g(y)

1 + (x− y)6

]
dy =

ˆ
R
g(y)

∂4

∂x4

[
1

1 + (x− y)6

]
dy

=
〈
g(4), h(x− y)

〉
which, by the previous problem, is precisely

12

1 + x6
.

�

Example 5.2. Consider a random walk where at integer multiples of 4t we move
to the left by 4x with probability 1/4, move to the right by 4x with probability
1/4, and stay at our position with probability 1/2. Let p(x, t) be the probability of
having the position x at a time t and express p as a solution to a diffusion equation.
You may assume that

(4x)2

4t
→ σ2 as4x,4t→ 0.

Solution. Fix a pair (x, t) and observe that the setup gives us the following:

p(x, t+4t) =
1

2
p(x, t) +

1

4
p(x−4x, t) +

1

4
p(x+4x, t).

Hence,

p(x, t+4t)− p(x, t)
4t

=
p(x−4x, t) + p(x+4x, t)

44t
− p(x, t)

24t

=
p(x+4x, t) + p(x−4x, t)− 2p(x, t)

44t
.
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This means that, as4x and4t decrease to 0,

pt(x, t) =
σ2

4
lim
4x→0

p(x+4x, t) + p(x−4x, t)− 2p(x, t)

(4x)2

=
σ2

4
pxx(x, t).

This yields the following diffusion equation:

∂tp(x, t) ≡
σ2

4
∂xxp(x, t).

�

This gives us an intuition behind diffusion type equations.

5.0.1. Random Walk and Small Drifts. Here we consider a random walk with a
small drift. Fix grid sizes 4t,4x > 0 and let δ > 0 be small2 We consider the
random walk where at each integer multiple of 4t, we move to the right by 4x
with probability 1

2
+ δ, and move to the left by4x with probability 1

2
− δ. Assume

also that at t = 0 we are at x = 0. Suppose, in addition, that we have some fixed
σ2 > 0 and α > 0 such that

σ2 = c
(4x)2

24t
and δ = α4x.

We seek to model this setting with a diffusion equation. We are given the relation

p(x, t+4t) =

(
1

2
+ δ

)
p(x−4x, t) +

(
1

2
− δ
)
p(x+4x, t).

This allows us to write
p(x, t+4t)− p(x, t)

4t
=

(1 + 2δ)p(x−4x, t) + (1− 2δ)p(x+4x, t)− 2p(x, t)

24t

=
σ2

c(4x)2
(p(x−4x, t) + p(x+4x, t)− 2p(x, t))

+
2σ2δ

c(4x)2
(p(x−4x, t)− p(x+4x, t)) .

Now, this first term tends to
σ2

c
pxx(x, t)

2How small is more or less up to you, so long as δ is much less than 1/2.
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whilst the second term is equal to

2ασ2

c
· p(x−4x, t)− p(x, t) + p(x, t)− p(x+4x, t)

4x
which tends to

2ασ2

c
· (−2px(x, t)) =

−4ασ2

c
px(x, t).

We therefore recover the diffusion equation

cpt(x, t) = σ2pxx(x, t)− 4ασ2px(x, t).

6. Distributions: Generalized Functions

This section is devoted to the development of the theory of distributions on Rn.
These generalized functions will open doors and broaden our horizons. To be more
precise, they will redefine what it means to be a solution to a PDE.

Consider the set of all smooth functions of compact support Rn → C, it is a
vector space over the complex numbers. Let us denote this vector space byD(Rn),
where the dimension n ∈ N is understood. Clearly, the space D(Rn) is infinite
dimensional. We topologize D(Rn) by endowing the space with the sup-norm:

‖·‖∞ := sup
x∈Rn

|·(x)| <∞.

Let now {ϕk}∞k=1 be a sequence of functions in D(Rn) and let ϕ ∈ D(Rn). We say
that ϕk → ϕ in D(Rn) provided each of the following hold true:

(1) There exists a compact set Λ ⊂ Rn such that supp(ϕk) b Λ for all k ∈ N;
(2) For every multi-index α = (α1, . . . , αn) one has

‖∂αϕk − ∂αϕ‖∞
k→∞−−−→ 0.

In this case, we shall write ϕ = limk→∞ ϕk. This notion of convergence provides
us with a way to define the continuity of functionals F : D(Rn) → C. Indeed, a
functional F on D(Rn) is called continuous if

lim
k→∞

F (ϕk) = F (ϕ)

for every sequence {ϕk}∞k=1 in D(Rn) converging to ϕ ∈ D(Rn).

Definition 4. A distribution is a continuous linear functional F : D(Rn)→ C.

This new notion allows us to give meaning to the Dirac delta “function”. In-
deed, we let δ0 : D(Rn)→ C be given by δ0(ϕ) := ϕ(0). It is easy to check that this
is a continuous linear functional (and thus a distribution).
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Perhaps a more interesting example is, actually, a large class of examples. Let
f ∈ L1

loc(Rn), then f induces a distribution 〈f, ·〉 defined as

〈f, ϕ〉 :=

ˆ
Rn

f(x)ϕ(x) dx.

This notation is actually very convenient. Given a distribution F ∈ D(Rn), we will
use the notation 〈F, ϕ〉 to denote F (ϕ). The space of all distributions is denoted
D∗(Rn) and is, itself, a complex vector space. If f is a locally integrable function
and 〈F, ·〉 a distribution, we say f = F in the sense of distributions if

〈F, ϕ〉 = 〈f, ϕ〉 , ∀ϕ ∈ D(Rn).

Further, we say two functions f and g are equal in the sense of distributions if
g = 〈f, ·〉 in the sense of distributions.

Definition 5. Let {Fk}∞k=1 be a sequence of distributions. We say that Fk con-
verges to a distribution F if

lim
k→∞
〈Fk, ϕ〉 = 〈F, ϕ〉 , ∀ϕ ∈ D(Rn).

We say a sequence of functions {fk}∞k=1 converges to a function f in the sense of
distributions if 〈fk, ·〉 converges to 〈f, ·〉 in the sense of distributions. Finally, a
sequence of functions converges to a distribution F if 〈fk, ·〉 → F as distributions.

Example 6.1. The sequence of hat functions is a family of locally integrable func-
tions defined by

fk(x) :=

{
k/2, if |x| ≤ 1/k,

0, else.

Prove that fk → δ0 as k →∞, in the sense of distributions.

Solution. Let ϕ ∈ D(Rn) be given. Notice that

|〈fk, ϕ〉 − 〈δ0, ϕ〉| =

∣∣∣∣∣
ˆ 1/k

−1/k

ϕ(x) dx− ϕ(0)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ 1/k

−1/k

k

2
ϕ(x) dx−

ˆ 1/k

−1/k

k

2
ϕ(0) dx

∣∣∣∣∣
≤ k

2

ˆ 1/k

−1/k

sup
|x|≤1/k

|ϕ(x)− ϕ(0)| dx

= sup
|x|≤1/k

|ϕ(x)− ϕ(0)| .

By continuity of ϕ, this last term tends to zero as k → ∞. Hence, fk → δ0 as
k →∞, in the sense of distributions. �
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6.1. Differentiation of Distributions. Perhaps the greatest strength of distribu-
tions is their differentiability. It is well known that not every function is differ-
entiable. In fact, there exist everywhere continuous functions that are no-where
differentiable. This is not the case for distributions. Let 〈F, ·〉 be a distribution on
Rn and α = (α1, . . . , αn) a multi-index. We define the α-derivative of 〈F, ·〉 to be
the following distribution:

〈∂F, ϕ〉 := (−1)|α| 〈F, ∂α〉
where ϕ ∈ D(Rn). It is easy to check that 〈∂α, ·〉 it itself a well defined distribu-
tion. We say that a distribution 〈G, ·〉 is the α-derivative of 〈F, ·〉 (in the sense of
distributions) provided

〈∂αF, ϕ〉 = 〈G,ϕ〉 , ∀ϕ ∈ D(Rn).

Example 6.2. Consider the Heaviside function

H(x) :=

{
1, if x > 0,

0, if x ≤ 0.

Clearly, H is locally integrable. Physicists and engineers frequently argue that the
derivative of H is δ0, because of the “jump” at x = 0. We will prove that H ′ = δ0

in the sense of distributions.

Solution. We fix a function ϕ ∈ D(R). Then,

〈H ′, ϕ〉 = −〈H,ϕ′〉 = −
ˆ
R
H(x)ϕ′(x) dx = −

ˆ ∞
0

ϕ′(x) dx

= − lim
x→∞

ϕ(x) + ϕ(0)

= ϕ(0)

= 〈δ0, ϕ〉 .

Since α ∈ D(R) was arbitrary, we are done. �

Proposition 1. Let {Fk}∞k=1 be a sequence of distributions converging to a distribu-
tion F . Then, for every multi-index α, ∂αFk converges to ∂αF .

Proof. If α is given and ϕ ∈ D(Rn) is fixed, one has for each k ∈ N

〈Fα
k , ϕ〉 = (−1)|α| 〈Fk, ∂αφ〉

where ∂αφ ∈ D(Ω). Letting k →∞, we obtain

lim
k→∞
〈Fα

k , ϕ〉 = (−1)|α| 〈F, ∂αϕ〉 = 〈∂αF, ϕ〉 .

This completes the proof. �
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Example 6.3. Define

g(x) :=

{
x3, if x ≥ 0,

−x3, if x < 0.

Calculate g(4) in the sense of distributions. Hint: recall that distributional deriva-
tives agree with the regular derivative for C1(R) functions.

Solution. It is easy to check that g ∈ C2(R). This implies that,

g′′ =

{
6x, if x ≥ 0,

−6x, if x < 0.

Now, let φ ∈ D(R) and calculate〈
g(3), φ

〉
= −〈g′′, φ′〉 =

ˆ 0

−∞
6xφ′(x) dx−

ˆ ∞
0

6xφ′(x) dx

= 6xφ(x)|0−∞ −
ˆ 0

−∞
6φ(x) dx− 6xφ(x)|∞0 +

ˆ ∞
0

6φ(x) dx

=

ˆ
R

6φ(x) dx

where we have used that φ has compact support. This implies that, in the sense of
distributions,

g(3) =

{
6, if x ≥ 0,

−6, if x < 0.

Once again taking the derivative (in the sense of distributions), we obtain for each
φ ∈ D(R): 〈

g(4), φ
〉

= −
ˆ ∞

0

6φ′(x) dx+

ˆ 0

−∞
6φ′(x) dx = 6φ(0) + 6φ(0)

whence g(4) = 12δ0, where δ0 is the Dirac delta ‘function’. �

Example 6.4. Let g be defined as in the previous problem and consider the smooth
(you do not have to prove this) function f(x) :=

´
R
g(x−y)
1+y6

dy. Compute f (4).

Solution. Denote by h(x) := 1/(1 + x6). Then f(x) = (h ∗ g)(x) = (g ∗ h)(x). In
more explicit terms, this is to say that

f(x) =

ˆ
R

g(y)

1 + (x− y)6
dy.
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Using that f is smooth, we may differentiate under the integral sign to obtain

f (4)(x) =

ˆ
R

∂4

∂x4

[
g(y)

1 + (x− y)6

]
dy =

ˆ
R
g(y)

∂4

∂x4

[
1

1 + (x− y)6

]
dy

=
〈
g(4), h(x− y)

〉
which, by the previous problem, is precisely

12

1 + x6
.

�

Example 6.5. Let 〈F, ·〉 be a distribution and g ∈ C∞(Rn). The map

〈gF, ϕ〉 := 〈F, gϕ〉

is again a distribution. If ∆ denotes the 3-dimensional Laplacian, show that

|x|2 ∆δ0 = 6δ0.

Solution. Let ϕ ∈ D(R3) be given. Then,

〈
|x|2 ∆δ0, ϕ

〉
=
〈
δ0,∆

(
|x|2 ϕ(x)

)〉
=

3∑
j=1

〈
δ0, ∂

2
j (x

2
1 + x2

2 + x2
3)ϕ(x)

〉
.

Fix an index j; we calculate

∂j(x
2
1 + x2

2 + x2
3)ϕ(x) = 2xjϕ(x) + (x2

1 + x2
2 + x2

3)ϕxj(x).

Once again differentiating yields

∂2
j (x

2
1 + x2

2 + x2
3)ϕ(x) = 2ϕ(x) + 4xjϕxj(x) + (x2

1 + x2
2 + x2

3)ϕxjxj(x).

It follows from this that

〈
|x|2 ∆δ0, ϕ

〉
=

3∑
j=1

〈
δ0, ∂

2
j (x

2
1 + x2

2 + x2
3)ϕ(x)

〉
=

3∑
j=1

2ϕ(0) + 0 + 0 = 6ϕ(0).

This is precisely the statement
〈
|x|2 ∆δ0, ϕ

〉
= 〈δ0, ϕ(x)〉. �

Example 6.6. If f : Rn → R is not sufficiently smooth, there is no guarantee that
fxy = fyx. Show that if f ∈ L1

loc(R2), then fxy = fyx in the sense of distributions.
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Solution. Let us fix ϕ ∈ D(Rn) and consider

〈fxy, ϕ〉 = (−1)2 〈f, ϕxy〉 =

¨
R2

f(x)ϕxy(x) dx

=

¨
R2

f(x)ϕyx(x) dx

= 〈fyx, ϕ〉 .

�

Example 6.7. Consider the function

f(x, y) :=

{
1, if x3 ≤ y,

0, else.

Compute fxy in the sense of distributions.

Solution. Fix a function ϕ ∈ D(R2) and write

〈fxy, ϕ〉 = 〈f, ϕxy〉 =

¨
R2

f(x, y)ϕxy(x, y) dx dy =

ˆ ∞
−∞

ˆ ∞
x3

ϕxy(x, y) dy dx

=

ˆ ∞
−∞

ϕx(x, x
3) dx.

�

Definition 6. Let L be a linear differential operator and u locally integrable. We
say Lu = f in the sense of distributions if

〈Lu, ϕ〉 = 〈f, ϕ〉 , ∀ϕ ∈ D(Rn).

In this case, u is called a weak solution to the PDE Lu = f .

Example 6.8. Let a, b ∈ Rr {0} and suppose f is C1(R). Show that the function

u(x, y) := f(bx− ay)

solves the PDE
aux + buy ≡ 0

in the sense of distributions.

Solution. Let ϕ ∈ D(R2) be given and consider

〈aux + buy, ϕ〉 = −〈u, aϕx〉 − 〈u, bϕy〉 . (6.1)
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Also, since ϕ has compact support, integration by parts implies

〈u, aϕx〉 = a

ˆ
R

ˆ ∞
−∞

f(bx− ay)ϕx(x, y) dx dy

= ab

ˆ
R

ˆ ∞
−∞

f ′(bx− ay)ϕ(x, y) dx dy.

Furthermore,

〈u, bϕy〉 = b

ˆ
R

ˆ ∞
−∞

f(bx− ay)ϕy(x, y) dy dx

= −ab
ˆ
R

ˆ ∞
−∞

f ′(bx− ay)ϕ(x, y) dy dx.

It follows now from (6.1) that

〈aux + buy, ϕ〉 = 0

whence we conclude that aux + buy = 0 in the sense of distributions. �

7. Harmonic Functions and The Laplace Equation

Fix n ∈ N and recall that we denote by ∆ the Laplacian in Rn. Throughout what
remains of this document, Ω b Rn will denote a bounded, open, connected set
with smooth boundary.

Definition 7. A function u ∈ C2(Ω) ∩ C(Ω) is called harmonic if ∆u ≡ 0 in Ω.

There are many astounding properties involving harmonic functions. Before
we state these (unfortunately, without proof), we require some notation. If E
is a Lebesgue measurable set of positive (but finite!) measure and f is locally
integrable, we define  

E

f(x) dx :=
1

m(E)

ˆ
E

f(x) dm.

Harmonic functions satisfy the mean value property, as we shall see.

Theorem (Mean Value Criterion). Let u ∈ C2(Ω) ∩ C(Ω). The following are equiv-
alent:

(1) u is harmonic in Ω;
(2) For every open ball B(x, ρ) b Ω we have

u(x) =

 
∂B(x,ρ)

u(y) dS =

 
B(x,ρ)

u(y) dy.

This property allows one to conclude the following (although the result requires
a proof).
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Theorem (Strong Maximum Principle). Let u ∈ C2(Ω) ∩ C(Ω) be harmonic in Ω.
If u achieves an extremumin Ω, then u is constant on Ω.

An immediate corollary of this is the so-called weak maximum principle.

Corollary 1. Let u ∈ C2(Ω) ∩ C(Ω) be harmonic in Ω. Then

max
∂Ω

u(x) = max
Ω

u(x).

Example 7.1. Let u ∈ C2(Ω) ∩ C(Ω) be a function that satisfies the mean value
property in Ω for shells, i.e.

u(x) =

 
∂B(x,ρ)

u(y) dS, ∀B(x, ρ) b Ω.

Prove that for all B(x, ρ) b Ω one also has

u(x) =

 
B(x,ρ)

u(y) dy.

Solution. Let B(x, ρ) b Ω and note thatˆ
B(x,ρ)

u(y) dy =

ˆ ρ

0

(ˆ
∂B(x,γ)

u(y) dS

)
dγ

where, by assumption, ˆ
∂B(x,γ)

u(y) dS = 4πγ2u(x).

Therefore, ˆ
B(x,ρ)

u(y) dy = 4πu(x)

ˆ ρ

0

γ2 dγ =
4πρ3

3
u(x).

This is equivalent to saying  
B(x,ρ)

u(y) dy = u(x)

and the proof is complete. �

Example 7.2. Let D2 denote the open ball of radius 2, centered at the origin, in R2.
Let Ω c D2 be a domain and suppose u(r, θ) ∈ C2(Ω) ∩ C(Ω) is harmonic in Ω.
Assume u(2, θ) = 3 sin(2θ) + 1.

(1) What is the maximum value of u in D2?
(2) Compute u(0).
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Solution. For the first part, we need only note that u is harmonic in D2 and con-
tinuous on D2. Thus, the weak maximum principle implies that

max
D2

u(r, θ) = max
∂D2

u(r, θ).

It therefore suffices to maximum u(2, θ) = 3 sin(2θ) + 1 for 0 ≤ θ < 2π. Obviously,
this function will achieve its maximum at θ = π/4 where u will take on the value
of 4. Therefore, the maximum value of u on D2 is 4. For the second part, we apply
the mean value theorem to deduce that

u(0) =

 
∂D2

u(2, θ) dθ =
1

4π

ˆ 2π

0

[3 sin(2θ) + 1] dθ

=
2π

4π

=
1

2
.

�

8. Fundamental Solutions & Green’s Functions

We once again return to the notion of the Laplacian. The fundamental solution
to the Laplacian in Rn, is a locally integrable function Φ(x) on Rn such that

∆Φ = δ0 in the sense of distributions.

We will only consider the case n = 1 and n = 3. For n = 3 this is given by

Φ(x) := − 1

4π |x|
.

We will write Φ(x,x0) to denote the function Φ(x − x0). The following represen-
tation formula is sometimes useful in obtaining explicit solutions to differential
equations:

Theorem. Given f ∈ C∞c (R3). Then

u(x) = Φ(x− y)f(y) dy

satisfies ∆u ≡ f .

Definition 8. Suppose Ω b R3 is a domain and choose x0 ∈ Ω. The Green’s
function for Ω with source point x0 is a function G(x,x0) defined on Ω r {x0}
such that

(1) The function
H(x) = G(x− x0)− Φ(x− x0)

is smooth and harmonic in Ω;
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(2) G(x,x0) vanishes on ∂Ω.

In practice how can one find the Green’s function? This is usually done by
following the steps:

(1) Fix x0 ∈ Ω and find a smooth harmonic function H(x,x0) (in Ω) equal to
−Φ(x− x0) on ∂Ω.

(2) Define
G(x,x0) = H(x,x0) + Φ(x− x0).

Careful! This is easier said than done. To illustrate this procedure we shall give
one easy example in R.

Example 8.1. Let L = ∂2 be the second derivative operator on R (i.e. the one
dimensional Laplacian).

(1) Show that

Φ(x) :=
|x|
2

is the Fundamental solution for L.
(2) Find a Green’s function for (−1, 1).

Solution. The first part is straightforward, let ϕ ∈ D(R) and note that〈
∂2Φ, ϕ

〉
=

ˆ ∞
−∞

|x|
2
ϕ′′(x) dx =

−1

2

ˆ 0

−∞
xϕ′′(x) dx+

1

2

ˆ ∞
0

xϕ′′(x) dx.

Now, since ϕ has compact supportˆ 0

−∞
xϕ′′(x) dx = −

ˆ 0

−∞
ϕ′(x) dx = −ϕ(0).

Likewise, ˆ ∞
0

xϕ′′(x) dx = −
ˆ ∞

0

ϕ′(x) dx = ϕ(0).

This implies that 〈
∂2Φ, ϕ

〉
= ϕ(0) = 〈δ0, ϕ〉 .

This establishes (1). For the second part, let x0 ∈ (−1, 1) be fixed. At x = 1 we
have

Φ(1− x0) =
|1− x0|

2
=

1− x0

2
whilst at x = −1

Φ(−1− x0) =
1 + x0

2
.
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Consider the function

H(x, x0) := −1− x0x

2
which is harmonic (and smooth) in R. Notice also that H(1, x0) = −Φ(1− x0) and
H(−1, x0) = −Φ(−1− x0). Thus, the Green’s function is

G(x, x0) :=
|x− x0| − (1− x0x)

2
.

�

Example 8.2. Let Ω b R3 be a domain.3 Let G(x,x0) be the Green’s function for ∆
in Ω. What can we say about the sign of G in Ω?

Solution. Let us fix x0 ∈ Ω; the Green’s function with singularity x0 will be of the
form

G(x,x0) = G(x) = H(x) + Φ(x− x0)

for some smooth harmonic function H in Ω equal to Φ(x − x0) on ∂Ω. Let ε > 0
with ε� 1. Consider the domain

Ωε := Ω \B(x0, ε).

Obviously, for each such ε > 0, the Green’s function G(x,x0) is harmonic in Ωε.
Notice that on ∂Ω, the Green’s function vanishes. Furthermore, for all ε suffi-
ciently small, on

∂B(x0, ε) ⊂ ∂Ω

the Green’s function is negative since H(x) is bounded but Φ(x−x0) tends to −∞
as x→ x0. Hence, we can choose ε� 1 such that G(x,x0) ≤ −M , for M > 0 large,
whenever x ∈ B(x0, ε). In particular, the Green’s function is negative on a portion
of ∂Ωε. The weak maximum principle then implies that G(x,x0) is negative in Ωε.
We conclude that G is negative in Ω for each fixed x0 ∈ Ω.

�

Example 8.3. Let u(x, y) := (u1(x, y), u2(x, y)) be a smooth vector field. What does
it mean for this vector field to solve div(u) = 0 in the sense of distributions?
Moreover, if a,b ∈ R2, define

u(x, y) :=

{
a, y ≥ f(x),

b, y < f(x)

where f ∈ C∞(R) is given. Show that div(u) 6= 0 in the sense of distributions.

3An open, bounded, connected subset of R3 having smooth boundary.
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Solution. First, let u be some smooth vector field. Then, for any ϕ ∈ D(R2) there
holds

〈div(u), ϕ〉 = 〈∂xu1 + ∂yu2, ϕ〉 = 〈∂xu1, ϕ〉+ 〈∂yu2, ϕ〉
= −〈u1, ϕx〉 − 〈u2, ϕy〉

= −
¨

R2

(u · ∇φ) dA.

Therefore, div(u) = 0 in the sense of distributions if this last line evaluates to 0
for every ϕ ∈ D(R2). For the second part, we check

〈div(u), ϕ〉 = −
¨

R2

(u · ∇φ) dA = −
ˆ
R

ˆ ∞
f(x)

a · ∇φ dA−
ˆ
R

ˆ f(x)

−∞
b · ∇φ dA

which does not, in general, vanish. �
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