
Programming and Reasoning about Coinduction using
Copatterns

David Thibodeau
(joint work with A. Abel, B. Pientka, and A. Setzer)

McGill University

March 5, 2013

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 1 / 24

Infinity in Computer Science

Computer science is bounded by physical limitations: Computations must
be finite in time and space.

Yet, some important objects in computer science are, or are modeled as
infinite structures

• Functions

• Streams

• I/O devices

• Constantly running processes (e.g. Operating systems)

• etc.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 2 / 24

Representing infinity: Existing Solutions

ML: Uses dummy function abstractions to delay, forcing with dummy
applications. Hard to work and reason with.

Haskell: Everything is done lazily. There is no difference between finite
and infinite. Cannot reason eagerly.

Coq: Coinductive types are non-wellfounded data types. The reduction of
cofixpoints is done only under match. Leads to loss of subject reduction.
[Gimenez, 1996; Oury, 2008]

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 3 / 24

Inductive structures

On the other hand, we understand inductive structures very well.

Inductive datatypes are introduced via constructors and eliminated via
pattern matching.

datatype List : ctype =
| Nil : List
| Cons : Nat → List → List
;

rec append : List → List → List =
fn xs ⇒ fn ys ⇒ case xs of
| Nil ⇒ ys
| Cons z zs ⇒ Cons z (append zs ys)
;

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 4 / 24

New Paradigm: Understand Coinduction as Dual to
Induction

We don’t understand coinduction through constructors, but through
observations.

Infinite data are impossible to analyse as a whole, hence we can only
observe finite parts.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 5 / 24

Observations for Functions

Functions are black boxes. We do observations by application of
arguments.

M : T → S N : T
M N : S

We use pattern matching to split the possibly infinite number of different
inputs into a finite number of categories.

rec isZero : Nat → Bool =
fn e ⇒ case e of
| Zero ⇒ True
| Suc x ⇒ False
;

Even if there are infinitely many natural numbers, we only care about if
the input is zero or the successor of some natural number.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 6 / 24

Observations for Streams

Coinductive objects have defined observations that are provided by the
datatype. We define a cofixpoints using copatterns.

codatatype Stream : ctype =
| Head : Stream → Nat
| Tail : Stream → Stream
;

Then, we obtain the result of the matching under a projection copattern.

zeros : Stream
Head zeros = Zero
Tail zeros = zeros

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 7 / 24

Mixing patterns and copatterns

We can redefine the usual constructor.

cons : Nat → Stream → Stream
Head ((cons x) y) = x
Tail ((cons x) y) = y

We can still use patterns like (_ x) and (_ y) as application
copatterns.

The left-hand side is a composite copattern. We allow arbitrary mixing of
patterns and copatterns.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 8 / 24

(Co)Patterns Definition

Patterns

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

Copatterns

q ::= · Hole
| q p Application copattern
| d q Projection copattern

Definitions

q1[f /·] = t1
...

qn[f /·] = tn

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 9 / 24

Example: Fibonacci Stream

The Fibonacci stream can be define with constructors in the following way.

fib = cons 0 (cons 1 (zipWith _+_ fib (tail fib)))

It obeys the following recurrence

fib 0 1 1 2 3 5 8
↗ ↗ ↗ ↗ ↗

Tail fib 1 1 2 3 5 8 13
↗ ↗ ↗ ↗ ↗ ↗

zipWith + fib (Tail fib) 1 2 3 5 8 13 21

Which can be expressed quite nicely with copatterns

Head fib = 0
Head (Tail fib) = 1
Tail (Tail fib) = zipWith _+_ fib (Tail fib)

This expression satisfies strong normalisation in a system using eager
rewriting when matching.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 10 / 24

Interactive Program Development

Let us take a function

cycleNats : Nat → Stream

such that

cycleNats n = n, n − 1, . . . , 1, 0,N,N − 1, . . . , 1, 0,

e.g.
cycleNats 5 = 5, 4, 3, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, . . .

How do we construct such function? We can do it interactively

cycleNats : Nat → Stream
cycleNats = ?

On which we can split on the result (function).

cycleNats x = ?

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 11 / 24

Interactive Program Development

We split again on the result (stream).

Head (cycleNats x) = ?
Tail (cycleNats x) = ?

Then, we fill the first clause

Head (cycleNats x) = x
Tail (cycleNats x) = ?

We do a splitting on x in the second clause.

Head (cycleNats x) = x
Tail (cycleNats Zero) = ?
Tail (cycleNats (Suc x’)) = ?

And we can fill the remaining clauses.

Head (cycleNats x) = x
Tail (cycleNats Zero) = cycleNats N
Tail (cycleNats (suc x’)) = cycleNats x’

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 12 / 24

Coverage and Progress

This Agda-like interactive program development gives us a notion of
coverage.

• Start with the trivial covering. (the copattern · “hole”)

• Repeat:
• Split result or
• Split a pattern variable

• until you obtain the user-given patterns.

Using such algorithm to obtain covering functions, we can then prove
progress.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 13 / 24

Mixing inductive and coinductive datatypes: Colists

We can also define mutually recursive inductive and coinductive datatypes.

codatatype Colist : ctype =
| Out : Colist → Colist’

and datatype Colist’ : ctype =
| Nil : Colist’
| Cons : Char → Colist → Colist’
;

Say we want to extract all the numbers before the first zero in a stream.

mutual
firstLine : Stream → Colist
Out (firstLine xs) = firstline’ (Head xs) (Tail xs)

firstline’ : Char → Stream → Colist’
firstline’ ‘\n’ xs = Nil
firstline’ a xs = Cons a (firstline xs)

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 14 / 24

Contribution

We built a calculus for simple types mixing induction and coinduction in a
symmetric way. We achieved the following.

• Subject Reduction

• Coverage Algorithm

• Progress

The next directions for this work leads us to different places

• Strong Normalisation (proof in progress by A. Abel and B. Pientka)

• Extension to Beluga and other dependently types settings

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 15 / 24

Extending Copatterns to Beluga

Beluga is a two level-system with

• types with dependency from the LF level only.

• function definition and pattern matching using cases and let bindings.

Allows for a good case study for both a dependently typed extension and a
foundation for compilation.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 16 / 24

Beluga as a foundation syntax for compilation

How do we represent copattern matching outside of this equational style?

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

In the equational style, cycleNats looked like

Head (cycleNats x) = x
Tail (cycleNats Zero) = cycleNats n
Tail (cycleNats (suc x’)) = cycleNats x’

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 17 / 24

Beluga as a foundation syntax for compilation

If go back to the interactive program development, we realize our Beluga
syntax follow it closely

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

We first split on the result. (function)

cycleNats x = ?

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 18 / 24

Beluga as a foundation syntax for compilation

If go back to the interactive program development, we realize our Beluga
syntax follow it closely

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

Then we split again on the result. (stream)

Head (cycleNats x) = ?
Tail (cycleNats x) = ?

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 18 / 24

Beluga as a foundation syntax for compilation

If go back to the interactive program development, we realize our Beluga
syntax follow it closely

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

We conclude by splitting on the pattern variable.

Head (cycleNats x) = x
Tail (cycleNats Zero) = ?
Tail (cycleNats (Suc x’)) = ?

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 18 / 24

Uses of Cases for Datatypes and Codatatypes

In the equational style, mixing both datatypes and codatatypes requires
mutually recursive functions to unpack the observations.

mutual
firstLine : Stream → Colist
Out (firstLine xs) = firstline’ (Head xs) (Tail xs)

firstline’ : Char → Stream → Colist’
firstline’ ‘\n’ xs = Nil
firstline’ a xs = Cons a (firstline xs)

With cases, we can obtain a “simpler” function.

rec firstLine : Stream → Colist =
fn e ⇒ cofun Out ⇒ (case Head e of

| ‘\n’ ⇒ Nil
| a ⇒ Cons a (firstLine Tail e))

;

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 19 / 24

Dependently Typed Codatatypes

Divergence of lambda terms is proved coinductively.

M ⇑
λx .M ⇑

M ⇑
M N ⇑

M ⇓ λx .M ′ [N/x]M ′ ⇑
M N ⇑

where M ⇑ means that M diverges,
and M ⇓ M ′ means that M evaluates to M ′.

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → Div [. M]
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

and datatype Eval_Div : [. term] → [. term] → ctype =
| ED : [. eval M M’]→ Div [. M’ N] → Eval_Div [. M] [. N]
;

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 20 / 24

Dependently Typed Datatypes vs Codatatypes

Inductive datatypes refine types

datatype : List : [. nat] → ctype =
| Nil : List [. zero]
| Cons : [. nat] → List [. N] → List [. suc N]
;

On the other hand, observations are restricted to when codatatypes satisfy
a particular type signature.

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → Div [. M]
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

So if D : Div [. lam M], then Div_app D is considered ill-typed.
No such observation can be made!

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 21 / 24

Impossible Observations

What if a codatatype does not have any possible observation for a given
type annotation?

Restrictions on observations from our type dependency imply an idea of
coverage.

λx .M ⇓ λx .M
M ⇑

M N ⇑
M ⇓ λx .M ′ [N/x]M ′ ⇑

M N ⇑

There are no diverging term with a lambda as its head!

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → ?
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 22 / 24

Impossible Observations

What if a codatatype does not have any possible observation for a given
type annotation?

Restrictions on observations from our type dependency imply an idea of
coverage.

λx .M ⇓ λx .M
M ⇑

M N ⇑
M ⇓ λx .M ′ [N/x]M ′ ⇑

M N ⇑

There are no diverging term with a lambda as its head!

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → Empty
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

and datatype Empty → ctype =
;

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 22 / 24

Dependently Typed Copatterns

Theorem

(λx .x x) (λx .x x) diverges.

Proof.

The proof is done by coinduction.
We need to reach (λx .x x) (λx .x x) ⇑ as a strictly smaller
subderivation.
By our second divergence for application rule, it suffices to show that

• The first term of the application to evaluate to a lambda,
λx .x x ⇓ λx .x x

• The substitution [(λx .x x)/x](x x) diverges.
• [(λx .x x)/x](x x) −→ (λx .x x) (λx .x x),
• By coinduction hypothesis, (λx .x x) (λx .x x) ⇑.

This concludes the proof.

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 23 / 24

Dependently Typed Copatterns

Theorem

(λx .x x) (λx .x x) diverges.

As a derivation tree, the proof looks like

(λx .xx) ⇓ (λx .x x)

(λx .x x) ⇓ (λx .x x)

...

(λx .x x) (λx .x x) ⇑
(λx .x x) (λx .x x) ⇑

(λx .x x) (λx .x x) ⇑

In Beluga, the proof would look like

rec OmegaDiverges :
Div [. app (lam (λx.x x)) (lam (λx.x x))] =

cofun Div_app [. app M N] ⇒
InR (ED [. eval_lam] OmegaDiverges)

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 23 / 24

Conclusion

• Symmetric calculus mixing inductive and coinductive datatypes;

• Coinduction is modeled using observations instead of constructors;

• Satisfies type preservation and progress;

• Coverage algorithm;

• Proof of strong normalisation in progress;

• Extension to dependent types through Beluga coming soon!

David Thibodeau(joint work with A. Abel, B. Pientka, and A. Setzer) (McGill University)Programming and Reasoning about Coinduction using CopatternsMarch 5, 2013 24 / 24

