
Split Decisions: Explicit Contexts
for Substructural Languages

Daniel Zackon

McGill University

Montreal, Canada

daniel.zackon@mail.mcgill.ca

Chuta Sano

McGill University

Montreal, Canada

chuta.sano@mail.mcgill.ca

Alberto Momigliano

University of Milan

Milan, Italy

momigliano@di.unimi.it

Brigitte Pientka

McGill University

Montreal, Canada

brigitte.pientka@mcgill.ca

Abstract
A central challenge in mechanizing the meta-theory of sub-

structural languages is modeling contexts. Although various

ad hoc approaches to this problem exist, we lack a set of good

practices and a simple infrastructure that can be leveraged

for mechanizing a wide range of substructural systems.

In this work, we describe Contexts as Resource Vectors

(CARVe), a general syntactic infrastructure for managing

substructural contexts, where elements are annotated with

tags from a resource algebra denoting their availability. As-

sumptions persist as contexts are manipulated since we

model resource consumption by changing their tags. We

may thus define relations between substructural contexts via

simultaneous substitutions without the need to split them.

Moreover, we establish a series of algebraic properties about

context operations that are typically required to carry out

proofs in practice. CARVe is implemented in the proof assis-

tant Beluga.

To illustrate best practices for using our infrastructure,

we give a detailed reformulation of the linear sequent calcu-

lus and bidirectional linear 𝜆-calculus in terms of CARVe’s
context operations and prove their equivalence using the

aforementioned algebraic properties. In addition, we apply

CARVe to mechanize a diverse set of systems, from the affine

𝜆-calculus to the session-typed process calculusCP, giving us
confidence that CARVe is sufficiently general to mechanize

a broad range of substructural systems.

CCS Concepts: • Software and its engineering → Formal
software verification; • Theory of computation → Logic
and verification; Proof theory.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CPP ’25, January 20–21, 2025, Denver, CO, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1347-7/25/01

https://doi.org/10.1145/3703595.3705888

Keywords: mechanized meta-theory, substructural type sys-

tems, substructural logics, linear logic, verification

ACM Reference Format:
Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte

Pientka. 2025. Split Decisions: Explicit Contexts for Substructural

Languages. In Proceedings of the 14th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP ’25), January 20–
21, 2025, Denver, CO, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3703595.3705888

1 Introduction
Over the past decades, substructural type systems and logics

have been used to reason about resources in a wide range

of programming language applications, including quantum

computing [51], concurrent programming [5, 54], and mem-

ory management, as in Rust [36] and linear Haskell [4]. The

need for mechanized meta-theory to rigorously ensure the

trustworthiness of such systems is significant, as even seem-

ingly minor extensions can compromise basic safety proper-

ties. Still, mechanization is in general a major undertaking,

and substructurality demands further careful attention. In-

deed, mechanizing linearity is one of the challenges in the

recent Concurrent Calculi Formalisation Benchmark [8].

Substructural systems usually control and sometimes elim-

inate contraction (which permits a formula to be used more

than once) and weakening (which permits a formula to be

left unused).
1
Consequently, determining how to track and

allocate formulas, seen as resources, is a key challenge when

formalizing and proving meta-theoretical properties of these

substructural languages within a proof assistant.

Consider, for illustration, the following implicational frag-

ment of an intuitionistic linear sequent calculus.

𝐴 ⊢ 𝐴 (hyp)
Δ1 ⊢ 𝐴 Δ2, 𝐴 ⊢ 𝐵

Δ1,Δ2 ⊢ 𝐵
(cut)

Δ, 𝐴 ⊢ 𝐵
Δ ⊢ 𝐴 ⊸ 𝐵

(⊸R)
Δ1 ⊢ 𝐴 Δ2, 𝐵 ⊢ 𝐶
Δ1,Δ2, 𝐴 ⊸ 𝐵 ⊢ 𝐶 (⊸L)

1
By and large, these systems admit exchange, and sowe restrict our attention

to substructurality in the sense of controlling contraction and weakening.

257

https://orcid.org/0009-0008-6153-2955
https://orcid.org/0000-0002-8179-2307
https://orcid.org/0000-0003-0942-4777
https://orcid.org/0000-0002-2549-4276
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705888
https://doi.org/10.1145/3703595.3705888
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

Reading the (⊸L) rule bottom-up, we check that an as-

sumption 𝐴 ⊸ 𝐵 appears in the conclusion’s context and

consume it; then, we split up all other assumptions into two

pairwise disjoint subcontexts for the premises, and add to

one a new assumption 𝐵. From a mechanization standpoint,

it is usually sensible to make this splitting procedure explicit

with a context join operation Δ1 ⊲⊳ Δ2 = Δ that is both

commutative and associative. Yet splitting a context is funda-

mentally a non-deterministic process. The other rules above

present related considerations.

These context operations take on additional complexi-

ties in richer systems that involve not only linear but also

affine or even ordinary intuitionistic assumptions. Note in

particular the (hyp) rule, which enforces the linear usage

of propositions; with the addition of intuitionistic assump-

tions, encoding this rule requires checking that all linear

assumptions have been used in the context apart from 𝐴.

The prevailing approach to encoding substructural sys-

tems is to model contexts explicitly, typically as lists or

dictionaries, with a naïve non-deterministic splitting op-

eration resembling on-paper developments (see for exam-

ple [33, 52, 58]). Often, separate contexts are used to track

assumptions governed by different structural rules. While

this solution facilitates encodings that more faithfully mimic

their on-paper counterparts, they are inconvenient in re-

alistic implementations and incompatible with de Bruijn

encodings and explicit simultaneous substitutions [50]. Al-

ternative techniques have been developed with the aim of

eliminating or simplifying some of this overhead, including

leftover typing [1] and tracking variable usage through proof

terms [16, 47]. Though elegant, these solutions generally de-

mand substantial modifications to the on-paper formulation

of a calculus. Moreover, the first approach fits algorithmic

rather than declarative proof systems, while the latter seems

challenging to generalize to richer substructural logics such

as adjoint logic [31, 43].

In this paper, we follow an alternative strategy first out-

lined by Schack-Nielsen and Schürmann [48, 50]: we model

substructural typing contexts explicitly, parametric to some

algebra for specifying resource usage. As a result, users may

obtain contexts for particular substructural systems such

as linear or affine type systems “for free” by specifying a

suitable algebra. While variables are retained in contexts,

their resource annotations may change. Thus the underlying

context remains intact. Ignoring the usages, the rules of a

given substructural system closely resemble their intuition-

istic counterparts. This approach has two main advantages:

firstly, it is in principle compatible with a range of encod-

ings for binders, including de Bruijn, locally nameless, and

higher-order abstract syntax (HOAS); secondly, it lends itself

naturally to representing simultaneous substitutions without

splitting them.

Using this framework, we develop Contexts as Resource
Vectors (CARVe), a low-level syntactic infrastructure for

implementing substructural systems and reasoning about

their meta-theory. CARVe supports a small set of core con-

text operations defined as relations: merging (or splitting)

contexts, updating a given assumption in the context (ei-

ther its tag or the actual item stored), and checking whether

a context’s available resources have been consumed. From

these primitive operations we can define several other con-

text operations, including look-up and the permutation of

elements. We further implement simultaneous substitutions

as context relations. We establish a series of algebraic and

well-formedness properties of context operations that are re-

quired to carry out proofs in practice.CARVe is implemented

in the proof assistant Beluga [40, 41], which enables us to

explore multiple binding approaches—including de Bruijn

encodings and HOAS—and so to better understand CARVe’s
generality. Still, CARVe is not restricted to Beluga can in

principle be realized any proof assistant.

Our approach is related to that of Wood and Atkey [56,

57], whereby variables are annotated with values from a

skew semiring indicating their usage by terms. While they

take a category-theoretic perspective and use combinators

to manage resource vectors and syntax traversals, we define

context operations directly on the syntax of contexts—as

low-level relations on lists—together with meta-theoretic

properties. This makes our framework intuitive to use and

to apply to a wide range of systems.

To illustrate best practices for using our infrastructure,

we give a detailed reformulation of the linear sequent calcu-

lus and bidirectional linear 𝜆-calculus in terms of CARVe’s
context operations and prove their equivalence using the

aforementioned algebraic properties. In addition, we apply

CARVe to mechanize a diverse set of systems, giving us con-

fidence that CARVe is sufficiently general to mechanize a

broad range of substructural systems together with meta-

theoretic proofs. Beyond the cited equivalence proof, we

have mechanized cut-elimination for the linear sequent cal-

culus, type preservation for the affine and linear 𝜆-calculus

with both a substitution and environment-based operational

semantics, type preservation for the propositional fragment

of the session-typed process calculus CP [54], and a trans-

lation between the encoding of CP using CARVe and an

encoding using explicit linearity predicates to track resource

usage [47].

An artifact [59] containing the full formalization may be

downloaded directly from

https://zenodo.org/records/13777001.

Further information about the artifact, including a paper-to-

artifact correspondence guide and instructions for installa-

tion and execution, may be found in the README.md file.

258

https://zenodo.org/records/13777001

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

2 Contexts as Resource Vectors: An
Infrastructure

The representation of contexts is central when implementing

and reasoning about systems that support variable binding

mechanisms such as programming languages, type systems,

and logics. The prevalent and natural choice for these sys-

tems is to model contexts as lists of assumptions. We follow

in this tradition. In CARVe, context entries will be typed

variables 𝑥 : 𝐴 annotated with elements 𝛼 of some algebra,

to be read asmultiplicities. (For presentation purposes, we de-
tail the case where we have names, but the approach works

seamlessly in a nameless setting.) Informally, multiplicities

specify the availability of a resource, and the associated al-

gebraic structure sets out how they may be subdivided and

composed.

Our definition of contexts does not assume well-formed-
ness, in the sense of variable names being pairwise distinct.

While this is needed when proving properties like type

uniqueness, for generality and concision we choose to keep

the infrastructure agnostic to whether and how well-form-

edness is enforced. It is, however, an invariant that CARVe’s
primitive context operations will preserve.

In the remainder of this section, we will outline these oper-

ations and the properties they possess, organized into three

key themes: resource allocation, exhaustedness, and context
search and manipulation.

2.1 Resource Allocation
One difficulty in mechanizing multi-premise multiplicative

rules like (⊸L) in section 1 is determining how to split con-

texts to allocate resources. The central idea behind our ap-

proach is to keep contexts intact as they are joined and split,

with only their multiplicities differing. In other words, in-

stead of merging two disjoint contexts, we “weave together”

compatible multiplicities at each position of a single context.

We define an explicit non-deterministic split—or, viewed

differently, deterministic merge—operation ⊲⊳◦ on contexts,

which is parametrized by a binary operation ◦ over some

algebraic structure.

The operation ◦may be partial, and hence so may ⊲⊳◦. Fol-
lowing Dockins et al. [18], we will present these operations
as ternary relations between multiplicities and contexts, re-

spectively. Every proof assistant supports this presentation,

which is simpler to accommodate compared to a functional

one, where partiality tends to take its toll.

Context merge is inductively defined by the rules:

· ⊲⊳◦ · = ·
Δ1 ⊲⊳◦ Δ2 = Δ 𝛼1 ◦ 𝛼2 = 𝛼

(Δ1, 𝑥 :
𝛼1 𝐴) ⊲⊳◦ (Δ2, 𝑥 :

𝛼2 𝐴) = Δ, 𝑥 :
𝛼 𝐴

Different choices of resource algebras encode different

substructural properties. We will, for the present, focus our

attention on the monoid

L = ({0, 1}, •, 0)

that characterizes allocation for linear or affine contexts,

where • is defined by the following multiplication table:

• 0 1

0 0 1

1 1 –

The multiplicity 1 denotes a variable available exactly once.

A variable of multiplicity 0 is irrelevant in the current branch

of a derivation: it was either never available, has been pre-

viously consumed, or is available linearly elsewhere. Note

that the operation • is partial, as 1 • 1 is left undefined (−).
As is well-known, L satisfies several desirable algebraic

properties. Notably, it is

• Functional: 𝛼 • 𝛽 = 𝛾 and 𝛼 • 𝛽 = 𝛾 ′
imply 𝛾 = 𝛾 ′

;

• Cancellative: 𝛼 • 𝛽 = 𝛾 and 𝛼 ′ • 𝛽 = 𝛾 imply 𝛼 = 𝛼 ′
;

• Commutative: 𝛼 • 𝛽 = 𝛾 implies 𝛽 • 𝛼 = 𝛾 ; and

• Zero-sum-free: 𝛼 • 𝛽 = 0 implies 𝛼 = 𝛽 = 0.

The latter property prevents used resources from arbitrarily

transforming into linear ones.

In addition to its modularity, this construction has the

advantage of allowing the underlying algebraic structure to

naturally impose itself on ⊲⊳◦. Specifically:

Proposition 2.1. Let Δ = 𝑥1 :
𝛼1 𝐴1, . . . , 𝑥𝑛 :

𝛼𝑛 𝐴𝑛 be a
context and M = (𝑀, ◦, 𝑖) a monoid. Then

ΔM B ({𝑥1 :𝛽1 𝐴1, . . . , 𝑥𝑛 :
𝛽𝑛 𝐴𝑛 | 𝛽1, . . . , 𝛽𝑛 ∈ 𝑀}, ⊲⊳◦, 𝑖Δ)

is a monoid. Moreover, if M is commutative, then ΔM is
commutative, and so forth.

Here 𝛼Δ denotes the result of setting all multiplicities in a

context Δ to 𝛼 .

Context merge also preserves well-formedness:

Proposition 2.2. Suppose Δ1 ⊲⊳ Δ2 = Δ. Then the following
are equivalent: (1) Δ1 is well-formed, (2) Δ2 is well-formed,
and (3) Δ is well-formed.

2.2 Exhaustedness
In substructural logics, it is common for a rule to demand an

empty context, such as the right rule for the multiplicative

unit of the linear sequent calculus. In our tag-based approach,

where context elements persist, this is enforced by requiring

that the context contain only “harmless” assumptions, in

the sense that they are subject to weakening. We call such

a context exhausted, denoted by exh(Δ). Exhaustedness can
also be used to enforce that a context is singleton, as in the

case of the axiom rule of the linear sequent calculus (see

section 3).

Checking that a context is exhausted entails checking the

harmlessness of its elements. This check will depend on the

chosen algebra or the system being encoded. For systems

using L as a resource algebra, only used assumptions of mul-

tiplicity 0 are regarded as harmless. Unrestricted assumptions

will be considered harmless in systems that support them

(see section 5).

259

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

When only the algebraic unit is deemed harmless, as in

the linear case, an exhausted context corresponds to the unit

element of the context monoid from Proposition 2.1.

2.3 Context Search and Manipulation
Though extending a context with a new assumption or deter-

mining its top-most element are simple tasks, a more careful

approach is needed for arbitrary context search and manip-

ulation. In line with our principle of preserving contexts

as they are split, multiplicity tags enable us to effectively

model changes in resource availability by simply updating a

variable’s multiplicity.

In the linear or affine case, this means modifying a vari-

able’s tag from 1 to 0 or vice versa. Some applications (e.g.,
[54]) also require changing the types of variables as computa-

tion occurs. Accordingly, we choose to take a general version

of context updating as a primitive in its own right, which

can be used to implement updating the type and multiplicity

of a variable as a special case. We write

Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] = Δ′

to mean that 𝑥 :
𝛼 𝐴 appears at the 𝑛-th position from the

head of Δ, and replacing its occurrence in Δ with 𝑦 :
𝛽 𝐵

results in the context Δ′
. It is defined in the expected manner

by recursively traversing the context:

(Δ, 𝑥 :
𝛼 𝐴) [𝑥 :

𝛼 𝐴 ↦→ |Δ |+1 𝑦 :
𝛽 𝐵] = Δ, 𝑦 :

𝛽 𝐵

Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] = Δ′

(Δ, 𝑧 :
𝛾 𝐶) [𝑥 :

𝛼 𝐴 ↦→𝑛 𝑦 :
𝛽 𝐵] = Δ′, 𝑧 :

𝛾 𝐶

As with merge, we define updating relationally. For sim-

plicity of notation, and as updating is functional and look-up

unique by Proposition 2.3, we will at times abuse notation

and use Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] to represent the resulting con-

text (and thus, implicitly, state the existence of 𝑥 :
𝛼 𝐴 some-

where in Δ). We also omit the index 𝑛 where it is inessential.

Conversely, when adopting a nameless approach using,

e.g., de Bruijn indices, all information about names may be

dropped in favor of information about location. Still, we

permit names to be updated in the general definition. This al-

lows us to define variable swappingwithin a context, denoted

Δ[𝑥 ⇄ 𝑦], crucial in proving the admissibility of exchange

without needing a separate predicate for permuting context

elements:

Δ[𝑥 ⇄ 𝑦] = Δ′
:≡

Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] [𝑦 :
𝛽 𝐵 ↦→𝑚 𝑥 :

𝛼 𝐴] = Δ′

for some 𝑛 ≠𝑚

(The condition 𝑛 ≠𝑚 ensures that the𝑦 in the second update

is an element of Δ, rather than the one newly created at 𝑛.)

One may also define context membership properties like

the following via updating:

𝑥 :
𝛼 𝐴 ∈𝑛 Δ :≡Δ[𝑥 :

𝛼 𝐴 ↦→𝑛 𝑥 :
𝛼 𝐴] = Δ

𝑥 :
𝛼 𝐴 ∈ Δ :≡Δ[𝑥 :

𝛼 𝐴 ↦→𝑛 𝑥 :
𝛼 𝐴] = Δ for some 𝑛

Having a single operation in this way significantly reduces

the number of lemmas needed for reasoning about the ma-

nipulation of contexts. Furthermore, context updating has a

range of useful properties that may be exploited in proofs.

If we regard updating as a relation between two contexts,

and the information in the square brackets as labels, then

the set of well-formed contexts (of some fixed length) forms

a labeled transition system satisfying the following.

Proposition 2.3. Context updating satisfies the following.
Functionality: If Δ[𝑥 :

𝛼 𝐴 ↦→𝑛 𝑦 :
𝛽 𝐵] = Δ′ and

Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] = Δ′′, then Δ′ = Δ′′;
Reflexivity: If 𝑥 :

𝛼 𝐴 appears at the 𝑛-th position of Δ, then
Δ[𝑥 :

𝛼 𝐴 ↦→𝑛 𝑥 :
𝛼 𝐴] = Δ;

Symmetry: Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] = Δ′ implies
Δ′[𝑦 :

𝛽 𝐵 ↦→𝑛 𝑥 :
𝛼 𝐴] = Δ;

Transitivity: Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑦 :

𝛽 𝐵] [𝑦 :
𝛽 𝐵 ↦→𝑛 𝑧 :

𝛾 𝐶] =

Δ[𝑥 :
𝛼 𝐴 ↦→𝑛 𝑧 :

𝛾 𝐶];
Confluence:

Δ[𝑥1 :
𝛼1 𝐴1 ↦→𝑛 𝑥2 :

𝛼2 𝐴2] [𝑦1 :
𝛽1 𝐵1 ↦→𝑚 𝑦2 :

𝛽2 𝐵2] =

Δ[𝑦1 :𝛽1 𝐵1 ↦→𝑚 𝑦2 :
𝛽2 𝐵2] [𝑥1 :𝛼1 𝐴1 ↦→𝑛 𝑥2 :

𝛼2 𝐴2]; and
Distributivity over ⊲⊳◦:

Δ1 [𝑥 :
𝛼1 𝐴 ↦→𝑛 𝑦 :

𝛽1 𝐵] ⊲⊳◦ Δ2 [𝑥 :
𝛼2 𝐴 ↦→𝑛 𝑦 :

𝛽2 𝐵] =
(Δ1 ⊲⊳◦ Δ2) [𝑥 :

𝛼 𝐴 ↦→𝑛 𝑦 :
𝛽1◦𝛽2 𝐵].

We also have various look-up properties:

Proposition 2.4. Context look-up satisfies the following.
Uniqueness: If 𝑥 :

𝛼 𝐴 ∈𝑛 Δ and 𝑦 :
𝛽 𝐵 ∈𝑛 Δ, then 𝑥 = 𝑦,

𝐴 = 𝐵, and 𝛼 = 𝛽 ;
Preservation under update: If 𝑥 :

𝛼 𝐴 ∈𝑛 Δ,
Δ[𝑦 :

𝛽 𝐵 ↦→𝑚 𝑧 :
𝛾 𝐶] = Δ′, and 𝑛 ≠𝑚, then

𝑥 :
𝛼 𝐴 ∈𝑛 Δ′;

Preservation under splits: If 𝑥 :
𝛼 𝐴 ∈𝑛 Δ and Δ1 ⊲⊳◦ Δ2 = Δ,

then 𝑥 :
𝛼1 𝐴 ∈𝑛 Δ1 and 𝑥 :

𝛼2 𝐴 ∈𝑛 Δ2 for some 𝛼1, 𝛼2 such
that 𝛼1 ◦ 𝛼2 = 𝛼 ; and

Preservation under merge: If 𝑥 :
𝛼 𝐴 ∈𝑛 Δ1 and Δ1 ⊲⊳◦ Δ2 = Δ,

then 𝑥 :
𝛼2 𝐴 ∈𝑛 Δ2 and 𝑥 :

𝛼 𝐴 ∈𝑛 Δ for some 𝛼2, 𝛼 such
that 𝛼1 ◦ 𝛼2 = 𝛼 .

For some of the properties mentioned above, allowing

indices to be arbitrary necessitates additional assumptions

about well-formedness. Updating interacts with well-formed-

ness as expected:

Proposition 2.5. Let Δ be well-formed and 𝑥 :
𝛼 𝐴 ∈𝑛 Δ.

Then the following properties hold:
Variable uniqueness: If 𝑦 :

𝛽 𝐵 ∈𝑚 Δ, then 𝑥 = 𝑦 if and only if
𝑛 =𝑚; and

Preservation under update: If 𝑥 = 𝑦 or 𝑦 ∉ Δ, then
Δ[𝑥 :

𝛼 𝐴 ↦→𝑛 𝑦 :
𝛽 𝐵] is well-formed for any 𝛽, 𝐵.

260

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

3 CARVe in Action
In this section we will present a high-level look at how sys-

tems may be reformulated using CARVe. (We will discuss

their actual mechanizations together with more low-level

details in section 4.) We revisit the linear sequent calculus

introduced in section 1 alongside a bidirectional linear nat-

ural deduction calculus with proof terms, and sketch out a

proof of their equivalence.

3.1 Reformulating with CARVe
Let us use the turnstile ⊩ to distinguish typing judgments

in the CARVe setting. We will parameterize contexts by the

monoid L of subsection 2.1; for simplicity of notation, we

will write ⊲⊳ for ⊲⊳• throughout this section.
Consider first the hypothesis rule of the linear sequent

calculus. If Δ ⊩ 𝐴 is derived therefrom, then 𝐴 appears as

the type of some linear variable somewhere in Δ, and “using
it up” results in an exhausted context:

Δ[𝑥 :
1 𝐴 ↦→ 𝑥 :

0 𝐴] = Δ′ exh(Δ′)
Δ ⊩ 𝐴

If Δ ⊩ 𝐴 ⊸ 𝐵 is derived from the ⊸ right rule, then

adding a fresh linear variable to Δ of type𝐴 should give us 𝐵.

We follow the principle that, reading derivations bottom-up,

contexts grow with new variables pushed to the top of the

context.

Δ, 𝑥 :
1 𝐴 ⊩ 𝐵

Δ ⊩ 𝐴 ⊸ 𝐵

If Δ ⊩ 𝐶 is derived from the⊸ left rule, then (1) 𝑥 :
1 𝐴 ⊸

𝐵 appears somewhere in Δ for some 𝑥 ; and (2) using 𝑥 results

in a context that can be split into subcontexts Δ1 and Δ2 such

that (a) Δ1 ⊩ 𝐴 and (b) Δ2, 𝑦 :
1 𝐵 ⊩ 𝐶:

Δ1 ⊲⊳ Δ2 = Δ′

Δ[𝑥 :
1 𝐴 ⊸ 𝐵 ↦→ 𝑥 :

0 𝐴 ⊸ 𝐵] = Δ′
Δ1 ⊩ 𝐴

Δ2, 𝑦 :
1 𝐵 ⊩ 𝐶

Δ ⊩ 𝐶

Reformulating the cut rule is similar.

Δ1 ⊲⊳ Δ2 = Δ Δ1 ⊢ 𝐴 Δ2, 𝑥 :
1 𝐴 ⊢ 𝐵

Δ ⊢ 𝐵

Next, we formulate a bidirectional linear natural deduction

calculus in CARVe following the same principles.

Δ ⊩ 𝑒 ⇐ 𝐴

Δ ⊩ (𝑒 : 𝐴) ⇒ 𝐴

Δ ⊩ 𝑒 ⇒ 𝐴

Δ ⊩ 𝑒 ⇐ 𝐴

Δ[𝑥 :
1 𝐴 ↦→ 𝑥 :

0 𝐴] = Δ′ exh(Δ′)
Δ ⊩ 𝑥 ⇒ 𝐴

Δ, 𝑥 :
1 𝐴 ⊩ 𝑒 ⇐ 𝐵

Δ ⊩ 𝜆𝑥. 𝑒 ⇐ 𝐴 ⊸ 𝐵

Δ1 ⊲⊳ Δ2 = Δ Δ1 ⊩ 𝑒1 ⇒ 𝐴 ⊸ 𝐵 Δ2 ⊩ 𝑒2 ⇐ 𝐴

Δ ⊩ 𝑒1𝑒2 ⇒ 𝐵

3.2 Equivalence Theorem
To showcase how CARVe lends itself well to proofs using

simultaneous substitution, we take this approach to prove

the two linear systems’ equivalence. A benefit of this proof

is that it preserves the structure of the derivation between

the two systems.

We define well-typed simultaneous substitutions (judg-

ment Δ1 ⊩ 𝜎 : Γ), which map variables to terms, as follows.

exh(Δ)
Δ ⊩ · : ·

Δ1 ⊩ 𝜎 : Γ Δ2 ⊩ 𝑒 ⇐ 𝐶 Δ1 ⊲⊳ Δ2 = Δ

Δ ⊩ (𝜎, 𝑒) : (Γ, 𝑥 :
1 𝐶)

Δ ⊩ 𝜎 : Γ Δ′ ⊩ 𝑒 ⇐ 𝐶 0Δ = 0Δ′

Δ ⊩ (𝜎, 𝑒) : (Γ, 𝑥 :
0 𝐶)

As per [50], since the structure of the typing contexts remain

intact as their resources are subdivided, we avoid splitting

the substitution. In the final rule, the premise 0Δ = 0Δ′

permits 𝑒 to use an arbitrary collection of assumptions in Δ,
regardless of their availability.

We state three properties of this substitution:

Lemma 3.1 (Properties of substitution).
1. Exhaustedness: If Δ ⊩ 𝜎 : Γ and exh(Γ), then exh(Δ);
2. Merge: If Δ ⊩ 𝜎 : Γ and Γ = Γ1 ⊲⊳ Γ2, then Δ1 ⊩ 𝜎 : Γ1

and Δ2 ⊩ 𝜎 : Γ2 for some Δ1,Δ2 such that Δ = Δ1 ⊲⊳ Δ2.
3. Resource consumption: If Δ ⊩ 𝜎 : Γ and Γ [𝑥 :

1 𝐴 ↦→
𝑥 :

0 𝐴] = Γ′, then Δ1 ⊩ 𝜎 : Γ′ and Δ2 ⊩ 𝑒 ⇐ 𝐴 for
some Δ1,Δ2, 𝑒 such that Δ = Δ1 ⊲⊳ Δ2.

The second lemma asserts that substitutions remain stable

under context splits, and the third enables one to “carry over”

a substitution term to an updated context.

We are now prepared to sketch a proof of the two systems’

equivalence. Throughout, we will assign names to derived

judgments for a later comparison with a mechanized proof

of the same in section 4.2.

Theorem 3.2 (Equivalence).
1. If Γ ⊩ 𝐶 and Δ ⊩ 𝜎 : Γ, then Δ ⊩ 𝑒 ⇐ 𝐶 for some 𝑒 ;
2. If Δ ⊩ 𝑒 ⇐ 𝐶 , then Δ ⊩ 𝐶 ; and
3. If Δ1 ⊩ 𝑒 ⇒ 𝐴 and Δ2, 𝑥 :

1 𝐴 ⊩ 𝐶 , and Δ1 ⊲⊳ Δ2 = Δ,
then Δ ⊩ 𝐶 .

Proof. The proof of the first statement by structural induction

on the first typing derivation. Let us denote by D,S the

initial assumptions. We consider two representative cases.

First, suppose that the last rule in the typing derivation

was (hyp). Then

a. U : Γ [𝑥 :
1 𝐶 ↦→ 𝑥 :

0 𝐶] = Γ′ and E1 : exh(Γ′)
by inversion on D

b. S1 : Δ1 ⊩ 𝜎 : Γ′ and C1 : Δ2 ⊩ 𝑒 ⇐ 𝐶 , and

M1 : Δ1 ⊲⊳ Δ2 = Δ for some 𝑒,Δ1,Δ2

by Lemma 3.1 (3) using S,U
c. E2 : exh(Δ1) by Lemma 3.1 (1) using S1, E1

d. Δ2 = Δ by identity property of ⊲⊳ usingM1, E2

261

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

e. Δ ⊩ 𝑒 ⇐ 𝐶 by C1

The second case we consider is where the last rule in the

typing derivation was (⊸L). In this case:

a. U : Γ [𝑥 :
1 𝐴 ⊸ 𝐵 ↦→ 𝑥 :

0 𝐴 ⊸ 𝐵] = Γ′,
M1 : Γ1 ⊲⊳ Γ2 = Γ′,D1 : Γ1 ⊩ 𝐴, andD2 : Γ2, 𝑦 :

1 𝐵 ⊩ 𝐶
by inversion on D

b. S1 : Δ1,2 ⊩ 𝜎 : Γ′, D1 : Δ3 ⊩ 𝑒1 ⇐ 𝐴 ⊸ 𝐵, and

M2 : Δ1,2 ⊲⊳ Δ3 = Δ for some 𝑒1,Δ1,2,Δ3

by Lemma 3.1 (3) using U, S
c. S2 : Δ1 ⊩ 𝜎 : Γ1, S3 : Δ2 ⊩ 𝜎 : Γ2, andM3 : Δ1 ⊲⊳ Δ2 =

Δ1,2 for some Δ1,Δ2 by Lemma 3.1 (2) with S1,M1

d. M3 : Δ2 ⊲⊳ Δ3,1 = Δ, M4 : Δ3 ⊲⊳ Δ1 = Δ3,1 for some

Δ3,1 by assoc., comm. of ⊲⊳ usingM2,M3

e. D2 : Δ1 ⊩ 𝑒2 ⇐ 𝐴 for some 𝑒2 by I.H. using D1, S2

f. D3 : Δ3,1 ⊩ 𝑒1 (𝑒2 : 𝐴 ⊸ 𝐵) ⇒ 𝐵

by (coe), (⊸E) with D1,D2,M4

g. D ′
3
: Δ3,1 ⊩ 𝑒1 (𝑒2 : 𝐴 ⊸ 𝐵) ⇐ 𝐵 by (conv) with D3

h. S4 : Δ ⊩ 𝜎2, 𝑒1 𝑒2 : Γ2, 𝑦 :
1 𝐵 by def. using S3, D ′

3
,M5

i. Δ ⊩ 𝑒 ⇐ 𝐶 for some 𝑒 by I.H. using D2, S4

The proofs of the second and third statements are by mu-

tual induction on the first derivation, appealing to the alge-

braic properties of merge. □

4 Implementation and Case Studies
The infrastructure presented in section 2 has been imple-

mented in Beluga [40], a dependently-typed proof environ-

ment based on the logical framework LF, which uses an

underlying 𝜆-calculus as a meta-language for representing

and reasoning about deductive systems [29]. In this section

we will present an overview of the implementation and the

case studies encoded. A table summarizing lemma usage in

the mechanizations may be found in subsection 4.3. We refer

the reader to the artifact [59] containing the formalization

for full details.

4.1 Implementing CARVe
Building on Crary’s [15] study of explicit contexts in LF, we
use higher-order representations for syntax and represent

object-level substructural typing contexts as lists. Their type

family—indexed by length—is defined in the standard way.

LF lctx : nat) type =

| nil : lctx zero

| cons : lctx N) obj) tp) mult) lctx (suc N);

The objects that appear as resources in explicit contexts

(e.g., variables, channel names) are assigned the type obj

: type. When these are simply variables, the type will be

defined with no constructors; instead, assumptions of type

obj will be collected in an LF context Ψ classified by the

schema schema ctx = obj. (In a nameless setting, one may

leave the LF context empty so long as a constructor is defined

for obj.)

The type tp : type encodes object-level types, and mult :

type multiplicities. In all but one of the case studies in this

section, contexts will be parameterized by the monoid L.

LF mult : type =

| 0 : mult

| 1 : mult;

LF • : mult) mult) mult) type =

| •/00 : • 0 0 0

| •/10 : • 1 0 1

| •/01 : • 0 1 1;

Since the general definition of exhausted contexts is inde-

pendent of any specific algebraic structure, we define the

allowed “harmless” multiplicities using the type hal:

LF hal : mult) type =

| hal/0 : hal 0;

Context Operations. Merging, updating, looking up a

variable, and exhaustedness checks are represented in LF by

the following.

LF merge : lctx N) lctx N) lctx N) type =

| mg/n : merge nil nil nil

| mg/c : merge Δ1 Δ2 Δ) • 𝛼1 𝛼2 𝛼

) merge (cons Δ1 X A 𝛼1) (cons Δ2 X A 𝛼2) (cons Δ X A 𝛼);

LF upd : lctx N) nat) obj) obj) tp) tp) mult) mult

) lctx N) type =

| upd/t : {Δ:lctx N}

upd (cons Δ X A 𝛼) (suc N) X Y A B 𝛼 𝛽 (cons Δ Y B 𝛽)

| upd/n : upd Δ n X Y A B 𝛼 𝛽 Δ'

) upd (cons Δ Z C 𝛾) n X Y A B 𝛼 𝛽 (cons Δ' Z C 𝛾);

LF lookup_n : obj) lctx _) type =

| lookn : upd Δ _ X _ _ _ _ _ _) lookup_n X Δ;

LF exh : lctx _) type =

| exh/n : exh nil

| exh/c : exh Δ) hal 𝛼) exh (cons Δ _ _ 𝛼);

The underscores _ above indicate holes that may be inferred

by Beluga’s type reconstruction.

Well-formedness. Our implementation of CARVe cannot
enforce well-formedness at the LF level where we specify

typing rules, since variables are maintained at the meta-

level. While HOAS directly enforces the freshness of new
variables, this is not “known” at the meta-level. We eschew

non-declarative solutions such as in [15] and encode well-

formedness as a meta-level predicate on contexts. Specifi-

cally, we define a computation-level inductive type Wf in-
dexed by a typing context [Ψ ⊢ Δ] as a contextual object [38].
(Here Ψ is the ambient LF context for variable names and Δ
is the explicit typing context.)

false : type.

inductive Wf : (Ψ:ctx) {Δ:[Ψ ⊢ lctx N]} ctype =

| Wf/n : Wf [Ψ ⊢ nil]

| Wf/c : Wf [Ψ ⊢ Δ]) ([Ψ ⊢ lookup_n #p Δ]) [⊢ false])

) Wf [Ψ ⊢ cons Δ #p A 𝛼];

262

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

The parentheses around the parameter Ψ:ctx indicate that it

is treated implicitly. The constructor Wf/n defines the well-

formedness of the empty context under any LF context. The

second constructor Wf/c specifies the inductive case where

we can extend Δ with 𝑥 only if 𝑥 is a parameter variable

(enforced by the tag #) and is not in the context’s domain.

We do so with a function that produces from an object of

type [Ψ ⊢ 𝑥 ∈ Δ] an object of the uninhabited type [⊢ false],
representing a contradiction.

Properties. Let us consider the commutativity of merge

as an example of how properties about CARVe context op-
erations may be represented in Beluga. The proof is imple-

mented as a total recursive function.

rec merge_comm :

(Ψ:ctx) [Ψ ⊢ merge Δ1 Δ2 Δ]) [Ψ ⊢ merge Δ2 Δ1 Δ] =

The above type signature states that, given a proof of Δ1 ⊲⊳

Δ2 = Δ under the LF context Ψ, we may obtain a proof of

Δ2 ⊲⊳ Δ1 = Δ. The property is easily proved by pattern

matching:

fn mg ⇒ % introduce object of type [Ψ ⊢ merge Δ1 Δ2 Δ]
case mg of % pattern match on mg

| [Ψ ⊢ mg/n] ⇒ [Ψ ⊢ mg/n] % nil case

| [Ψ ⊢ mg/c M1 T1] ⇒ % cons case

let [Ψ ⊢ M2] = merge_comm [Ψ ⊢ M1] in % invoke IH

let [Ψ ⊢ T2] = mult_comm [Ψ ⊢ T1] in % lemma

[Ψ ⊢ mg/c M2 T2];

where the commutativity of •
rec mult_comm : [⊢ • 𝛼1 𝛼2 𝛼]) [⊢ • 𝛼2 𝛼1 𝛼] = ... ;

is used as a lemma in the induction step.

4.2 Case Studies
We have used CARVe to mechanize and prove meta-theoreti-

cal properties about a variety of formal systems: the linear

sequent calculus, the bidirectional linear natural deduction

calculus, the session-typed process calculus CP, the linear
and the affine 𝜆-calculus. For space considerations, we will

narrow our focus on the first three systems, while briefly

touching on some distinguishing features of the others.

Linear Natural Deduction and Sequent Calculi. Let
us restrict our attention to the implicational fragments of

these systems introduced in section 3. To represent terms

from the linear natural deduction calculus, we reuse the type

obj, making use of HOAS to encode 𝜆-terms.

LF obj : type = LF tp : type =

| coerce : obj) tp) obj | base : tp

| lam : (obj) obj)) obj | -o : tp) tp) tp;

| app : obj) obj) obj; --infix -o 5 right.

We represent the typing judgments Δ ⊩ 𝑒 ⇒ 𝐴 and Δ ⊩ 𝑒 ⇐
𝐴 using mutually-recursive data-types

LF syn : lctx _) obj) tp) type =

| coe : chk Δ e A) syn Δ (coerce e A) A

| init : upd Δ _ X X A A 1 0 Δ') exh Δ') syn Δ X A

| E-o : syn Δ1 s (A -o B)) chk Δ2 e A

) merge Δ1 Δ2 Δ) syn Δ (app s e) B

and LF chk : lctx _) obj) tp) type =

| conv : syn Δ e A) chk Δ e A

| I-o : ({x:obj} chk (cons Δ x A 1) (e x) B)

) chk Δ (lam e) (A -o B);

and the sequent calculus typing judgment Δ ⊩ 𝐴 by:

LF seq : lctx _) tp) type =

| var : upd Δ _ X X A A 1 0 Δ') exh Δ') seq Δ A

| cut : merge Δ1 Δ2 Δ

) seq Δ1 A) ({x:obj} seq (cons Δ2 x A 1) C)

) seq Δ C

| R-o : ({x:obj} seq (cons Δ x A 1) B)) seq Δ (A -o B)

| L-o : upd Δ _ X X (A -o B) (A -o B) 1 0 Δ'

) merge Δ1 Δ2 Δ'

) seq Δ1 A) ({x:obj} seq (cons Δ2 x B 1) C)

) seq Δ C;

We encode simultaneous substitutions 𝜎 as lists of terms:

LF subst : nat) type =

| empty : subst zero

| scons : subst N) obj) subst (suc N);

Next, the well-typed substitution judgment Δ ⊩ 𝜎 : Γ pro-

vides a mapping from 𝜎 to each variable in Γ.

LF wf_subst : lctx _) subst N) lctx N) type =

| wf_subst_empty : exh Δ) wf_subst Δ empty nil

| wf_subst_cons1 : wf_subst Δ1 𝜎 Γ

) chk Δ2 e T) merge Δ1 Δ2 Δ

) wf_subst Δ (scons 𝜎 e) (cons Γ _ T 1)

| wf_subst_cons0 : wf_subst Δ 𝜎 Γ

) chk Δ' e T) same_elts Δ Δ'

) wf_subst Δ (scons 𝜎 e) (cons Γ _ T 0);

The assumption same_elts Δ Δ' corresponds to the premise

0Δ = 0Δ′
in the on-paper definition.

As Beluga does not support existential quantification di-

rectly, we encode the existence of a term 𝑒 such that Δ ⊩
𝑒 ⇐ 𝐶 with the type inhabit.

LF inhabit : lctx _) tp) type =

| inh : chk Δ _ C) inhabit Δ C;

We are now ready to present the forward direction of the

equivalence proof. Figure 1 includes the two cases presented

in subsection 3.1, where the code is annotated with the cor-

responding line numbers from the earlier on-paper proof.

The proofs are identical to that presentation, with two ex-

ceptions, marked with an asterisk: the substitution judgment

must at one point be unboxed, and we must invoke a “prun-

ing” lemma to strengthen the LF context. Signatures of all

lemmas used may be found in Appendix A.

The artifact contains the proof of the other direction as

well as a proof of cut elimination for the linear sequent

calculus.

263

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

rec seq2nd : (Ψ:ctx) [Ψ ⊢ seq Γ C]) [Ψ ⊢ wf_subst Δ 𝜎 Γ]

) [Ψ ⊢ inhabit Δ C] =

fn d, s ⇒ case d of

% (hyp) case

| [Ψ ⊢ var U E1] ⇒ % a

let [Ψ ⊢ S] = s in % *

let [Ψ ⊢ sub-up S1 C1 M1 _ _] =

subst_upd [Ψ ⊢ S] [Ψ ⊢ U] in % b

let E2 = subst_exh [Ψ ⊢ S1] [Ψ ⊢ E1] in % c

let [Ψ ⊢ cx/refl] = merge_id [Ψ ⊢ M1] E2 in % d

[Ψ ⊢ inh C1] % e

% (-o L) case

| [Ψ ⊢ L-o U M1 D1 \x.D2] ⇒ % a

let [Ψ ⊢ S] = s in % *

let [Ψ ⊢ sub-up S1 D1 M2 _ _] =

subst_upd [Ψ ⊢ S] [Ψ ⊢ U] in % b

let [Ψ ⊢ sub-mg S2 S3 M3 _ _] =

subst_merge [Ψ ⊢ S1] [Ψ ⊢ M1] in % c

let [Ψ ⊢ M3'] = merge_comm [Ψ ⊢ M3] in % d

let [Ψ ⊢ mg-assoc M4' M5 _ _] =

merge_assoc [Ψ ⊢ M2] [Ψ ⊢ M3'] in % d

let [Ψ ⊢ M4] = merge_comm [Ψ ⊢ M4'] in % d

let [Ψ ⊢ inh D2] = seq2nd [Ψ ⊢ D1] [Ψ ⊢ S2] in % e

let [Ψ ⊢ D3] = [Ψ ⊢ E-o (coe D1) D2 M4] in % f

let [Ψ ⊢ D3'] = [Ψ ⊢ conv D3] in % g

let [Ψ ⊢ S4] = [Ψ ⊢ wf_subst_cons1 S3 D3' M5] in % h

let [_,x:obj ⊢ inh D4'] =

seq2nd [Ψ,x:obj ⊢ D2] [Ψ,x:obj ⊢ S4[..]] in % i

let Prune-Chk [Ψ ⊢ D4] [Ψ,x:obj ⊢ _] =

prune_chk [Ψ,x:obj ⊢ D4'] in % *

[Ψ ⊢ inh D4]

Figure 1. Code fragment of one direction of the equivalence

proof

CP. Another system encoded using CARVe is the multipl-

icative-additive fragment of the session-typed process cal-

culus CP [54]. CP’s process language is a variant of the

𝜋-calculus, and its type system is obtained directly from clas-

sical linear logic [26]. In session-typed systems, variables in

typing contexts represent names of channels, communication

over which is prescribed by their session types: we interpret
the typing judgment 𝑃 ⊢ 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 as stating

“process 𝑃 uses each channel 𝑥𝑖 exactly once according to

protocol 𝐴𝑖 .”

For instance, the two structural rules in classical linear

logic—identity and cut—correspond to message forwarding

and parallel composition, respectively. The process 𝑥 ↔ 𝑦

links two dual channels, under the condition that all other

channels have already been used. The process 𝜈𝑥 : 𝐴.(𝑃 ∥𝑄)
spawns a fresh channel with dual endpoints along which

processes 𝑃 and 𝑄 can communicate.

exh(Δ[𝑦 :
1 𝐴⊥ ↦→ 𝑦 :

0 𝐴⊥] [𝑥 :
1 𝐴 ↦→ 𝑥 :

0 𝐴])
𝑥 ↔ 𝑦 ⊢ Δ

(hyp)

𝑃 ⊢ Δ1, 𝑥 : 𝐴 𝑄 ⊢ Δ2, 𝑥 : 𝐴⊥ Δ1 ⊲⊳ Δ2 = Δ

𝜈𝑥 : 𝐴.(𝑃 ∥ 𝑄) ⊢ Δ
(cut)

In the forwarding rule, the choice to consume 𝑦 before 𝑥

is arbitrary; by confluence (Proposition 2.3), we could well

have done the reverse.

The internal choice processes 𝑥 [inl]; 𝑃 and 𝑥 [inr]; 𝑃 send

a binary choice label along 𝑥 and continue as 𝑃 . Dually, the

external choice process 𝑥 .case(𝑃, 𝑄) offers a binary choice

on 𝑥 and continues as either 𝑃 or𝑄 , depending on the choice

received.

𝑃 ⊢ Δ[𝑥 :
1 𝐴 ⊕ 𝐵 ↦→ 𝑥 :

0 𝐴 ⊕ 𝐵], 𝑥 ′
: 𝐴

𝑥 [inl]; 𝑃 ⊢ Δ
(⊕1)

𝑃 ⊢ Δ[𝑥 :
1 𝐴 ⊕ 𝐵 ↦→ 𝑥 :

0 𝐴 ⊕ 𝐵], 𝑥 ′
: 𝐵

𝑥 [inr]; 𝑃 ⊢ Δ
(⊕2)

𝑄 ⊢ Δ[𝑥 :
1 𝐴&𝐵 ↦→ 𝑥 :

0 𝐴&𝐵], 𝑥 ′
: 𝐵

𝑃 ⊢ Δ[𝑥 :
1 𝐴&𝐵 ↦→ 𝑥 :

0 𝐴&𝐵], 𝑥 ′
: 𝐴

𝑥.case(𝑃, 𝑄) ⊢ Δ
(&)

In encoding the typing rules above using CARVe, we have
adopted the continuation-passing principle [17]. That is, each

channel is treated as a single-use entity carrying exactly

one message: when communication occurs, the channel is

closed and a fresh continuation channel is created and bound

to the continuation process. This style has the benefit of

making dependencies explicit, and is in keeping with our

philosophy of varying multiplicities while keeping contexts

intact. It also makes our encoding adequate with respect to

Structural CP (SCP) [47], which requires continuations. We

note, however, that we can encode CP in CARVe using the
standard approach of re-using channels’ names.

In LF, the binding of continuation channels are repre-

sented using HOAS:

LF obj : type =

| fwd : obj) obj) obj

| pcomp : tp) (obj) obj)) (obj) obj)) obj

| inl : obj) (obj) obj)) obj

| inr : obj) (obj) obj)) obj ... ;

We then encode the CP typing judgment in LF as the type

family oft:

LF oft : obj) lctx _) type =

| oft/fwd : dual A A') upd Δ _ Y Y A' A' 1 0 Δ'

) upd Δ' _ X X A A 1 0 Δ'') exh Δ''

) oft (fwd X Y) Δ

| oft/pcomp : dual A A') merge Δ1 Δ2 Δ

) ({x:obj} oft (P x) (cons Δ1 x A 1))

) ({x:obj} oft (Q x) (cons Δ2 x A' 1))

) oft (pcomp A P Q) Δ

| oft/inl : upd Δ _ X X (A ⊕ B) (A ⊕ B) 1 0 Δ'

) ({x:obj} oft (P x) (cons Δ' x A 1))

264

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

) oft (inl X P) Δ

| oft/inr : upd Δ _ X X (A ⊕ B) (A ⊕ B) 1 0 Δ'

) ({x:obj} oft (P x) (cons Δ' x B 1))

) oft (inr X P) Δ

| oft/choice : upd Δ _ X X (A & B) (A & B) 1 0 Δ'

) ({x:obj} oft (P x) (cons Δ' x A 1))

) ({x:obj} oft (Q x) (cons Δ' x B 1))

) oft (choice X P Q) Δ ... ;

Wemechanize two main results about CP. The first is type
preservation, whose proof relies on a renaming lemma and

makes heavy use of the algebraic properties of update and

merge. The second is the equivalence of CP with SCP. SCP
is an alternative type structure for CP processes that locally

enforces linearity with a logical predicate. In short, in SCP
the typing rule for any process 𝑃 that binds a linear variable

𝑥 includes a condition that it is used linearly, encoded as a

predicate linear : (obj) proc)) type. The typing judgment

is therefore encoded as a judgment on a process wtp : proc)

type, while the typing of channel names uses a hypothetical

judgment of type hyp : obj) tp) type kept in an ambient

LF context Φ following the schema

schema hctx = block ch:obj, h:hyp ch _;

We encode a bijective translation between the typing judg-

ments of CP and SCP. To give this bijection, we need only

consider typing and linearity (processes and types use the

same syntax). To translate from CP to SCP, we define a rela-
tion Enc [Ψ ⊢ Δ] $[Φ ⊢ $𝜎] that translates a linear context Δ
under Ψ into an intuitionistic context Φ and builds a weak-

ening substitution 𝜎 mapping names in Ψ to ones in Φ. In
the reverse direction, we must inspect the typing derivation

of a process 𝑃 to determine which channels are used lin-

early. We then use this information to assign multiplicities

to variables in explicit contexts. The ternary relation Dec

[Ψ ⊢ P] [Ψ ⊢ Δ] $[Φ ⊢ $𝜎] relates Δ and Φ, where the choice
of multiplicities in Δ depends on 𝑃 , and builds a weakening

substitution mapping variables in Ψ to ones in Φ. We en-

code both context relations in Beluga as inductive datatypes,

following [20]. For instance, the translation from linear to

intuitionistic contexts is defined by

inductive Enc : (Ψ:ctx) (Φ:hctx)

{Δ:[Ψ ⊢ lctx N]} {$𝜎:$[Φ ⊢ Ψ]} ctype =

| Enc/n : Enc [⊢ nil] $[⊢ ^]

| Enc/c : Enc [Ψ ⊢ Δ] $[Φ ⊢ $𝜎]

) Enc [Ψ,ch:obj ⊢ cons Δ[..] ch A[] _]

$[Φ,b:block ch:obj,h:hyp ch A[] ⊢ $𝜎[..],b.ch];

The ˆ above denotes the empty substitution, and the weaken-

ing substitution [] specifies that the metavariable A is closed.

The dollar signs $ indicates that 𝜎 is a substitution variable

of the specified substitution meta-type.

The fundamental lemma that makes this translation possi-

ble extracts a linearity judgment from a CP typing judgment.

rec oft_linear : (Ψ:ctx) [Ψ,x:obj ⊢ oft P (cons Δ x A 1)]

) [Ψ ⊢ linear \x.P] = ... ;

We then prove the equivalence of the two systems via the

defined relations.

rec cp2scp : Enc [Ψ ⊢ Δ] $[Φ ⊢ $𝜎]

) [Ψ ⊢ oft P Δ]) [Φ ⊢ wtp P[$𝜎]] = ... ;

rec scp2cp : Dec [Ψ ⊢ P] [Ψ ⊢ Δ] $[Φ ⊢ $𝜎]

) [Φ ⊢ wtp P[$𝜎]]) [Ψ ⊢ oft P Δ] = ... ;

The first proof is by structural induction on the typing judg-

ment, and the second on the encoding relation. This result

serves as a formalized proof the “internal” adequacy of SCP
with respect to a first-order encoding of CP. To our knowl-

edge, this is the first mechanized adequacy proof in a session-

typed setting.

Linear 𝜆-Calculus. We mechanize the linear 𝜆-calculus

using CARVe in two styles: the first uses HOAS, and the sec-

ond de Bruijn levels with an environment-based operational

semantics. We prove type preservation in both settings. In

the former encoding, we include exponentials by adjusting

the underlying resource algebra per section 5, but omit them

from the de Bruijn formulation for simplicity.

As the first approach is relatively standard, let us focus

on the second formulation, which yields a compact type

preservation proof without the need for a substitution lemma.

In this setting, environments 𝜂 are represented as lists of

closures (pairs of environments and terms):

LF obj : type =

| var : nat) obj

| app : obj) obj) obj

| abs : obj) obj;

LF venv : nat) type =

| empty : venv zero

| vcons : venv N) val) venv (suc N)

and LF val : type =

| closure : venv _) obj) val;

A relation of type hasty_env : venv N) lctx N) type asso-

ciates an environment with a linear typing context of the

same length, representing a simultaneous substitution and

yielding value typing judgments hasty : val) tp) type.

Next, we encode environment evaluation (“under environ-

ment 𝜂, term𝑀 evaluates to value𝑤”):

LF eval : venv _) obj) val) type =

| eval/var : lookup_venv n W 𝜂) eval 𝜂 (var n) W

| eval/abs : eval 𝜂 (abs M) (closure 𝜂 (abs M))

| eval/app : eval 𝜂 M (closure 𝜂' (abs M'))

) eval 𝜂 N W') eval (vcons 𝜂' W') M' W

) eval 𝜂 (app M N) W;

Note in particular that evaluating a variable 𝑛 returns the

value that appears at level 𝑛 in the environment, and evalu-

ating a function returns its closure.

265

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

Finally, we encode term typing judgments using CARVe
constructs.

LF oft : lctx _) obj) tp) type =

| oft/var : upd Δ n _ _ A A 1 0 Δ') exh Δ'

) oft Δ (var n) A

| oft/abs : oft (cons Δ _ A 1) M B

) oft Δ (abs M) (arrow A B)

| oft/app : oft Δ1 M (arrow A B)) oft Δ2 N A

) merge Δ1 Δ2 Δ) oft Δ (app M N) B;

The proof of type preservation

rec tps : [⊢ eval 𝜂 M W]) [⊢ hasty_env 𝜂 Δ]

) [⊢ oft Δ M T]) [⊢ hasty W T] = ... ;

is by structural induction on the evaluation judgment. Two

main lemmas are used: one stating that the environment’s

domain is preserved under merge, and another about the

correspondence between the context relation, context look-

up, and value typing.

Affine 𝜆-Calculus. Affine systems are characterized by

forbidding contraction while allowing weakening. We cap-

ture them by the same monoid L, provided that we modify

the conditions at the leaves of a proof tree. Accordingly, the

affine variable rule becomes

𝑥 :
1 𝐴 ∈ Δ
Δ ⊩ 𝐴

where we simply check that 𝑥 occurs linearly.

The encoding of this system otherwise uses the same syn-

tax and semantics as the linear case using HOAS, with expo-

nentials omitted for simplicity. We again prove type preser-

vation for this system. To prove the variable case of the

substitution property, an additional lemma is needed stating

that typing is preserved under merges.

4.3 Lemma Usage
In Table 1, we summarize some quantitative metrics concern-

ing the usage of lemma in mechanizing the main theorem for

each encoded system. The results are identified by their name

in the code base (e.g., “tps” instead of “type preservation”).

We note the number of lines of the proof term for each result

(under the heading “Theorem”), and analogously the number

of lines devoted to proving lemmas (“Lemmas”) or proper-

ties from the reusable common infrastructure (“Common”)

that—either directly or transitively—support the final proof.

The reader will note a significant utilization of the common

infrastructure, with the percentage of shared CARVe lemmas

ranging between 42.6% and 77.6% of the overall code base

for each development.

5 Varying the Algebra
So far, we have considered only one resource algebra. How-

ever, CARVe can be readily adapted to other scenarios by

parameterizing contexts by other algebraic structures of in-

terest. The structures described in this section have been

implemented in Beluga with their algebraic properties. With

few exceptions (isolated from the rest in the artifact), all

proven lemmas about context operations hold regardless of

the specific choice of structure.

Intuitionistic Assumptions. The trivial monoid

I = ({𝜔}, {(⟨𝜔,𝜔⟩, 𝜔)}, 𝜔),
characterizes allocation for fully intuitionistic contexts and

amounts to having no annotations at all. Here 𝜔 denotes a

variable always available.

To model intuitionistic resources alongside linear or affine

ones, we may simply enrich L with 𝜔 as a third element:

• 0 1 𝜔

0 0 1 –

1 1 – –

𝜔 – – 𝜔

In regard to exhaustedness, we consider as harmless those

elements of multiplicity either 0 or 𝜔 . While the structure is

only a commutative semigroup, these harmless elements are

partial units for 0 and 1 and for 𝜔 , respectively.

Parametrizing contexts by this structure allows one to

encode exponential modalities in the style of dual intuition-

istic linear logic [3] while making use of only one typing

context. For example, in such a setting, the variable rule has

two distinct forms:

Δ[𝑥 :
1 𝐴 ↦→ 𝑥 :

0 𝐴] = Δ′ exh(Δ′)
Δ ⊩ 𝐴

(hyp1)

𝑥 :
𝜔 𝐴 ∈ Δ exh(Δ)

Δ ⊩ 𝐴
(hyp𝜔)

Remark that the semigroup can be extended to a monoid

by defining 𝛼 • 𝜔 = 𝜔 • 𝛼 = 1 • 1 = 𝜔 for any 𝛼 . This is the

none-one-tons semiring of McBride [37] under addition.

Strict Assumptions. Strict (also called relevant or rele-
vance) systems allow contraction and forbid weakening. In

practice, strict assumptions must be used at least once in

a derivation. We model such systems by reinterpreting L
as the monoid ({1, 𝜔}, •, 𝜔), with • given by the following

table:

• 1 𝜔

1 – 1

𝜔 1 𝜔

In contrast with linear or affine systems, we also require

both (hyp1) and (hyp𝜔) variable rules as in the joint linear-

intuitionistic case.

The multiplicity 1 is used to denote a strict assumption.

When used, its tag is changed not to 0 (unavailable) but to

𝜔 (available now unrestrictedly.) When a context is split, a

strict assumption must still be used at least once in one of the

branches but becomes available unrestrictedly in the other.

A context is considered exhausted when only unrestricted

assumptions remain.

266

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

Table 1. Summary of lemma usage in implementation

System Result Theorem Lemmas Common

Affine 𝜆-calculus (affine_lam) tps 22 (3.9 %) 105 (18.5 %) 441 (77.6 %)

Linear 𝜆-calculus with HOAS (lin_lam) tps 45 (5.8 %) 208 (27 %) 519 (67.2 %)

Linear 𝜆-calculus with de Bruijn (closures) tps 16 (15 %) 36 (35 %) 51 (50 %)

CP (cp) tps 170 (14.5 %) 504 (42.9 %) 500 (42.6 %)

cp2scp 53 (6.8 %) 293 (37.8 %) 429 (55.4 %)

scp2cp 59 (17.4 %) 113 (33.2 %) 168 (49.4 %)

Linear sequent calculus (seq) cut_elim 266 (24.4 %) 335 (30.7 %) 489 (44.9 %)

Linear sequent / natural deduction calculi (seq / nd) seq2nd 75 (7.4 %) 447 (44.4 %) 485 (48.2 %)

chk2seq / syn2seq 64 (10.8 %) 116 (19.5 %) 414 (69.7 %)

Graded Assumptions. The numerical monoid

G = (N, {(⟨𝑥,𝑦⟩, 𝑧) : 𝑥 + 𝑦 = 𝑧}, 0)
characterizes allocation for graded contexts in the spirit of

Orchard et al. [39]. Gradedness is a generalization of linearity:
an assumption of multiplicity 𝑛 must be used precisely 𝑛

times. We thus consider as harmless—as in the linear case—

assumptions of multiplicity 0.

6 Related Work
6.1 Explicit Contexts and HOAS
Crary [15] introduced the idea of mixing hypothetical and

categorical judgments in a HOAS setting, where HOAS is

reserved for syntax while typing contexts are treated as ex-

plicit objects in judgments such as typing rules. He also

showed a translation between explicit (intuitionistic) con-

texts and implicit ones. This idea had been heavily used in

the Twelf formalization of SML [34]. A similar approach un-

derlines the implementation of the two-level approach (see

for example [19]).

6.2 Resource Algebras
The idea of generalizing the linear discipline into an algebraic

structure owes itself to two threads.

Bounded Linear Logic. In the early 1990s, Girard intro-

duced bounded linear logic (BLL) [25], where a family of

modalities !𝑥 𝐴 indicates that 𝐴 may be reused up to 𝑥 times.

The resource polynomials of BLL were generalized using

semirings in several works including [24], where ring addi-

tion controls contraction and multiplication bounds function

usage. This allows one to track various properties—such as

bounded reuse and strictness—within a single system. This

approach was further generalized as graded modal logic in

the design of the typed functional language Granule [39].

These ideas have not been widely adopted in the mechanized

meta-theory community. Semiring annotations are present

in quantitative type theory [2], but for a different purpose,

namely to combine linear and dependent types. At the same

time, researchers have mechanized some of the meta-theory

of those type theories, (e.g., [13]), thus endorsing a context
management style similar to ours.

Separation Algebras. The heap semantics of the logic of

bunched implications [44] was first abstracted into a partial

commutative cancellative monoid by Calcagno et al. [6]. This
was further refined by Dockins et al. [18] in view of their Coq

implementation in the VST project; they embrace partiality

by switching to a relational presentation of the monoidal

operation and add axioms to exclude degenerate algebras

while relaxing the unit conditions. Other slightly different

axiomatizations are considered in [42] and [32].

6.3 Let’s Split
When addressing the challenge multiplicative rules present

to encoding contexts, the prevailing approach in mechanized

meta-theory within mainstream proof assistants has been to

physically partition the context, seen as a list or a finite map.

Limiting ourselves to the meta-theory of the 𝜋-calculus, this

approach has been used in [22, 27] and even extended to the

intrinsically-typed approach [14, 46, 52].

Alternatively, binding contexts may be seen as dictionar-

ies, i.e., finite maps that can be split since they are known to

have disjoint domains (either by 𝛼-renaming or by explicit

conditions). The inspiration is again the heap model of sep-

aration logic. One example is the Coq library by Castro et
al. [9], where splitting makes the context undefined when

it would result in duplicated entries. The library is based

on the formalization of finite maps in MathComp. Another

is the pedagogical implementation of separation logic for

the SF curriculum [11], where a finite map is a dependent

packaging of a partial function with a proof of finiteness of

its domain. Both libraries encompass an extensive collection

of low-level lemmas and tactics, in both cases around 100

lemmas and 100 lines of Ltac code,

Another domain where splitting has been the dominant

paradigm is the meta-theory of linear sequent calculi, namely

cut-elimination and focusing. In contrast with binding con-

texts, contexts are here truly multisets, whose structure is

generally imposed over the context seen as a list. The idea

267

https://github.com/dzackon/carve/blob/main/case_studies/aff_lam/thms.bel#L7-L28
https://github.com/dzackon/carve/blob/main/case_studies/lin_lam/thms.bel#L7-L51
https://github.com/dzackon/carve/blob/main/case_studies/closures/thms.bel#L7-L22
https://github.com/dzackon/carve/blob/main/case_studies/cp/thms.bel#L7-L176
https://github.com/dzackon/carve/blob/main/case_studies/cp/thms.bel#L180-L232
https://github.com/dzackon/carve/blob/main/case_studies/cp/thms.bel#L234-L292
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L236-L273
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L283-L357
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L359-L394
https://github.com/dzackon/carve/blob/main/case_studies/seq-nd/thms.bel#L396-L422

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

Table 2. Summary of approaches to substructural context modeling

Paper Application Result System Syntax Contexts

[1] MA linear 𝜆-calculus type preservation (TPS) Agda scoped de Bruijn (DB) leftover typing

[50] explicit substitutions TPS / confluence Twelf HOAS tags

[13] graded dependent type theory TPS w.r.t. heap semantics Coq locally nameless tags

[60] 𝜋-calculus TPS for capabilities types Agda scoped DB leftover typing

[22] 𝜋-calculus TPS for linear type system Isabelle / HOL DB à la Gordon list split

[27] polymorphic 𝜋-calculus TPS for session types Coq locally nameless finite maps

[52] functional session-typed calculus TPS / session fidelity Agda intrinsically-typed DB list split

[14] 𝜋-calculus with dependent pairs TPS by construction Agda intrinsically-typed DB list split

[46] 𝜋-calculus TPS for session types Agda intrinsically-typed co-DB split via bunched logic

[9] 𝜋-calculus TPS for session types Coq locally nameless finite maps

[47] 𝜋-calculus TPS for session types Beluga HOAS linearity predicate

[58] sequents cut elimination / focusing Coq parametric HOAS lists with bag equivalence

[21, 33] sequents cut elimination / focusing Coq Hybrid list with permutations

[12] sequents cut elimination Abella HOAS multiset over lists

[28] linear 𝜆-calculus type uniqueness Abella HOAS multiset over lists

is then to see a context split as list concatenation modulo

exchange. This is realized in different ways: Xavier et al. [58]
use bag equivalence implemented as equal number of occur-

rences. Other authors rely on permutations, either assuming

a structural rule of exchange [21, 33] or localizing permuta-

tions in multiplicative rules (e.g., [7]). Chaudhuri et al. [12]
instead encode multisets via a non-deterministic “cons” op-

eration, by means of which merging and permutation of

contexts are defined. The former is used as expected in mul-

tiplicative rules and the latter in additive ones. A library of

some 80 lemmas about those predicates is provided. Other

combinations have also been investigated [28].

6.4 Let’s Stay Together
Keeping the context intact has been explored in various

flavours.

Tags. The use of type qualifiers, which are first-class tags

occurring in the syntax of types and terms encoding intro-

duction rules, was pioneered by Walker [55] and adapted by

Vascocelos [53] to the concurrent setting. As previously men-

tioned, our approach to meta-theory is built on the ideas of

Schack-Nielsen and Schürmann [50], which were formulated

to provide an efficient realization of the explicit substitution

calculus underlying Celf’s [49] operational semantics.

Wood and Atkey [56] annotate variables with values from

a skew semiring denoting those variables’ usage by terms.

This also permits them to keep the context intact by sim-

ply updating the status of the variable. Their work extends

McBride’s kits and traversals technique to the quantitative /

linear setting. This allows one to isolate properties required

to form binding-respecting traversals of simply typed 𝜆-

terms, so that renaming and substitution arise as specific

instantiations. In that setting, usage annotations on contexts

are vectors, usage-preserving maps of contexts are matrices,

and the linearity properties of the maps induced by matrices

are exactly the lemmas needed for showing that traversals

(and hence renaming, sub-usaging, and substitution) pre-

serve typing and usages. It remains open how this technique

can be applied to process calculi such as CP, or for proving
meta-theory more generally.

Linearity Predicates. Crary [16], building on previously

unpublished work by Pfenning, introduced the idea of sepa-

rating a typing derivation from the check that it satisfies a

given property, namely of being linear. While this fits well

with existing non-substructural proof assistants and applies

to different settings [47], it seems hard to generalize to more

exotic substructural systems.

Leftovers. This is based on the idea that a linear term

consumes some of the resources available in its context, while

leaving behind leftovers which can then be fed to another

program. Though the idea originated within linear functional

and logic programming [30, 35], Allais [1] was the first to

employ the idea for proving (in Agda) subject reduction

for the linear 𝜆-calculus. This was later extended to the 𝜋-

calculus (with respect to capabilities types) by Zalakain and

Dardha [60]. The Agda development is parameterized over a

usage algebra following the definition of Dockins et al. [18]. It
would be interesting to draw a quantitative comparison with

our approach, although, as usual, the de Bruijn encoding in

the cited papers tends to overwhelm the development. Note

however that CARVe can be easily used to implement the

leftover style, by appropriate updating of the linear tag; in

fact, Allais uses annotations similar to ours.

The different approaches covered in subsection 6.3 and

subsection 6.4 are summarized in Table 2.

6.5 Substructural Frameworks
A rather different approach is to let the logical framework

where we encode our system under study be substructural.

Examples include LLF [10], based on linear hereditary Har-

rop formulæ, Lincx [23] for a linearization of contextual LF,

268

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

HLF [45] for supporting hybrid LF, and Celf [49] for imple-

menting Concurrent LF.
In all these systems, using HOAS and hypothetical judg-

ments, resource contexts are implicit, bypassing (for the user)
all the issues connected to resource management. This leads

to elegant encoding of object logics such as linear sequent

calculi, MiniML with references, security protocols, the 𝜋-

calculus, and session types. However, none of these frame-

works, bar Celf, have been implemented and—even in Celf’s

case—there is little support for verifying the meta-theory of

the encoded systems.

7 Conclusion
In this work, we have presented CARVe, a flexible infrastruc-
ture for managing substructural contexts explicitly, which

is fully implemented in the proof assistant Beluga. We have

showcased the infrastructure’s versatility by using it to mech-

anize a broad range of substructural systems and correspond-

ing proofs. We anticipate that our development will prove

useful for formalizing other substructural languages not con-

sidered in this paper.

Future Work. While monoids suffice for our study, the

modularity of our approach should lend itself well to en-

coding systems using more intricate multiplicity structures.

Specifically, while our study considered only substructural

systems that control strengthening and weakening, model-

ing ordered type systems based on non-commutative logic

(which restrict exchange) will require a richer resource alge-

bra. In the future, we also intend to extend CARVe to model

subexponential and adjoint modalities.

A further quantitative comparison of CARVe with alter-

native approaches would also offer insights into the relative

strengths and limitations of our infrastructure.

Finally, it would be worthwhile to implement CARVe in
a mainstream proof assistant to better leverage structuring

mechanisms such as polymorphism, module systems, and

type classes. This would allow us to go beyond the current

limitations of Beluga and directly realize a library for binding

contexts where arbitrary keys carry arbitrary payloads given

some resource algebra. Additionally, integrating code gener-

ation into the implementation could facilitate the application

of CARVe to new systems.

8 Data Availability Statement
An artifact accompanying this paper is available online [59].

Acknowledgments
The authors thank Ryan Kavanagh for discussions that con-

tributed to the development of this work, and the anonymous

reviewers for their constructive and insightful feedback.

This work was funded by the Natural Sciences and En-

gineering Research Council of Canada and the Fonds de

recherche du Québec — Nature et technologies.

A Further Signatures
For reference, we include below the LF signatures of all

constructs and lemmas left undefined in subsection 4.2 (sim-

plified for readability).

Identity property of merge:

LF cx_eq : lctx N) lctx N) type =

| cx/refl : cx_eq Δ Δ;

rec merge_id : (Ψ:ctx) [Ψ ⊢ merge Δ1 Δ2 Δ]

) [Ψ ⊢ exh Δ1]) [Ψ ⊢ cx_eq Δ2 Δ] = ... ;

Associativity of merge:

LF mg_assoc : merge _ _ _) merge _ _ _) type =

| mg-assoc : merge Δ2 Δ3 Δ23) merge Δ1 Δ23 Δ

) {M1:merge Δ12 Δ3 Δ} {M2:merge Δ1 Δ2 Δ12}

mg_assoc M1 M2;

rec merge_assoc : (Ψ:ctx)

{M1:[Ψ ⊢ merge Δ12 Δ3 Δ]} {M2:[Ψ ⊢ merge Δ1 Δ2 Δ12]}

[Ψ ⊢ mg_assoc M1 M2] = ... ;

Lemma 3.1 (1):

rec subst_exh : (Ψ:ctx) [Ψ ⊢ wf_subst Δ 𝜎 Γ]

) [Ψ ⊢ exh Γ]) [Ψ ⊢ exh Δ] = ... ;

Lemma 3.1 (2):

LF subst-merge : wf_subst _ _ _) merge _ _ _) type =

| sub-mg : wf_subst Δ1 𝜎 Γ1) wf_subst Δ2 𝜎 Γ2
) merge Δ1 Δ2 Δ

) {S:wf_subst Δ 𝜎 Γ} {M:merge Γ1 Γ2 Γ}

subst-merge S M;

rec subst_merge : (Ψ:ctx) {S:[Ψ ⊢ wf_subst Δ 𝜎 Γ]}

{M:[Ψ ⊢ merge Γ1 Γ2 Γ]} [Ψ ⊢ subst-merge S M] = ... ;

Lemma 3.1 (3):

LF subst-upd :

wf_subst _ _ _) upd _ _ _ _ _ _ _ _ _) type =

| sub-up : wf_subst Δ1 𝜎 Γ') chk Δ2 _ A

) merge Δ1 Δ2 Δ

) {S:wf_subst Δ 𝜎 Γ} {U:upd Γ _ _ _ A A 1 0 Γ'}

subst-upd S U;

rec subst_upd : (Ψ:ctx) {S:[Ψ ⊢ wf_subst Δ 𝜎 Γ]}

{U:[Ψ ⊢ upd Γ _ _ _ A A 1 0 Γ']}

[Ψ ⊢ subst-upd S U] = ... ;

Pruning lemma:

inductive PruneChk : (Ψ:ctx)

{CH:[Ψ,x:obj ⊢ chk Δ[..] M C[]]} ctype =

| Prune-Chk : [Ψ ⊢ chk Δ M C[]]

) {CH:[Ψ,x:obj ⊢ chk Δ[..] M[..] C[]]}

PruneChk [Ψ,x:obj ⊢ CH];

rec prune_chk : {CH:[Ψ,x:obj ⊢ chk Δ[..] M C[]]}

PruneChk [Ψ,x:obj ⊢ CH] = ... ;

269

CPP ’25, January 20–21, 2025, Denver, CO, USA Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka

References
[1] Guillaume Allais. 2017. Typing with leftovers: A mechanization of

intuitionistic multiplicative-additive linear logic. In Proc. TYPES 2017
(LIPIcs, Vol. 104), Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus

Kaposi (Eds.). 1:1–1:22. https://doi.org/10.4230/LIPICS.TYPES.2017.1
[2] Robert Atkey. 2018. Syntax and semantics of quantitative type theory.

In Proc. LICS ’18. 56–65. https://doi.org/10.1145/3209108.3209189
[3] Andrew Barber. 1996. Dual intuitionistic linear logic. Technical report

ECS-LFCS-96-347. University of Edinburgh. https://www.lfcs.inf.ed.
ac.uk/reports/96/ECS-LFCS-96-347

[4] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon

Peyton Jones, and Arnaud Spiwack. 2017. Linear Haskell: Practical

linearity in a higher-order polymorphic language. Proc. ACM Program.
Lang. 2, POPL (Dec. 2017), 5:1–5:29. https://doi.org/10.1145/3158093

[5] Luís Caires and Frank Pfenning. 2010. Session types as intuitionistic

linear propositions. In Proc. CONCUR ’10 (Lect. Notes Comput. Sci.,
Vol. 6269), Paul Gastin and François Laroussinie (Eds.). Springer, 222–

236. https://doi.org/10.1007/978-3-642-15375-4_16
[6] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007.

Local action and abstract separation logic. In Proc. LICS ’07. 366–378.
https://doi.org/10.1109/LICS.2007.30

[7] Étienne Callies and Olivier Laurent. 2021. Click and coLLecT: An

interactive linear logic prover. In Proc. TLLA ’21. https://hal-lirmm.
ccsd.cnrs.fr/lirmm-03271501

[8] Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri,

Frederik Krogsdal Jacobsen, Alberto Momigliano, Luca Padovani, Al-

ceste Scalas, Dawit Tirore, Martin Vassor, Nobuko Yoshida, and Daniel

Zackon. 2024. The concurrent calculi formalisation benchmark. In Proc.
COORDINATION ’24 (Lect. Notes Comput. Sci., Vol. 14676), Ilaria Castel-
lani and Francesco Tiezzi (Eds.). 149–158. https://doi.org/10.1007/978-
3-031-62697-5_9

[9] David Castro, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST:

Engineering the meta-theory of session types. In Proc. TACAS ’20 (Lect.
Notes Comput. Sci., Vol. 12079), Armin Biere and David Parker (Eds.).

278–285. https://doi.org/10.1007/978-3-030-45237-7_17
[10] Iliano Cervesato and Frank Pfenning. 2002. A linear logical framework.

Inf. Comput. 179, 1 (2002), 19–75. https://doi.org/10.1006/INCO.2001.
2951

[11] Arthur Charguéraud. 2024. Separation Logic Foundations. Software
Foundations, Vol. 6. Electronic textbook. Version 2.2.

[12] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2019. Formalized

meta-theory of sequent calculi for linear logics. Theor. Comput. Sci.
781 (2019), 24–38. https://doi.org/10.1016/j.tcs.2019.02.023

[13] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and

Stephanie Weirich. 2021. A graded dependent type system with a

usage-aware semantics. Proc. ACM Program. Lang. 5, POPL (2021),

50:1–50:32. https://doi.org/10.1145/3434331
[14] Luca Ciccone and Luca Padovani. 2020. A dependently typed linear

𝜋-calculus in Agda. In Proc. PPDP ’20. 1–14. https://doi.org/10.1145/
3414080.3414109

[15] Karl Crary. 2009. Explicit contexts in LF (extended abstract). Electron.
Notes Theor. Comput. Sci. 228 (2009), 53–68. https://doi.org/10.1016/j.
entcs.2008.12.116

[16] Karl Crary. 2010. Higher-order representation of substructural logics.

In Proc. ICFP ’10. 131–142. https://doi.org/10.1145/1863543.1863565
[17] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session

types revisited. Inf. Comput. 256 (Oct. 2017), 253–286. https://doi.org/
10.1016/j.ic.2017.06.002

[18] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A fresh

look at separation algebras and share accounting. In Proc. APLAS
’09 (Lect. Notes Comput. Sci., Vol. 5904), Zhenjiang Hu (Ed.). Springer,

161–177. https://doi.org/10.1007/978-3-642-10672-9_13
[19] Amy P. Felty and Alberto Momigliano. 2012. Hybrid - A definitional

two-level approach to reasoning with higher-order abstract syntax. J.

Autom. Reason. 48, 1 (2012), 43–105. https://doi.org/10.1007/S10817-
010-9194-X

[20] Amy P. Felty, Alberto Momigliano, and Brigitte Pientka. 2015. The

next 700 challenge problems for reasoning with higher-order abstract

syntax representations. J. Autom. Reason. 55, 4 (2015), 307–372. https:
//doi.org/10.1007/s10817-015-9327-3

[21] Amy P. Felty, Carlos Olarte, and Bruno Xavier. 2021. A focused linear

logical framework and its application to metatheory of object logics.

Math. Struct. Comput. Sci. 31, 3 (2021), 312–340. https://doi.org/10.
1017/S0960129521000323

[22] Simon J. Gay. 2001. A framework for the formalisation of pi calculus

type systems in Isabelle/HOL. In Proc. TPHOLs ’01 (Lect. Notes Comput.
Sci., Vol. 2152), Richard J. Boulton and Paul B. Jackson (Eds.). Springer,

217–232. https://doi.org/10.1007/3-540-44755-5_16
[23] Aïna Linn Georges, Agata Murawska, Shawn Otis, and Brigitte Pientka.

2017. LINCX: A linear logical framework with first-class contexts. In

Proc. ESOP ’17 (Lect. Notes Comput. Sci., Vol. 10201), Hongseok Yang

(Ed.). Springer, 530–555. https://doi.org/10.1007/978-3-662-54434-1_20
[24] Dan R. Ghica and Alex I. Smith. 2014. Bounded linear types in a

resource semiring. In Programming Languages and Systems (Lect. Notes
Comput. Sci., Vol. 8410), Zhong Shao (Ed.). 331–350. https://doi.org/
10.1007/978-3-642-54833-8_18

[25] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. 1992. Bounded

linear logic: A modular approach to polynomial-time computability.

Theor. Comput. Sci. 97, 1 (1992), 1–66. https://doi.org/10.1016/0304-
3975(92)90386-T

[26] Jean-Yves Girard. 1987. Linear logic. Theor. Comput. Sci. 50, 1 (1987),
1–102. https://doi.org/10.1016/0304-3975(87)90045-4

[27] Matthew A. Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and

James Riely. 2016. An extensible approach to session polymorphism.

Math. Struct. Comput. Sci. 26, 3 (2016), 465–509. https://doi.org/10.
1017/S0960129514000231

[28] Terrance Gray and Gopalan Nadathur. 2024. Binding contexts as

partitionable multisets in Abella. In Proc. LFMTP ’24 (Electron. Proc.
Theor. Comput. Sci., Vol. 404), Florian Rabe and Claudio Sacerdoti Coen

(Eds.). Open Publishing Association, 19–34. https://doi.org/10.4204/
EPTCS.404.2

[29] Robert Harper, Furio Honsell, and Gordon Plotkin. 1993. A framework

for defining logics. J. ACM 40, 1 (January 1993), 143–184. https:
//doi.org/10.1145/138027.138060

[30] Joshua S. Hodas and Dale Miller. 1994. Logic programming in a frag-

ment of intuitionistic linear logic. Inf. Comput. 110, 2 (1994), 327–365.
https://doi.org/10.1006/inco.1994.1036

[31] Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka.

2024. Adjoint natural deduction. In Proc. FSCD ’24. https://doi.org/10.
4230/LIPIcs.FSCD.2024.15

[32] Jonas Braband Jensen and Lars Birkedal. 2012. Fictional separation

logic. In Proc. ESOP ’12 (Lect. Notes Comput. Sci., Vol. 7211), Helmut Seidl

(Ed.). Springer, 377–396. https://doi.org/10.1007/978-3-642-28869-2_19
[33] Olivier Laurent. 2017. Yalla. https://github.com/olaure01/yalla/.
[34] Daniel K. Lee, Karl Crary, and Robert Harper. 2007. Towards a

mechanized metatheory of standard ML. In Proc. POPL ’07, Mar-

tin Hofmann and Matthias Felleisen (Eds.). ACM, 173–184. https:
//doi.org/10.1145/1190216.1190245

[35] Ian Mackie. 1994. Lilac: A functional programming language based on

linear logic. J. Funct. Program. 4, 4 (1994), 395–433. https://doi.org/10.
1017/S0956796800001131

[36] Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust language.

ACM SIGAda Ada Letters 34, 3 (2014), 103–104. https://doi.org/10.
1145/2692956.2663188

[37] Conor McBride. 2016. I Got Plenty o’ Nuttin’. In A List of Successes That
Can Change theWorld: Essays Dedicated to PhilipWadler on the Occasion
of His 60th Birthday, Sam Lindley, Conor McBride, Phil Trinder, and

Don Sannella (Eds.). Springer, 207–233. https://doi.org/10.1007/978-3-

270

https://doi.org/10.4230/LIPICS.TYPES.2017.1
https://doi.org/10.1145/3209108.3209189
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
https://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1109/LICS.2007.30
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271501
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1006/INCO.2001.2951
https://doi.org/10.1006/INCO.2001.2951
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1145/3434331
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1016/j.entcs.2008.12.116
https://doi.org/10.1016/j.entcs.2008.12.116
https://doi.org/10.1145/1863543.1863565
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/S10817-010-9194-X
https://doi.org/10.1007/S10817-010-9194-X
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1007/s10817-015-9327-3
https://doi.org/10.1017/S0960129521000323
https://doi.org/10.1017/S0960129521000323
https://doi.org/10.1007/3-540-44755-5_16
https://doi.org/10.1007/978-3-662-54434-1_20
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.4204/EPTCS.404.2
https://doi.org/10.4204/EPTCS.404.2
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1006/inco.1994.1036
https://doi.org/10.4230/LIPIcs.FSCD.2024.15
https://doi.org/10.4230/LIPIcs.FSCD.2024.15
https://doi.org/10.1007/978-3-642-28869-2_19
https://github.com/olaure01/yalla/
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1017/S0956796800001131
https://doi.org/10.1017/S0956796800001131
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12

Split Decisions: Explicit Contexts for Substructural Languages CPP ’25, January 20–21, 2025, Denver, CO, USA

319-30936-1_12
[38] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-

textual modal type theory. ACM Trans. Comput. Logic 9, 3 (2008),

23:1–23:49. https://doi.org/10.1145/1352582.1352591
[39] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019.

Quantitative program reasoning with graded modal types. Proc. ACM
Program. Lang. 3, ICFP (2019), 110:1–110:30. https://doi.org/10.1145/
3341714

[40] Brigitte Pientka and Jana Dunfield. 2008. Programming with proofs

and explicit contexts. In Proc. PPDP ’08. 163–173. https://doi.org/10.
1145/1389449.1389469

[41] Brigitte Pientka and Jana Dunfield. 2010. Beluga: A framework for pro-

gramming and reasoning with deductive systems (system description).

In Proc. IJCAR ’10 (Lect. Notes Comput. Sci., Vol. 6173), Jürgen Giesl and

Reiner Hähnle (Eds.). Springer, 15–21. https://doi.org/10.1007/978-3-
642-14203-1_2

[42] François Pottier. 2013. Syntactic soundness proof of a type-and-

capability system with hidden state. J. Funct. Program. 23, 1 (2013),
38–144. https://doi.org/10.1017/S0956796812000366

[43] Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed.

2018. Adjoint logic. (April 2018). https://www.cs.cmu.edu/~fp/papers/
adjoint18b.pdf (unpublished manuscript).

[44] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible

worlds and resources: The semantics of BI. Theor. Comput. Sci. 315, 1
(2004), 257–305. https://doi.org/10.1016/J.TCS.2003.11.020

[45] Jason Reed. 2006. Hybridizing a logical framework. In Proc.
HyLo@FLoC ’06 (Electron. Notes Theor. Comput. Sci., Vol. 174), Patrick
Blackburn, Thomas Bolander, Torben Braüner, Valeria de Paiva, and

Jørgen Villadsen (Eds.). Elsevier, 135–148. https://doi.org/10.1016/J.
ENTCS.2006.11.030

[46] Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco

Visser. 2020. Intrinsically-typed definitional interpreters for linear,

session-typed languages. In Proc. CPP ’20. ACM, 284–298. https:
//doi.org/10.1145/3372885.3373818

[47] Chuta Sano, Ryan Kavanagh, and Brigitte Pientka. 2023. Mechanizing

session-types using a structural view: Enforcing linearity without

linearity. Proc. ACMProgram. Lang. 7, OOPSLA (2023), 235:374–235:399.

https://doi.org/10.1145/3622810
[48] Anders Schack-Nielsen. 2011. Implementing Substructural Logical

Frameworks. Ph.D. Dissertation. Copenhagen, Denmark.

[49] Anders Schack-Nielsen and Carsten Schürmann. 2008. Celf - A logical

framework for deductive and concurrent systems (system description).

In Proc. IJCAR ’08 (Lect. Notes Comput. Sci., Vol. 5195), Alessandro
Armando, Peter Baumgartner, and Gilles Dowek (Eds.). Springer, 320–

326. https://doi.org/10.1007/978-3-540-71070-7_28
[50] Anders Schack-Nielsen and Carsten Schürmann. 2010. Curry-style

explicit substitutions for the linear and affine lambda calculus. In

Proc. IJCAR ’10 (Lect. Notes Comput. Sci., Vol. 6173), Jürgen Giesl and

Reiner Hähnle (Eds.). Springer, 1–14. https://doi.org/10.1007/978-3-
642-14203-1_1

[51] Peter Selinger and Benoît Valiron. 2006. A lambda calculus for quantum

computation with classical control. Math. Struct. Comput. Sci. 16, 3
(2006), 527–552. https://doi.org/10.1017/S0960129506005238

[52] Peter Thiemann. 2019. Intrinsically-typed mechanized semantics for

session types. In Proc. PPDP ’19. 1–15. https://doi.org/10.1145/3354166.
3354184

[53] Vasco T. Vasconcelos. 2012. Fundamentals of session types. Inf. Comput.
217 (2012), 52–70. https://doi.org/10.1016/j.ic.2012.05.002

[54] PhilipWadler. 2012. Propositions as sessions. In Proc. ICFP ’12. 273–286.
https://doi.org/10.1145/2364527.2364568

[55] David Walker. 2005. Substructural type systems. In Advanced Topics
in Types and Programming Languages, Benjamin C. Pierce (Ed.). MIT

Press, Chapter 1, 3–43.

[56] James Wood and Robert Atkey. 2021. A linear algebra approach to

linear metatheory. In Proc. 2nd Joint Int. Workshop on Linearity &
Trends in Linear Logic and Applications (Electron. Proc. Theor. Comput.
Sci., Vol. 353), Ugo Dal Lago and Valeria de Paiva (Eds.). 195–212.

https://doi.org/10.4204/eptcs.353.10
[57] James Wood and Robert Atkey. 2022. A framework for substructural

type systems. In Proc. ESOP ’22 (Lect. Notes Comput. Sci., Vol. 13240), Ilya
Sergey (Ed.). 376–402. https://doi.org/10.1007/978-3-030-99336-8_14

[58] BrunoXavier, Carlos Olarte, Giselle Reis, and VivekNigam. 2017. Mech-

anizing focused linear logic in Coq. In Proc. LSFA ’17 (Electron. Notes
Theor. Comput. Sci., Vol. 338), Sandra Alves and Renata Wasserman

(Eds.). Elsevier, 219–236. https://doi.org/10.1016/J.ENTCS.2018.10.014
[59] Daniel Zackon, Chuta Sano, Alberto Momigliano, and Brigitte Pientka.

2024. Split Decisions: Explicit Contexts for Substructural Languages
(artifact). https://doi.org/10.5281/zenodo.14271731

[60] Uma Zalakain and Ornela Dardha. 2021. 𝜋 with leftovers: A mech-

anisation in Agda. In Proc. FORTE ’21 (Lect. Notes Comput. Sci.,
Vol. 12719), Kirstin Peters and Tim A. C. Willemse (Eds.). 157–174.

https://doi.org/10.1007/978-3-030-78089-0_9

Received 2024-09-17; accepted 2024-11-19

271

https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1145/1389449.1389469
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1007/978-3-642-14203-1_2
https://doi.org/10.1017/S0956796812000366
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://doi.org/10.1016/J.TCS.2003.11.020
https://doi.org/10.1016/J.ENTCS.2006.11.030
https://doi.org/10.1016/J.ENTCS.2006.11.030
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3622810
https://doi.org/10.1007/978-3-540-71070-7_28
https://doi.org/10.1007/978-3-642-14203-1_1
https://doi.org/10.1007/978-3-642-14203-1_1
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.4204/eptcs.353.10
https://doi.org/10.1007/978-3-030-99336-8_14
https://doi.org/10.1016/J.ENTCS.2018.10.014
https://doi.org/10.5281/zenodo.14271731
https://doi.org/10.1007/978-3-030-78089-0_9

	Abstract
	1 Introduction
	2 Contexts as Resource Vectors: An Infrastructure
	2.1 Resource Allocation
	2.2 Exhaustedness
	2.3 Context Search and Manipulation

	3 CARVe in Action
	3.1 Reformulating with CARVe
	3.2 Equivalence Theorem

	4 Implementation and Case Studies
	4.1 Implementing CARVe
	4.2 Case Studies
	4.3 Lemma Usage

	5 Varying the Algebra
	6 Related Work
	6.1 Explicit Contexts and HOAS
	6.2 Resource Algebras
	6.3 Let's Split
	6.4 Let's Stay Together
	6.5 Substructural Frameworks

	7 Conclusion
	8 Data Availability Statement
	Acknowledgments
	A Further Signatures
	References

