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Infinity in Computer Science

Computer science is bounded by physical limitations: Computations must
be finite in time and space.

Yet, some important objects in computer science are, or are modeled as
infinite structures

• Functions

• Streams

• I/O devices

• Constantly running processes (e.g. Operating systems)

• etc.
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Representing infinity: Existing Solutions

ML: Uses dummy function abstractions to delay, forcing with dummy
applications. Hard to work and reason with.

Haskell: Everything is done lazily. There is no difference between finite
and infinite. Cannot reason eagerly.

Coq: Coinductive types are non-wellfounded data types. The reduction of
cofixpoints is done only under match. Leads to loss of subject reduction.
[Gimenez, 1996; Oury, 2008]
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Inductive structures

On the other hand, we understand inductive structures very well.

Inductive datatypes are introduced via constructors and eliminated via
pattern matching.

datatype List : ctype =
| Nil : List
| Cons : Nat → List → List
;

rec append : List → List → List =
fn xs ⇒ fn ys ⇒ case xs of
| Nil ⇒ ys
| Cons z zs ⇒ Cons z (append zs ys)
;
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New Paradigm: Understand Coinduction as Dual to
Induction

We don’t understand coinduction through constructors, but through
observations.

Infinite data are impossible to analyse as a whole, hence we can only
observe finite parts.
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Observations for Functions

Functions are black boxes. We do observations by application of
arguments.

M : T → S N : T
M N : S

We use pattern matching to split the possibly infinite number of different
inputs into a finite number of categories.

rec isZero : Nat → Bool =
fn e ⇒ case e of
| Zero ⇒ True
| Suc x ⇒ False
;

Even if there are infinitely many natural numbers, we only care about if
the input is zero or the successor of some natural number.
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Observations for Streams

Coinductive objects have defined observations that are provided by the
datatype. We define a cofixpoints using copatterns.

codatatype Stream : ctype =
| Head : Stream → Nat
| Tail : Stream → Stream
;

Then, we obtain the result of the matching under a projection copattern.

zeros : Stream
Head zeros = Zero
Tail zeros = zeros
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Mixing patterns and copatterns

We can redefine the usual constructor.

cons : Nat → Stream → Stream
Head (( cons x) y) = x
Tail (( cons x) y) = y

We can still use patterns like (_ x) and (_ y) as application
copatterns.

The left-hand side is a composite copattern. We allow arbitrary mixing of
patterns and copatterns.
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(Co)Patterns Definition

Patterns

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

Copatterns

q ::= · Hole
| q p Application copattern
| d q Projection copattern

Definitions

q1[f /·] = t1
...

qn[f /·] = tn
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Example: Fibonacci Stream

The Fibonacci stream can be define with constructors in the following way.

fib = cons 0 (cons 1 (zipWith _+_ fib (tail fib)))

It obeys the following recurrence

fib 0 1 1 2 3 5 8
↗ ↗ ↗ ↗ ↗

Tail fib 1 1 2 3 5 8 13
↗ ↗ ↗ ↗ ↗ ↗

zipWith + fib (Tail fib) 1 2 3 5 8 13 21

Which can be expressed quite nicely with copatterns

Head fib = 0
Head ( Tail fib) = 1
Tail ( Tail fib) = zipWith _+_ fib ( Tail fib)

This expression satisfies strong normalisation in a system using eager
rewriting when matching.
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Interactive Program Development

Let us take a function

cycleNats : Nat → Stream

such that

cycleNats n = n, n − 1, . . . , 1, 0,N,N − 1, . . . , 1, 0, . . . .

e.g.
cycleNats 5 = 5, 4, 3, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, . . .

How do we construct such function? We can do it interactively

cycleNats : Nat → Stream
cycleNats = ?

On which we can split on the result (function).

cycleNats x = ?
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Interactive Program Development

We split again on the result (stream).

Head ( cycleNats x ) = ?
Tail ( cycleNats x ) = ?

Then, we fill the first clause

Head ( cycleNats x ) = x
Tail ( cycleNats x ) = ?

We do a splitting on x in the second clause.

Head ( cycleNats x ) = x
Tail ( cycleNats Zero ) = ?
Tail ( cycleNats (Suc x’) ) = ?

And we can fill the remaining clauses.

Head ( cycleNats x ) = x
Tail ( cycleNats Zero ) = cycleNats N
Tail ( cycleNats (suc x’) ) = cycleNats x’
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Coverage and Progress

This Agda-like interactive program development gives us a notion of
coverage.

• Start with the trivial covering. (the copattern · “hole”)

• Repeat:
• Split result or
• Split a pattern variable

• until you obtain the user-given patterns.

Using such algorithm to obtain covering functions, we can then prove
progress.
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Mixing inductive and coinductive datatypes: Colists

We can also define mutually recursive inductive and coinductive datatypes.

codatatype Colist : ctype =
| Out : Colist → Colist’

and datatype Colist’ : ctype =
| Nil : Colist’
| Cons : Char → Colist → Colist’
;

Say we want to extract all the numbers before the first zero in a stream.

mutual
firstLine : Stream → Colist
Out (firstLine xs) = firstline’ ( Head xs) ( Tail xs)

firstline’ : Char → Stream → Colist’
firstline’ ‘\n’ xs = Nil
firstline’ a xs = Cons a (firstline xs)
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Contribution

We built a calculus for simple types mixing induction and coinduction in a
symmetric way. We achieved the following.

• Subject Reduction

• Coverage Algorithm

• Progress

The next directions for this work leads us to different places

• Strong Normalisation (proof in progress by A. Abel and B. Pientka)

• Extension to Beluga and other dependently types settings
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Extending Copatterns to Beluga

Beluga is a two level-system with

• types with dependency from the LF level only.

• function definition and pattern matching using cases and let bindings.

Allows for a good case study for both a dependently typed extension and a
foundation for compilation.
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Beluga as a foundation syntax for compilation

How do we represent copattern matching outside of this equational style?

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

In the equational style, cycleNats looked like

Head (cycleNats x ) = x
Tail (cycleNats Zero ) = cycleNats n
Tail (cycleNats (suc x’) ) = cycleNats x’
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Beluga as a foundation syntax for compilation

If go back to the interactive program development, we realize our Beluga
syntax follow it closely

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

We first split on the result. (function)

cycleNats x = ?
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Beluga as a foundation syntax for compilation

If go back to the interactive program development, we realize our Beluga
syntax follow it closely

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

Then we split again on the result. (stream)

Head ( cycleNats x ) = ?
Tail ( cycleNats x ) = ?
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Beluga as a foundation syntax for compilation

If go back to the interactive program development, we realize our Beluga
syntax follow it closely

rec cycleNats : Nat → Stream =
fn x ⇒ cofun Head ⇒ x

| Tail ⇒ (case x of
| Zero ⇒ cycleNats n
| Suc x’ ⇒ cycleNats x’)

We conclude by splitting on the pattern variable.

Head ( cycleNats x ) = x
Tail ( cycleNats Zero ) = ?
Tail ( cycleNats (Suc x’) ) = ?
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Uses of Cases for Datatypes and Codatatypes

In the equational style, mixing both datatypes and codatatypes requires
mutually recursive functions to unpack the observations.

mutual
firstLine : Stream → Colist
Out (firstLine xs) = firstline’ (Head xs) (Tail xs)

firstline’ : Char → Stream → Colist’
firstline’ ‘\n’ xs = Nil
firstline’ a xs = Cons a (firstline xs)

With cases, we can obtain a “simpler” function.

rec firstLine : Stream → Colist =
fn e ⇒ cofun Out ⇒ (case Head e of

| ‘\n’ ⇒ Nil
| a ⇒ Cons a (firstLine Tail e))

;
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Dependently Typed Codatatypes

Divergence of lambda terms is proved coinductively.

M ⇑
λx .M ⇑

M ⇑
M N ⇑

M ⇓ λx .M ′ [N/x ]M ′ ⇑
M N ⇑

where M ⇑ means that M diverges,
and M ⇓ M ′ means that M evaluates to M ′.

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → Div [. M]
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

and datatype Eval_Div : [. term] → [. term] → ctype =
| ED : [. eval M M’]→ Div [. M’ N] → Eval_Div [. M] [. N]
;
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Dependently Typed Datatypes vs Codatatypes

Inductive datatypes refine types

datatype : List : [. nat] → ctype =
| Nil : List [. zero]
| Cons : [. nat] → List [. N] → List [. suc N]
;

On the other hand, observations are restricted to when codatatypes satisfy
a particular type signature.

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → Div [. M]
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

So if D : Div [. lam M], then Div_app D is considered ill-typed.
No such observation can be made!
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Impossible Observations

What if a codatatype does not have any possible observation for a given
type annotation?

Restrictions on observations from our type dependency imply an idea of
coverage.

λx .M ⇓ λx .M
M ⇑

M N ⇑
M ⇓ λx .M ′ [N/x ]M ′ ⇑

M N ⇑

There are no diverging term with a lambda as its head!

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → ?
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])
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Impossible Observations

What if a codatatype does not have any possible observation for a given
type annotation?

Restrictions on observations from our type dependency imply an idea of
coverage.

λx .M ⇓ λx .M
M ⇑

M N ⇑
M ⇓ λx .M ′ [N/x ]M ′ ⇑

M N ⇑

There are no diverging term with a lambda as its head!

codatatype Div : [. term] → ctype =
| Div_lam : Div [. lam M] → Empty
| Div_app : Div [. app M N] →

(Div [. M] + Eval_Div [. M] [. N])

and datatype Empty → ctype =
;
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Dependently Typed Copatterns

Theorem

(λx .x x) (λx .x x) diverges.

Proof.

The proof is done by coinduction.
We need to reach (λx .x x) (λx .x x) ⇑ as a strictly smaller
subderivation.
By our second divergence for application rule, it suffices to show that

• The first term of the application to evaluate to a lambda,
λx .x x ⇓ λx .x x

• The substitution [(λx .x x)/x ](x x) diverges.
• [(λx .x x)/x ](x x) −→ (λx .x x) (λx .x x),
• By coinduction hypothesis, (λx .x x) (λx .x x) ⇑.

This concludes the proof.
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Dependently Typed Copatterns

Theorem

(λx .x x) (λx .x x) diverges.

As a derivation tree, the proof looks like

(λx .xx) ⇓ (λx .x x)

(λx .x x) ⇓ (λx .x x)

...

(λx .x x) (λx .x x) ⇑
(λx .x x) (λx .x x) ⇑

(λx .x x) (λx .x x) ⇑

In Beluga, the proof would look like

rec OmegaDiverges :
Div [. app (lam (λx.x x)) (lam (λx.x x))] =

cofun Div_app [. app M N] ⇒
InR (ED [. eval_lam] OmegaDiverges)
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Conclusion

• Symmetric calculus mixing inductive and coinductive datatypes;

• Coinduction is modeled using observations instead of constructors;

• Satisfies type preservation and progress;

• Coverage algorithm;

• Proof of strong normalisation in progress;

• Extension to dependent types through Beluga coming soon!
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