BRIEF NOTE ON COMPLEX HILBERT SPACES WITH HERMITIAN INNER-PRODUCTS

E. CHERNYSH

Contents

1.	Definitions and Orthogonality	1
2.	Orthogonal Subspaces and Linear Operators	4
3.	Functionals and The Riesz Representation Theorem	7

1. Definitions and Orthogonality

We shall begin by giving the definition of a complex Hilbert space. Recall that a complex vector space is a non-empty set V endowed with two operations:

$$+: \mathbf{V} \times \mathbf{V} \to \mathbf{V}, \quad (u, v) \mapsto u + v$$

 $\odot: \mathbf{V} \times \mathbb{C} \to \mathbf{V}, \quad (u, \zeta) \mapsto \zeta \cdot u$

so that V is an Abelian group with respect to both operations. We may extend this further to a "nicer" class of spaces: inner-product space.

Definition 1. A complex inner-product space is a complex vector space V equipped with an extra mapping:

$$\langle \cdot, * \rangle : V \times V \to \mathbb{C}, \quad (u, v) \mapsto \langle u, v \rangle$$
 (1)

that satisfies each of the following for all $u, v, w \in V$ and $\zeta \in \mathbb{C}$:

- (i) Conjugate symmetry: $\langle u, v \rangle = \overline{\langle v, u \rangle}$.
- (ii) Linearity in the first argument: $\langle u + \zeta w, v \rangle = \langle u, v \rangle + \zeta \langle w, v \rangle$.
- (iii) Positive definiteness: $\langle u, u \rangle \geq 0$ and $\langle u, u \rangle = 0$ if and only if u = 0.

Remark. Note that above in (3) we require $\langle u, u \rangle$ to be *real* for all $u \in V$.

Observe that any inner-product induces a norm on the complex space V. Certainly, this norm arises by letting $\|\cdot\| := \sqrt{\langle \cdot, \cdot \rangle}$. It is an easy consequence that any inner-product as above satisfies the Cauchy-Schwarz inequality:

$$|\langle u, v \rangle| \le ||u|| \, ||v|| \,, \quad \forall u, v \in \mathcal{V} \tag{2}$$

and that the triangle inequality holds: $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$. This tells us that any complex inner product space is a complex, normed vector space. Note that the inner-product may map to $\Im z \ne 0$ but that the norm maps into the reals.

Definition 2. A complex Hilbert space \mathcal{H} is a complex inner-product space which is a separable Banach space with respect to the induced norm.

Date: March 19, 2017.

It should be evident from the very definition of the inner-product that $\langle \cdot, * \rangle$ is anti-linear in the second argument. Recall that a metric space (X,d) is separable provided it has a countable dense subset. Given two vectors $f,g \in \mathcal{H}$ we shall say that f and g are **orthogonal** (or perpendicular), written $f \perp g$, whenever $\langle f,g \rangle = 0$. Our first result is a generalization of the Pythagorean theorem to these spaces:

Lemma 1.1. Let \mathcal{H} be a complex Hilbert space and $f, g \in \mathcal{H}$ with $f \perp g$. Then $||f + g||^2 = ||f||^2 + ||g||^2$.

Proof. To see this we write:

$$\begin{split} \left\| f + g \right\|^2 &= \left\langle f + g, f + g \right\rangle = \left\langle f, f + g \right\rangle + \left\langle g, f + g \right\rangle \\ &= \left\langle f, f \right\rangle + \left\langle f, g \right\rangle + \left\langle g, f \right\rangle + \left\langle g, g \right\rangle \\ &= \left\| f \right\|^2 + \left\langle f, g \right\rangle + \left\langle g, f \right\rangle + \left\| g \right\|^2 \end{split}$$

Now, since $f \perp g$ we get $\langle f, g \rangle = \overline{\langle g, f \rangle} = 0$ which concludes the proof.

Corollary 1.2 (Pythagorean Theorem). Let \mathcal{H} be a complex Hilbert space and assume $\{f_j\}_{j=1}^N$ is a family of pairwise orthogonal vectors in \mathcal{H} . Then,

$$\left\| \sum_{j=1}^{N} f_j \right\|^2 = \sum_{j=1}^{N} \|f_j\|^2 \tag{3}$$

Proof. We argue by induction on N. The case N=2 is clear from the previous lemma, now assume (3) holds for N, we show the case N+1 follows. Certainly, if $\{f_j\}_{j=1}^{N+1}$ is pairwise orthogonal then so is $\{f_j\}_{j=1}^N$. Moreover, it is obvious that $\langle \sum_{j=1}^N f_j, f_{N+1} \rangle = 0$ by linearity. Whence we find:

$$\begin{split} \left\| \sum_{j=1}^{N+1} f_j \right\|^2 &= \left\langle \sum_{j=1}^{N+1} f_j, \sum_{j=1}^{N+1} f_j \right\rangle \\ &= \left\langle \sum_{j=1}^{N} f_j, \sum_{j=1}^{N+1} f_j \right\rangle + \left\langle f_{N+1}, \sum_{j=1}^{N+1} f_j \right\rangle \\ &= \left\langle \sum_{j=1}^{N} f_j, \sum_{j=1}^{N} f_j \right\rangle + \left\langle \sum_{j=1}^{N} f_j, f_{N+1} \right\rangle + \left\langle f_{N+1}, \sum_{j=1}^{N+1} f_j \right\rangle \\ &= \left\langle \sum_{j=1}^{N} f_j, \sum_{j=1}^{N} f_j \right\rangle + \left\langle f_{N+1}, \sum_{j=1}^{N+1} f_j \right\rangle \\ &= \left\| \sum_{j=1}^{N} f_j \right\|^2 + \left\langle f_{N+1}, f_{N+1} \right\rangle + \left\langle f_{N+1}, \sum_{j=1}^{N} f_j \right\rangle \\ &= \left\| \sum_{j=1}^{N} f_j \right\|^2 + \left\| f_{N+1} \right\|^2 \end{split}$$

as was to be shown.

Let \mathcal{H} be a complex Hilbert space and $\{e_k\}_{k\in\mathbb{N}}$ be a countable subset of \mathcal{H} . This set is said to be **orthonormal** provided for all indices $(k,\ell)\in\mathbb{N}^2$ one has:

$$\langle e_k, e_\ell \rangle = \begin{cases} 1 & k = \ell \\ 0 & \text{else} \end{cases}$$

 \bigcirc

0

This same set is called a **Hilbert basis** for \mathcal{H} if their linear combinations are dense in \mathcal{H} . These are sometimes called orthonormal bases. We shall now give a complete characterization of these bases for a Hilbert space \mathcal{H} (over \mathbb{C}). First, we introduce notation. In the next theorem we shall write $\xi_k := \langle f, e_k \rangle \in \mathbb{C}$ and set $S_N(f) := \sum_{k=1}^N \xi_k e_k$ for $f \in \mathcal{H}$.

Theorem 1.3 (Characterization of Hilbert Bases). Let \mathcal{H} be a complex Hilbert space and $\{e_k\}_{k\in\mathbb{N}}$ an orthonormal subset of \mathcal{H} . The following statements are equivalent:

- (i) $\{e_k\}_{k\in\mathbb{N}}$ is a Hilbert basis for \mathcal{H} .
- (ii) If $f \in \mathcal{H}$ satisfies $\langle f, e_j \rangle = 0$ for all $j \in \mathbb{N}$ then f = 0.
- (iii) For all $f \in \mathcal{H}$ the combination $S_N(f) \to f$ as $N \to \infty$.
- (iv) Parseval's identity holds true for all $f \in \mathcal{H}$:

$$||f||^2 = \sum_{k \in \mathbb{N}} |\xi_k|^2 \tag{\mathfrak{P}}$$

Proof of Theorem. (i \Longrightarrow ii) Assume that $\langle f, e_j \rangle = 0$ for all j. Let ε positive be given; select a vector $g_{\varepsilon} \in \mathcal{H}$ where $g_{\varepsilon} = \sum_{k=1}^{N} \zeta_k e_k$ with $||f - g_{\varepsilon}|| \leq \varepsilon$. Observe that by assumption on f one has by linearity of the Hermitian inner-product: $\langle f, g_{\varepsilon} \rangle = 0$. Therefore,

$$\|f\|^2 = \langle f, f, \rangle = \langle f, f - g_{\varepsilon} + g_{\varepsilon} \rangle = \underbrace{\langle f, g_{\varepsilon} \rangle}_{=0} + \langle f, f - g_{\varepsilon} \rangle = \langle f, f - g_{\varepsilon} \rangle$$

Now, using Cauchy-Schwarz we find that $||f||^2 \le ||f|| ||f - g_{\varepsilon}||$. Suppose now that $||f|| \ne 0$, then we get $||f|| \le ||f - g_{\varepsilon}|| \le \varepsilon$. Since $\varepsilon > 0$ was arbitrary we find that ||f|| = 0.

(ii \Longrightarrow iii) There are some preliminary "calculations" to be made. Fix a vector $f \in \mathcal{H}$ and define $S_N(f)$ as in (iii). We claim first that $f - S_N(f) \perp S_N(f)$ for all N sufficiently large. Indeed, to see this we write by the Pythagorean theorem (the $\{e_k\}_{k\in\mathbb{N}}$ are orthonormal)

$$\langle f - S_N(f), S_N(f) \rangle = \langle f, S_N(f) \rangle - ||S_N(f)||^2 = \langle f, S_N(f) \rangle - \sum_{k=1}^N |\xi_k|^2$$

But now

$$\langle f, S_N(f) \rangle = \left\langle f, \sum_{k=1}^N \xi_k e_K \right\rangle = \sum_{k=1}^N \overline{\xi_k} \langle f, e_k \rangle = \sum_{k=1}^N |\xi_k|^2$$

which proves that $f - S_N(f) \perp S_N(f)$ as was asserted. Therefore, applying the Pythagorean theorem proven in Corollary 3 we obtain that

$$||f||^2 = ||f - S_N(f)||^2 + \sum_{k=1}^N |\xi_k|^2 \ge \sum_{k=1}^N |\xi_k|^2$$
(4)

Now, passing to the limit in $N \to \infty$ in the righthand side of the equation above gives Bessel's Identity:

$$\sum_{k \in \mathbb{N}} \left| \xi_k \right|^2 \le \left\| f \right\|^2 \tag{5}$$

We now make the bold claim that $\{S_N(f)\}_{N\in\mathbb{N}}$ is Cauchy in \mathcal{H} . Certainly, from (5) we know that $\sum_k |\xi_k|^2 < \infty$ and so for all $N, M \in \mathbb{N}$, taking without harm M > N:

$$||S_N(f) - S_M(f)|| \le \sum_{k=N+1}^M |\xi_k|^2 \xrightarrow{N,M \to \infty} 0$$

Since \mathcal{H} is also a Banach space, there is a point, say, $g \in \mathcal{H}$ so that $S_N(f) \to g$ in norm as $N \to \infty$. We claim now that f = g. Indeed, it suffices by our assumption in (ii) to prove that $\langle f - g, e_j \rangle = 0$ for arbitrary j. Fix j and let $N \gg j$ be an integer. We note that

$$|\langle f - g, e_j \rangle| \le |\langle f - S_N(f), e_j \rangle| + |\langle S_N(f) - g, e_j \rangle| \le |\langle f - S_N(f), e_j \rangle| + ||S_N - g||$$

Therefore this boils down to showing that $|\langle f - S_N(f), e_j \rangle| \to 0$ as $N \to \infty$. Certainly, for N is large

$$\langle f - S_N(f), e_j \rangle = \langle f, e_j \rangle - \left\langle \sum_{k=1}^N \xi_k e_k, e_j \right\rangle = \langle f, e_j \rangle - \langle f, e_j \rangle = 0$$

Thus passing to the limit in $|\langle f - g, e_j \rangle| \le ||S_N - g||$ we find that $f - g \perp e_j$ for all j whence f = g as vectors.

(iii \implies iv) We refer again to (4). As per our assumption we know that $S_N(f) \to f$ in norm as $N \to \infty$. Thus, taking the limit in (4) we get Parseval's identity in (\mathfrak{P}) .

(iv \Longrightarrow i). To see this, we assume that Parseval's identity holds true. Now, referring to (4) we find that $||f - S_N|| \to 0$ as $N \to \infty$. Since S_N are linear combinations we have (i).

The theorem has now been proven.

We conclude this section with the observation that any Hilbert space \mathcal{H} over \mathbb{C} has a Hilbert basis. Indeed, since \mathcal{H} is a vector space we may select a basis, say, \mathcal{B} . Now, to construct an orthonormal subset one needs only follow Gram-Schmidt.

2. ORTHOGONAL SUBSPACES AND LINEAR OPERATORS

For this section we fix a Hilbert space \mathcal{H} over \mathbb{C} . A subspace \mathcal{S} of \mathcal{H} (written $\mathcal{S} < \mathcal{H}$) is a vector subspace of \mathcal{H} , viewed as a vector space. We shall say that \mathcal{S} is a **closed** subspace, denoted $\mathcal{S} \leq \mathcal{H}$ provided it is topologically closed in \mathcal{H} .

Proposition 2.1. Let $S < \mathcal{H}$. Then $S \leq \mathcal{H}$ if and only if for every sequence (f_n) in S converging to $f \in \mathcal{H}$ one has $f \in S$

The above proposition is a consequence of the *characterization of closed sets*¹ in metric spaces (X, d).

Corollary 2.2. If $S \leq \mathcal{H}$ then S is a Hilbert space.

Proposition 2.3 (Parallelogram Law). For all vectors $A, B \in \mathcal{H}$ the parallelogram law holds:

$$||A + B||^2 + ||A - B||^2 = 2(||A||^2 + ||B||^2)$$
 (6)

Proof. This is a straightforward calculation. We write $||A + B||^2 = \langle A + B, A + B \rangle$ and similarly for $||A - B||^2$. This gives us

$$||A + B||^2 + ||A - B||^2 = \langle A + B, A + B \rangle + \langle A - B, A - B \rangle = 2\langle A, A \rangle + 2\langle B, B \rangle$$

Theorem 2.4 (Existence and Uniqueness of Perpendicular Minimizers). Let \mathcal{H} be a complex Hilbert space with $S \leq \mathcal{H}$. For all $f \in \mathcal{H}$ there exists a unique $g_0 \in S$ such that $||f - g_0|| = \inf_{g \in S} ||f - g||$ and $(f - g_0) \perp S^2$.

 \bigcirc

 $^{^1}$ In a metric space a subspace $\mathcal S$ is closed if and only if it contains all of its limit points.

²By this we mean that $(f - g_0) \perp g$ for all $g \in \mathcal{S}$

Proof of Theorem. For existence we shall use an argument that is frequently used in the derivation of maximum principles for elliptic differential operators. Note that if $f \in \mathcal{S}$ then we may simply let $g_0 := f$ and this obviously satisfies the claim. Hence, we may presume without harm to the proof that $f \notin \mathcal{S}$. Then, since $\mathcal{S} \leq \mathcal{H}$ one has

$$\inf_{g \in \mathcal{S}} \|f - g\| = d > 0$$

for otherwise we would have $f \in \mathcal{S}$. By definition of the infimum we may select a sequence (g_n) living in \mathcal{S} so that $\lim ||f - g_n|| = d > 0$. We set $A = f - g_n$ and $B = f - g_m$ in (6) and glean

$$\|2f - (g_n + g_m)\|^2 + \|g_m - g_n\|^2 = 2(\|f - g_n\|^2 + \|f - g_m\|^2)$$

Since $S \leq \mathcal{H}$ is also a vector subspace we note that $\frac{g_n + g_m}{2} \in S$ and therefore we get

$$||g_m - g_n||^2 \le 2 (||f - g_n||^2 + ||f - g_m||^2) - 4d^2 \xrightarrow{n,m \to \infty} 0$$

This proves that (g_n) as constructed above is Cauchy in S. Hence, there is a limit point, say, $g_0 \in S$ of (g_n) . Passing to the limit and using the continuity of norms we get $||f - g_0|| = d$.

We shall now prove that $(f - g_0) \perp g$ for all $g \in \mathcal{S}$. Let $\varepsilon \in \mathbb{R}$ be small in absolute value and consider a perturbation set by $g \mapsto g_0 - \varepsilon g$. Again, since \mathcal{S} is a vector subspace of \mathcal{H} we know that $g_0 - \varepsilon g \in \mathcal{S}$ so that

$$||f - g_0||^2 + \varepsilon^2 ||g||^2 + 2\varepsilon \Re \langle f - g_0, g \rangle = ||f - (g_0 - g\varepsilon)||^2 \ge ||f - g_0||^2$$

Whence $2\varepsilon\Re\langle f-g_0,g\rangle+\varepsilon^2\|g\|^2\geq 0$. If $\Re\cdot>0$ we take $\varepsilon<0$ small in norm and vice-versa for a contradiction. Similarly one shows the imaginary part of this inner-product is 0 and hence obtain that $(f-g_0)\perp g$ for all $g\in\mathcal{S}$.

As for uniqueness, suppose g,h are minimizers in \mathcal{S} . Then, we know that $g-h \in \mathcal{S}$ since \mathcal{S} is closed and thence $(f-g) \perp h$ so that by the Pythagorean theorem:

$$||f - h||^2 = ||f - g + g - h||^2 = ||f - g||^2 + ||g - h||^2$$

which gives $\|g - h\|^2 = 0$.

An important consequence of this theorem is that we may decompose a Hilbert space \mathcal{H} into the direct-sum³ of two of its subspaces. Certainly, suppose $\mathcal{S} \leq \mathcal{H}$ and let \mathcal{S}^{\perp} consist of the subspace perpendicular to \mathcal{S} :

$$\mathcal{S}^{\perp} := \{ f \in \mathcal{H} : \langle f, g \rangle = 0, \, \forall g \in \mathcal{S} \}$$

We make the claim that $\mathcal{H} = \mathcal{S} \oplus \mathcal{S}^{\perp}$. First, however, we note some properties regarding the space \mathcal{S}^{\perp} . We wish to show that $\mathcal{S}^{\perp} \leq \mathcal{H}$. Of course, by the (anti)-linearity of the Hermitian inner-product that \mathcal{H} is equipped with it follows that $\mathcal{S}^{\perp} < \mathcal{H}$ (i.e. \mathcal{S}^{\perp} is a vector subspace). To see that \mathcal{S}^{\perp} is topologically closed, pick a sequence (f_n) in \mathcal{S}^{\perp} with limit point $f \in \mathcal{H}$. For all indices $n \in \mathbb{N}$ we know that $\langle f_n, g \rangle = 0$, where $g \in \mathcal{S}$ is fixed. Then observe that by Cauchy-Schwarz

$$|\langle f, g \rangle| = |\langle f, g \rangle - \langle f_n, g \rangle| = |\langle f - f_n, g \rangle| \le ||f - f_n|| \, ||g|| \xrightarrow{n \to \infty} 0$$

Proving that $\langle f,g\rangle=0$ for all $g\in\mathcal{S}$ whence $f\in\mathcal{S}^{\perp}$. Moreover, note that $\mathcal{S}\cap\mathcal{S}^{\perp}=\{0\}$. Certainly, let $f\in\mathcal{S}\cap\mathcal{S}^{\perp}$, so that $\langle f,f\rangle=\|f\|^2=0$ since $f\perp f$.

We may now prove the aforementioned claim.

Proposition 2.5. Let $S \leq \mathcal{H}$. Then, $\mathcal{H} = S \oplus S^{\perp}$.

³By this we mean that every vector in \mathcal{H} has a unique representation g+h where $g\in\mathcal{S}$ and $h\in\mathcal{S}^{\perp}$.

Proof. We shall first prove existence of representation. Fix $f \in \mathcal{H}$. By the previous theorem we may find $g_0 \in \mathcal{S}$ so that $(f - g_0) \perp g$ for all $g \in \mathcal{S}$. Especially, $(f - g_0) \perp g_0$. However, $f = (f - g_0) + g_0$ and so $(f - g_0) \in \mathcal{S}^{\perp}$ but $g_0 \in \mathcal{S}$. This gives us our representation.

To see uniqueness, suppose that f = g + h = g' + h' where $g, g' \in \mathcal{S}$ and $h, h' \in \mathcal{S}^{\perp}$. Then we have that (g - g') = (h' - h). Since $\mathcal{S} \cap \mathcal{S}^{\perp}$ consists only of the 0-vector we must have g - g' = 0 and h' - h = 0.

 \bigcirc

Of course there is a natural projection from $\mathcal{H} \to \mathcal{S}$ defined by

$$P_{\mathcal{S}}: \mathcal{H} \to \mathcal{S}, \quad \mathcal{S} \oplus \mathcal{S}^{\perp} \ni (f, g) \mapsto f$$
 (7)

This mapping is clearly linear and $||P_{\mathcal{S}}(f)|| \leq ||f||$ for all $f \in \mathcal{H}$.

Definition 3. For complex Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2$ a linear mapping $L : \mathcal{H}_1 \to \mathcal{H}_2$ is called a linear operator. This operator L is said to be bounded if there is M > 0 so that

$$||L(f)||_{\mathcal{H}_2} \le M ||f||_{\mathcal{H}_1}, \quad \forall f \in \mathcal{H}_1$$

Define ||T|| to be the infimum of all such M.

Observe that by linearity all linear operators fix the origin: L(0) = 0. We shall call L continuous provided for all convergent sequences in \mathcal{H} : $f_n \to f$ one has $L(f_n) \to L(f)$. A surprising characterization of continuity follows:

Theorem 2.6 (Characterization of Continuity). Let $L: \mathcal{H}_1 \to \mathcal{H}_2$ be a linear operator. L is continuous if and only if it is bounded.

Proof of Theorem. (\iff) Suppose that L is bounded, and let M > 0 be so that $||L(f)|| \le M ||f||$ for all $f \in \mathcal{H}$. If we take a sequence (f_n) in \mathcal{H} so that $f_n \to f$ then we consider

$$\|\mathbf{L}(f_n) - \mathbf{L}(f)\| = \|\mathbf{L}(f_n - f)\| \le M \|f_n - f\|$$

proving that L is continuous.

 (\Longrightarrow) If L is continuous, then L is continuous at $0 \in \mathcal{H}$. Assume for a contradiction that f is not-bounded, hence for all $n \in \mathbb{N}$ we may find $f_n \in \mathcal{H}$ so that $\|\mathbf{L}(f_n)\| \ge n \|f_n\|$. Now we define a point

$$\mathcal{H}\ni g_n:=\frac{f_n}{n\,\|f_n\|}$$

so that $||g_n|| = 1/n$ and so it is clear that $\lim g_n = 0$. By continuity of L at 0, we must have $\lim L(g_n) = 0$ and so

$$\|\mathbf{L}(g_n)\| \to 0, \quad n \to \infty$$

On the other-hand, we note that

$$\|\mathbf{L}(g_n)\| = \frac{1}{n \|f_n\|} \|\mathbf{L}(f_n)\| \ge \frac{n \|f_n\|}{n \|f_n\|} = 1$$

which is a contradiction.

3. Functionals and The Riesz Representation Theorem

Given a complex Hilbert space \mathcal{H} a linear functional ℓ is an element of the dual space \mathcal{H}^* . In other-words, a linear functional is a linear mapping $\ell : \mathcal{H} \to \mathbb{C}$. Observe that ℓ must also fix the origin: for $\ell(0) = \ell(0+0) = 2\ell(0)$.

Perhaps the simplest example of a linear functional from $\mathcal{H} \to \mathbb{C}$ is that induced by the map $f \mapsto \langle f, g \rangle$ where $g \in \mathcal{H}$ is fixed. The most surprising result, however, is that all continuous elements of \mathcal{H}^* arise in this way.

Theorem 3.1 (Riesz Representation Theorem). Let $\ell : \mathcal{H} \to \mathbb{C}$ be a continuous linear functional. There exists a unique $g \in \mathcal{H}$ so that $\ell(f) = \langle f, g \rangle$ for all $f \in \mathcal{H}$.

Proof of Theorem. We begin by defining a subspace of \mathcal{H} called the **null-space**:

$$S := \{ f \in \mathcal{H} : \ell(f) = 0 \} \tag{8}$$

We claim that $S \leq \mathcal{H}$. Obviously, by linearity of ℓ one sees $S < \mathcal{H}$. To see that S is closed, pick a sequence (f_n) in S and assume that $f_n \to f \in \mathcal{H}$ in norm. Then for all $n \in \mathbb{N}$ we have $\ell(f_n) = 0$. Now, it follows by continuity that $\lim \ell(f_n) = \ell(f) = 0$. Hence, $S \leq \mathcal{H}$.

By our decomposition theorem we may write $\mathcal{H} = \mathcal{S} \oplus \mathcal{S}^{\perp}$. There are two cases to distinguish here:

- (1) $\mathcal{S}^{\perp} = \emptyset$. Pick g = 0. Then $\ell(f) = \langle f, g \rangle = 0$ for all $f \in \mathcal{H}$ and we are done.
- (2) Else $\mathcal{S}^{\perp} \neq \emptyset$ and thus we may select a non-trivial vector $h \in \mathcal{S}^{\perp}$ with ||h|| = 1. To see that this is possible, let $\tilde{h} \neq 0$ be a vector in \mathcal{H} and let $h := \tilde{h} / ||\tilde{h}||$ which must lie in \mathcal{S}^{\perp} for \mathcal{S}^{\perp} is a vector subspace of \mathcal{H} . Now we shall define our candidate $g \in \mathcal{H}$ as follows:

$$g := \overline{\ell(h)}h$$

Now consider the vector $x := \ell(f)h - f\ell(h)$ for arbitrary $f \in \mathcal{H}$. Then, $x \in \mathcal{S}$ since $\ell(x) = \ell(f)\ell(h) - \ell(f)\ell(h) = 0$. This tells us that $\langle u, h \rangle = 0$. On the other hand,

$$0 = \langle u, h \rangle = \langle \ell(f)h - f\ell(h), h \rangle = \ell(f)\langle h, h \rangle - \ell(h)\langle f, h \rangle$$

Since
$$\|h\|^2 = 1$$
 we get $\ell(f) = \ell(h)\langle f, h \rangle = \langle f, \overline{\ell(h)}h \rangle = \langle f, g \rangle$.

It now only remains to prove uniqueness of this vector $g \in \mathcal{H}$. Assume $g, h \in \mathcal{H}$ are two vectors so that $\ell(f) = \langle f, g \rangle = \langle f, h \rangle$ for all $f \in \mathcal{H}$. Then we get

$$0 = \langle f, g - h \rangle \iff \langle g - h, f \rangle = 0$$

Taking an orthonormal basis $\{e_j\}_{j\in\mathbb{N}}$ we find $\langle g-h,e_j\rangle=0$ for all j and thus g=h by our previous theorem.