Rocq CARVe-ing:
A Library for Substructural Meta-Theory

Daniel Zackon

McGill University

Montreal, Canada
daniel.zackon@mail.mcgill.ca

Alberto Momigliano
University of Milan
Milan, Italy
momigliano@di.unimi.it

Abstract

We present CARVe (‘Contexts as Resource Vectors’), a Rocq
library for mechanizing substructural logics and languages.
CARVe represents resource usage algebraically, eliminat-
ing the need for explicit context splitting and complex re-
indexing. This approach integrates smoothly with well-sco-
ped de Bruijn syntax, simplifying formalizations of linear,
affine and other substructural systems.

1 Substructural Contexts as Resource
Vectors

The structural rules of weakening, contraction, and exchange
govern how assumptions in a logical system may be dupli-
cated, discarded, or reordered. Omitting or relaxing these
rules gives rise to logics such as linear, affine, or relevant
logic, and to corresponding resource-sensitive programming
languages. These logics and languages are collectively called
substructural.

Because they treat assumptions as resources rather than
freely reusable hypotheses, mechanizing the meta-theory of
substructural languages demands the careful management
of contexts. Notably, in linear or affine systems, typing rules
often require splitting a context into disjoint parts—each
allocated to different subterm—so that no assumption is used
more than once. When working with de Bruijn representa-
tions of syntax, one typically must carefully re-index vari-
ables after each such manipulation, which can substantially
complicate formalization.

An alternative approach is offered by CARVe (‘Contexts
as Resource Vectors’) [14], a general framework for repre-
senting and manipulating substructural contexts in mech-
anizations. Building on Schack-Nielsen and Schiirmann’s
approach [9], CARVe annotates each context element with
a multiplicity tag drawn from a resource algebra. These tags
encode information about an assumption’s availability, such
as whether it may be used exactly once, multiple times, or
not at all. Instead of physically restructuring a context when

RocqPL 2026, Rennes, France

Ryan Kavanagh
Université du Québec a Montréal
Montreal, Canada
kavanagh.ryan@uqam.ca

Brigitte Pientka

McGill University

Montreal, Canada
brigitte.pientka@mcgill.ca

assumptions are used or distributed across subterms, CARVe
updates their tags to reflect the new usage status. As a con-
sequence, contexts remain essentially intact across proof
trees. This design thus integrates naturally with well-scoped
de Bruijn representations of syntax [1], since the indices and
scoping discipline are preserved automatically.

Significantly, the underlying algebraic structure ensures
that operations such as context splitting and tag updating are
well-behaved by construction: properties of the chosen alge-
bra lift automatically to the level of contexts. This modularity
allows CARVe to serve as a general-purpose framework for
mechanizing various substructural type systems without
requiring modifications to the core context machinery.

CARVe was initially implemented in Beluga [6, 7]. How-
ever, the framework is not inherently specific to any one
proof assistant. Arguably, CARVe becomes even more valu-
able in mainstream theorem provers such as Rocq where
explicit de Bruijn representations are the norm. Rocq’s type
system also supports a more modular, reusable CARVe li-
brary which can be readily instantiated with different re-
source algebras. Moreover, Rocq’s large and active user and
developer community, together with its large ecosystem of
libraries that can be combined with CARVe for more com-
plex mechanizations, increasing the practical applicability
of the framework.

CARVe is now available as a library in Rocq at

https://github.com/dzackon/rocq-carve.

The implementation is a generalization and abstraction of
our previous approach in Beluga [14].

2 Implementation

Appel et al’s [2] Mechanized Semantic Library (MSL) for
separation algebras provides an elegant foundation for im-
plementing CARVe in Rocq. Separation algebras share many
commonalities with CARVe’s resource algebras. For instance,
both have partial operators that are generally associative,
commutative, cancellative, functional, unital, and positive
(cf. [2, § 2] and [14, § 2]). Moreover, just as separation alge-
braic structure is often lifted to richer type structures like


https://orcid.org/0009-0008-6153-2955
https://orcid.org/0000-0001-9497-4276
https://orcid.org/0000-0003-0942-4777
https://orcid.org/0000-0002-2549-4276
https://github.com/dzackon/rocq-carve

RocqPL 2026, January 17, 2026, Rennes, France

lists or function spaces, CARVe also lifts resource algebra
structure to contexts modeled as lists or (finite) maps. MSL
provides structures for defining separation algebras, reason-
ing about them, and lifting their structure to richer types.
We rely on this infrastructure to implement CARVe in Rocq.

We first define a collection of resource algebras. We model
their partial binary operators as ternary relations; specifi-
cally, as instances of MSL’s Join class:

Class Join (t: Type) : Type:=
join: t >t — t — Prop.

We then show that each join operation satisfies algebraic
properties like associativity or commutativity and instantiate
the MSL classes for separation algebras and cancellative alge-
bras. These instances let us apply MSL’s extensive libraries of
algebraic identities when reasoning about resource algebras.

Next, we define two kinds of contexts for use in case stud-
ies: list contexts and function contexts. List contexts are lists
of resources tagged with an algebra element, i.e., terms of
type list (R = A) whereRis a type of resources and 4 the alge-
bra carrier. List contexts are suitable for modeling contexts
of named or unnamed resources, like sequents. Function
contexts are total functions D -+ R = A where D is usually a
finite set. In particular, when working with de Bruijn indices,
elements in D are finite sets of natural numbers. We lift A’s
algebraic structure to list and function contexts using MSL’s
separation algebra generators. For example, a product gen-
erator defines the obvious component-wise join operator
on products of algebras (we endow R with a trivial algebra),
and the list generator similarly defines a join operator on
lists element-wise. The induced join operator on list contexts
corresponds exactly to its inductive characterization in [14],
and it instantiates the same MSL classes as A. This generator-
based approach lets us lift algebraic properties from resource
algebras to context merging for free, and avoids the need
to prove such properties on a case-by-case basis in proof
developments.

3 Case Studies

Alongside our implementation of CARVe, we have used it
to mechanize several case studies in Rocq, porting and mod-
ifying our previous development in Beluga [14]. Since we
cannot use higher-order abstract syntax as a representation
technique, we follow the standard well-scoped de Bruijn ap-
proach. Importantly, context splits require no index shifting
or renaming to preserve well-scopedness, since CARVe con-
texts remain structurally intact across splits: the datatype
of terms is identical to that used for the systems’ ordinary
intuitionistic counterparts. Linearity, in other words, is not
imposed as a syntactic property but as a semantic one, cap-
tured separately through resource annotations.

As a result, we can use the Autosubst [11] library essen-
tially out of the box for the main auto-generated definitions.

Zackon et al.

Weak Normalization. Our main case study includes two
logical-relations proofs of weak normalization for an intu-
itionistic-linear A-calculus with unit and bang types. One fol-
lows the approach of Dreyer et al. [3] as mechanized by Stark
[10], who split the logical relation into value and expression
components, with only the former defined recursively on
the type. The other proof adopts the traditional approach,
defining the logical predicate recursively on the structure of
types. In both cases, we proceed in the usual way by proving
that every well-typed term satisfies its logical predicate, from
which weak normalization follows as a corollary.

A key ingredient in both proofs is the notion of reducible
simultaneous substitution, i.e., mappings from variables to
terms within the logical relation at the appropriate type.
In traditional mechanizations of substructural systems with
de Bruijn indices, reasoning about such substitutions is a bur-
densome task: they too must be explicitly split and merged,
which requires a careful treatment of indices. With CARVe,
however, we obtain as a near-immediate lemma that re-
ducible substitutions are preserved across context splits.

Type safety. We implement proofs of progress and preser-
vation for the above-mentioned intuitionistic-linear A-calcu-
lus as a traditional benchmark. The proof of progress is a
straightforward adaptation of the existing Rocq script from
Software Foundations [8]. Preservation is more subtle, and
we present two mechanizations. The first is based on context
morphisms and requires a refined type-instantiation lemma
that accounts for linear resource splitting. The second pro-
ceeds via a linear substitution lemma and requires proofs of
the structural properties governing used assumptions.

Cut Elimination. The final case study shows progress
for a fragment of the session-typed process calculus CP [12].
CP is a proofs-as-processes interpretation of classical linear
logic. Its processes are typed by list contexts that specify
the types of communication channels. Proving progress for
this calculus amounts to proving cut elimination for the
underlying linear logic.

4 Future Work

There are several directions for extending and refining the
CARVe Rocq library. First, we aim to provide a general API
outlining all the operations and properties we support. Sec-
ondly, to cover a wider range of substructural type systems,
we plan to support additional algebras, in particular those
incorporating ordered resources. Further, we intend to gen-
eralize the infrastructure to handle other representations
of contexts and intrinsically-typed representations of terms.
Finally, an in-depth comparison of our development with
similar endeavours such as [4, 5, 13] is left to future work. (A
summary of related approaches may be found in [14, § 6].)



Rocq CARVe-ing

References
[1] Robin Adams. 2006. Formalized metatheory with terms represented

—
w
[

—_
=
—

=

—

by an indexed family of types. In Proc. TYPES °04 (Lect. Notes Comput.
Sci., Vol. 3839), Jean-Christophe Filliatre, Christine Paulin-Mohring,
and Benjamin Werner (Eds.). Springer, 1-16. doi:10.1007/11617990_1
Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A fresh
look at separation algebras and share accounting. In Proc. APLAS
’09 (Lect. Notes Comput. Sci., Vol. 5904), Zhenjiang Hu (Ed.). Springer,
161-177. doi:10.1007/978-3-642-10672-9_13

Derek Dreyer, Simon Spies, Lennard Gaher, Ralf Jung, Jan-Oliver Kaiser,
Hoang-Hai Dang, David Swasey, Jan Menz, Niklas Miick, and Benjamin
Peters. 2025. Semantics of type systems (Lecture notes). https://plv.
mpi-sws.org/semantics-course/lecturenotes.pdf

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. J. Funct.
Program. 28 (2018), €20. doi:10.1017/50956796818000151

Olivier Laurent. 2017. Yalla. https://github.com/olaure01/yalla/.
Brigitte Pientka and Jana Dunfield. 2008. Programming with proofs
and explicit contexts. In Proc. PPDP "08. 163-173. doi:10.1145/1389449.
1389469

Brigitte Pientka and Jana Dunfield. 2010. Beluga: A framework for
programming and reasoning with deductive systems (system descrip-
tion). In Proc. IJCAR ’10 (Lect. Notes Comput. Sci., Vol. 6173), Jiirgen
Giesl and Reiner Héhnle (Eds.). Springer, 15-21. doi:10.1007/978-3-

[8

[}

[9

—

[10]

[11]

[12]

[13]

[14]

RocqPL 2026, January 17, 2026, Rennes, France

642-14203-1_2
Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Cétalin Hritcu, Vilhelm Sjoberg,
Andrew Tolmach, and Brent Yorgey. 2025. Programming Language
Foundations. Software Foundations, Vol. 2. http://softwarefoundations.
cis.upenn.edu (Version 6.7).

Anders Schack-Nielsen and Carsten Schiirmann. 2010. Curry-style
explicit substitutions for the linear and affine lambda calculus. In Proc.
IJCAR 10 (Lect. Notes Comput. Sci., Vol. 6173), Jirgen Giesl and Reiner
Hahnle (Eds.). Springer, 1-14. doi:10.1007/978-3-642-14203-1_1
Kathrin Stark. 2019. Mechanising syntax with binders in Coq. Ph.D.
Dissertation. Saarland University, Saarbriicken. https://www.ps.uni-
saarland.de/~kstark/thesis/

Kathrin Stark, Steven Schifer, and Jonas Kaiser. 2019. Autosubst 2:
Reasoning with multi-sorted de Bruijn terms and vector substitutions.
In Proc. CPP 19, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM,
166—180. doi:10.1145/3293880.3294101

Philip Wadler. 2012. Propositions as sessions. In Proc. ICFP ’12. 273-286.
doi:10.1145/2364527.2364568

James Wood and Robert Atkey. 2022. A framework for substructural
type systems. In Proc. ESOP 22 (Lect. Notes Comput. Sci., Vol. 13240),
Ilya Sergey (Ed.). 376-402. doi:10.1007/978-3-030-99336-8_14

Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka.
2025. Split decisions: Explicit contexts for substructural languages. In
Proc. CPP °25. 257-271. doi:10.1145/3703595.3705888


https://doi.org/10.1007/11617990_1
https://doi.org/10.1007/978-3-642-10672-9_13
https://plv.mpi-sws.org/semantics-course/lecturenotes.pdf
https://plv.mpi-sws.org/semantics-course/lecturenotes.pdf
https://doi.org/10.1017/S0956796818000151
https://github.com/olaure01/yalla/
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1007/978-3-642-14203-1_1
https://www.ps.uni-saarland.de/~kstark/thesis/
https://www.ps.uni-saarland.de/~kstark/thesis/
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1145/3703595.3705888

	Abstract
	1 Substructural Contexts as Resource Vectors
	2 Implementation
	3 Case Studies
	4 Future Work
	References

