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Abstract. POPLMark and POPLMark Reloaded sparked a flurry of
work on machine-checked proofs, and fostered the adoption of proof
mechanisation in programming language research. Both challenges were
purposely limited in scope, and they do not address concurrency-related
issues. We propose a new collection of benchmark challenges focused on
the difficulties that typically arise when mechanising formal models of
concurrent and distributed programming languages, such as process cal-
culi. Our benchmark challenges address three key topics: linearity, scope
extrusion, and coinductive reasoning. The goal of this new benchmark
is to clarify, compare, and advance the state of the art, fostering the
adoption of proof mechanisation in future research on concurrency.

Keywords: Mechanisation · Process calculi · Benchmark · Linearity ·
Scope extrusion · Coinduction

1 Introduction

The POPLMark challenge [4] played a pivotal role in advancing the field of proof
assistants, libraries, and best practices for the mechanisation of programming
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language research. By providing a shared framework for systematically evalu-
ating mechanisation techniques, it catalysed a significant shift towards publica-
tions that include mechanised proofs within the programming language research
community. POPLMark Reloaded [1] introduced a similar programme for proofs
using logical relations. These initiatives had a narrow focus, and their authors
recognised the importance of addressing topics such as coinduction and linearity
in the future.

In this spirit, we introduce a new collection of benchmarks crafted to tackle
common challenges encountered during the mechanisation of formal models of
concurrent and distributed programming languages. We focus on process calculi,
as they provide a simple but realistic showcase of these challenges. Concurrent
calculi are notably subtle: for instance, it took some years before an incorrect sub-
ject reduction proof in the original paper on session subtyping [25] was discovered
and then rectified in the extended journal version [26] with the use of polarities.
Similarly, other key results in papers on session types have subsequently been
proven incorrect [27,45], demonstrating the need for machine-checked proofs.

While results about concurrent formalisms have already been mechanised
(as we will discuss further below), our experience is that choosing appropri-
ate mechanisation techniques and tools remains a significant challenge and that
their trade-offs are not well understood. This often leads researchers toward a
trial-and-error approach, resulting in sub-optimal solutions, wasted mechanisa-
tion efforts, and techniques and results that are hard to reuse. For example,
Cruz-Filipe et al. [17] note that the high-level parts of mechanised proofs closely
resemble the informal ones, while the main challenge lies in getting the infras-
tructure right.

Our benchmark challenges (detailed on our website linked below) consider
in isolation three key aspects that frequently pose difficulties when mechanising
concurrency theory: linearity, scope extrusion, and coinductive reasoning, as we
will discuss in more detail in the next section. Mechanisations must often address
several of these aspects at the same time; however, we see the combination of
techniques as a next step, as argued in Sect. 3.

We have begun collecting solutions to our challenges on our website:

https://concurrentbenchmark.github.io/

We intend to use the website to promote best practices and tutorials derived
from solutions to our challenges. We encourage readers to try the challenges
using their favourite techniques, and to send us their solutions and experience
reports.

2 Overview and Design Considerations

In this section, we outline the factors considered when designing the benchmark
challenges. We begin with some general remarks, then describe the individual
design considerations for each challenge, and the criteria for evaluating solutions.

Similarly to the authors of POPLMark, we seek to answer several questions
about the mechanisation of the meta-theory of process calculi:

https://concurrentbenchmark.github.io/
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(Q1) What is the current state of the art?
(Q2) Which techniques and best practices can be recommended?
(Q3) What improvements are needed to make mechanisation tools more user-

friendly?

To provide a framework in which to answer these questions, our benchmark
is designed to satisfy three main design goals:

(G1) To enable the comparison of proof mechanisation approaches by making
the challenges accessible to mechanisation experts who may be unfamiliar
with concurrency theory;

(G2) To encourage the development of guidelines and tutorials demonstrat-
ing and comparing existing proof mechanisation techniques, libraries, and
proof assistant features; and

(G3) To prioritise the exploration of reusable mechanisation techniques.

We also aim at strengthening the culture of mechanisation, by rallying the com-
munity to collaborate on exploring and developing new tools and techniques.

To achieve design goal (G1), our challenges explore the three aspects (lin-
earity, scope extrusion, coinduction) independently, so that they may be solved
individually and in any order; each challenge is small and easily understandable
with basic knowledge of textbook concurrency theory, process calculi, and type
theory. For mechanisation experts, our challenges should thus be accessible even
without any prior understanding of process calculi. The process calculi used in
the challenges focus on the features that we want to emphasise, and omit all
constructs that would complicate the mechanisation without bringing tangible
insights. For concurrency experts venturing into mechanisation, our challenges
thus serve as good first steps. The minimality and uniformity of the calculi also
allows us to target design goal (G2). For experts in both mechanisation and con-
currency, our challenges serve as a framework in which to consider and share best
practices and tutorials. Aligned with design goal (G3), our challenges concern
the fundamental meta-theory of process calculi. Our challenges centre around
well-established results, showcasing proof techniques that can be leveraged in
many applications (as we will further discuss in Sect. 3).

2.1 Linearity

Linear typing systems enable the tracking of resource usage in a program. In the
case of typed (in particular, session-typed) process calculi, linearity is widely
used for checking if and how a channel is used to send or receive values. This
substructurality [39, Ch. 1] gives rise to mechanisation difficulties: e.g . deciding
how to split the typing context in a parallel composition.

The goal of our challenge on linear reasoning is to prove a type safety theorem
for a process calculus with session types, by combining subject reduction with
the absence of errors. For simplicity we model only linear (as opposed to shared)
channels. Inspired by Vasconcelos [49], we define a syntax where a restriction
(νab) binds two dual names a and b as opposite endpoints of the same channel;
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their duality is reflected in the type system. We model a simple notion of error:
well-typed processes must never use dual channel endpoints in a non-dual way
(e.g . by performing concurrent send/receive operations on the same endpoint, or
two concurrent send operations on dual endpoints). The operational semantics
is a standard reduction relation. Proving subject reduction thus requires proving
type preservation for structural congruence.

We designed this challenge to focus on linear reasoning while minimising def-
initions and other concerns. We therefore forgo name passing: send/receive oper-
ations only support values that do not include channel names, so the topology
of the communication network described by a process cannot change. We do not
allow recursion or replication, hence infinite behaviours cannot be expressed. We
also forgo more sophisticated notions of error-freedom (e.g . deadlock freedom)
as proving them would distract from the core linear aspects of the challenge.

In mechanised meta-theory, addressing linearity means choosing an appropri-
ate representation of a linear context. While the latter is perhaps best seen as a
multiset, most proof assistants have better support for lists. This representation
is intuitive, but may require establishing a large number of technical lemmata
that are orthogonal to the problem under study (in our case, proving type safety
for session types). Several designs are possible: one can label occurrences of
resources to constrain their usage (e.g . [16]), or impose a multiset structure over
lists (e.g . [15,19]). Alternatively, contexts can be implemented as finite maps (as
in [12]), whose operations are sensitive to a linear discipline. In all these cases,
the effort required to develop the infrastructure is significant. One alternative
strategy is to bypass the problem of context splitting by adopting ideas from
algorithmic linear type checking. One such approach, known as “typing with
leftovers,” is exemplified in [51]. Similarly, context splitting can be eliminated by
delegating linearity checks to a linear predicate defined on the process structure
(e.g . [44]). These checks serve as additional conditions within the typing rules.
Whatever the choice, list-based encodings can be refined to be intrinsically-typed
if the proof assistant supports dependent types (see [16,42,47]).

A radically different approach is to adopt a substructural meta-logical frame-
work, which handles resource distribution implicitly, including splitting and sub-
stitution: users need only map their linear operations to the ones offered by the
framework. The only such framework is Celf [46] (see the encoding of session
types in [8]); unfortunately, Celf does not yet fully support the verification of
meta-theoretic properties. A compromise is the two-level approach, i.e. encoding
a substructural specification logic in a mainstream proof assistant and then using
that logic to state and prove linear properties (for a recent example, see [23]).

2.2 Scope Extrusion

This challenge revolves around the mechanisation of scope extrusion, by which a
process can send restricted names to another process, as long as the restriction
can safely be extruded to include the receiving process. The setting for this
challenge is a “classic” untyped π-calculus, where (unlike the calculi in the other
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challenges) names can be sent and received, and bound by input constructs. We
define two different semantics for our system:

1. A reduction system: this avoids explicit reasoning about scope extrusion by
using structural congruence, allowing implementers to explore different ways
to encode the latter (e.g . via process contexts or compatible refinement);

2. An (early) labelled transition system.

The goal of our challenge on scope extrusion is to prove that the two semantics
are equivalent up to structural congruence.

This is the challenge most closely related to POPLMark, as it concerns the
properties of binders, whose encoding has been extensively studied with respect
to λ-calculi. Process calculi present additional challenges, typically including sev-
eral different binding constructs: inputs bind a received name or value, recursive
processes bind recursion variables, and restrictions bind names. The first two act
similarly to the binders in λ-calculi, but restrictions may be more challenging
due to scope extrusion. Scope extrusion requires reasoning about free variables,
so approaches that identify α-equivalent processes cannot be directly applied.

Given those peculiarities, the syntax and semantics of π-calculi have been
mechanised from an early age (see [37]) with many proof assistants and in many
encoding styles. Despite this, almost all of these mechanisations rely on ad-
hoc solutions to encode scope extrusion. They range from concrete encodings
based on named syntax [37] to basic de Bruijn [30,38] and locally-nameless
representation [12]. Nominal approaches are also common (see [6]), but they
may be problematic in proof assistants based on constructive type theories. An
overall comparison is still lacking, but the case study [3] explores four approaches
to encoding binders in Coq in the context of higher-order process calculi. The
authors report that working directly with de Bruijn indices was easiest since the
approaches developed for λ-calculus binders worked poorly with scope extrusion.

Higher-order abstract syntax (HOAS) has seen extensive use in formal rea-
soning in this area [13,14,22,32,48]. Its weak form aligns reasonably well with
mainstream inductive proof assistants, significantly simplifying the encoding of
typing systems and operational semantics. However, when addressing more intri-
cate concepts like bisimulation, extensions to HOAS are needed. These extensions
may take the form of additional axioms [32] or require niche proof assistants such
as Abella, which features a special quantifier for handling properties related to
names [24].

2.3 Coinduction

Process calculi typically include constructs that allow processes to adopt infinite
behaviours. Coinduction serves as a fundamental method for the definition and
analysis of infinite objects, enabling the examination of their behaviours.

The goal of our challenge on coinductive reasoning is to prove that strong
barbed bisimilarity can be turned into a congruence by making it sensitive to
substitution and parallel composition. The crux of our challenge is the effective



154 M. Carbone et al.

use of coinductive up-to techniques. The intention is that the result should be
relatively easy to achieve once the main properties of bisimilarity are established.

The setting for our challenge is an untyped π-calculus augmented with pro-
cess replication in order to enable infinite behaviours. We do not include name
passing since it is orthogonal to our aim of exploring coinductive proof tech-
niques. We base our definition of bisimilarity on a labelled transition system
semantics and an observability predicate describing the communication steps
available to a process. The description of strong barbed bisimulation is one of
the first steps when studying the behaviour of process calculi, both in textbooks
(e.g . [43]) and in existing mechanisations. Though weak barbed congruence is
a more common behavioural equivalence, we prefer strong equivalences to sim-
plify the theory by avoiding the need to abstract over the number of internal
transitions in a trace.

While many proof assistants support coinductive techniques, they do so
through different formalisms. Some systems even offer multiple abstractions for
utilising coinduction. For instance, Agda offers musical notation, co-patterns
and productivity checking via sized types [2]; Coq features guarded recursion
and refined fixed point approaches via libraries for e.g . parameterised coinduc-
tion [34], coinduction up-to [41] and interaction trees [50].

When reasoning over bisimilarity many authors rely on the native coinduc-
tion offered by the chosen proof assistant [7,27,35,47], while others prefer a more
“set-theoretic” approach [6,30,36,40]. Some use both and establish an internal
adequacy [32]. Few extend the proof assistant foundations to allow, e.g ., reason-
ing about bisimilarity up-to [14].

2.4 Evaluation Criteria

The motivation behind our benchmark is to obtain evidence towards answering
questions (Q1) to (Q3). We are therefore interested not only in the solutions,
but also in the experience of solving the challenges with the chosen approach.
Solutions to our challenges should be compared on three axes:

1. Mechanisation overhead: the amount of manually-written infrastructure and
setup needed to express the definitions in the mechanisation;

2. Adequacy of the formal statements in the mechanisation: whether the proven
theorems are easily recognisable as the theorems from the challenge; and

3. Cost of entry for the tools and techniques employed: the difficulty of learning
to use the techniques.

Solutions to our challenges need not strictly follow the definitions and lemmata
set out in the challenge text, but solutions which deviate from the original chal-
lenges should present more elaborate argumentation for their adequacy.

3 Future Work and Conclusions

Our benchmark challenges do not cover all issues in the field, but focus on the
fundamental aspects of linearity, scope extrusion, and coinduction. Many mech-
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anisations need to combine techniques to handle several of these aspects, and
some may also need to handle aspects that are not covered by our benchmark.

Combining techniques for mechanising the fundamental aspects covered in
our benchmark is non-trivial. While we focus on the aspects individually to sim-
plify the challenges, we are also interested in exploring how techniques interact.

Much current research on concurrent calculi includes aspects that are not
covered by our benchmark challenges, for example constructs such as choice
and recursion. Some interesting research topics that build on the fundamen-
tal aspects in our benchmark include multiparty session types [31], choreogra-
phies [11], higher-order calculi [29], conversation types [10], psi-calculi [5], and
encodings between different calculi [20,28]. The meta-theory of these topics
includes aspects—e.g . well-formedness conditions on global types, partiality of
end-point projection functions, etc.—that we do not address.

Our coinduction challenge only treats two notions of process equivalence, but
many more exist in the literature. Coinduction may also play a role in recursive
processes and session types: recursive session types can be expressed in infinitary
form by interpreting their typing rules coinductively [21,33].

Unlike POPLMark, we consider animation of calculi (as in [13]) out of scope
for our benchmark. Finally, our challenges encourage, but do not require, explor-
ing proof automation, as offered by e.g . the Hammer protocol [9,18].

Ultimately, the fundamental aspects covered by our benchmark serve as the
building blocks for most current research on concurrent calculi. It is our hope
and aim that exploring and comparing solutions to our challenges will move the
community closer to a future where the key basic proof techniques for concurrent
calculi are as easy to mechanise as they are to write on paper.
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