
Indexed Copatterns
Reasoning about Infinite Structures by Observations

David Thibodeau Brigitte Pientka

McGill University

September 24, 2013

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 1 / 18

Representing Infinite Data

I Plays an important role when reasoning about Input/Output
interactions, interactions between server and client, more generally
processes

• Bisimilarity
• Fairness properties

I Infinite data = circular data:
• Representing closures when describing evaluation [Tofte, Milner; 1988]
• Representing circular proofs [Brotherston, 2005]

I Infinite data = diverging computation
• Diverging small-step evaluation for lambda terms (e.g. Ω)
• Diverging big step semantics [Leroy and Grall, 2009] mixing finite and

infinite computation

How to represent and reason about infinite derivations?

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 2 / 18

Existing Solutions

General proof systems - lack support for binders

I Coq: loss of subject reduction in the presence of coinduction
[Giménez, 1996; Oury, 2008]

I Agda: limitation on definitional equality of coinductive terms

Proof systems supporting binders through Higher Order Abstract Syntax:
I Type theories:

• Twelf [Harper et al., 1993]: No support for coinduction
• Beluga [Pientka and Dunfield, 2010]: This talk is about adding support

for coinduction and coinductive certified programming

I Proof theory:
• Abella [Gacek, 2008]: supports coinduction ; no executable program

Current work

Support representing and reasoning about infinite derivations via indexed
coinductive datatypes.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 3 / 18

New Paradigm: Coinduction as Dual to Induction

We don’t understand coinduction through constructors, but through
observations (POPL’13, joint work with Andreas Abel, Brigitte Pientka,
and Anton Setzer).

In Beluga:

I Inductive datatype

datatype List : ctype =
| Nil : List
| Cons : Nat → List → List;

I Coinductive datatype

codatatype Stream : ctype =
| Head : Stream → Nat
| Tail : Stream → Stream;

The kind ctype introduces (co)inductive type.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 4 / 18

Induction and Coinduction

Inductive datatypes are introduced via constructors and eliminated via
pattern matching.

rec append : List → List → List
fn xs ⇒ fn ys ⇒ case xs of
| Nil ⇒ ys
| Cons x xs’ ⇒ Cons x (append xs’ ys);

Coinductive datatypes are eliminated via observations and introduced via
copattern matching.

rec fib : Stream
observe
| Head ⇒ 0
| Tail Head ⇒ 1
| Tail Tail ⇒ zipWith plus fib (Tail fib);

The observations on this “observe” value will make it step.

Head fib → 0
Head (Tail fib) → 1
Tail (Tail fib) → zipWith plus fib (Tail fib)

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 5 / 18

Induction and Coinduction

Inductive datatypes are introduced via constructors and eliminated via
pattern matching.

rec append : List → List → List
fn xs ⇒ fn ys ⇒ case xs of
| Nil ⇒ ys
| Cons x xs’ ⇒ Cons x (append xs’ ys);

Coinductive datatypes are eliminated via observations and introduced via
copattern matching.

rec fib : Stream
observe
| Head ⇒ 0
| Tail Head ⇒ 1
| Tail Tail ⇒ zipWith plus fib (Tail fib);

The observations on this “observe” value will make it step.

Head fib → 0
Head (Tail fib) → 1
Tail (Tail fib) → zipWith plus fib (Tail fib)

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 5 / 18

Induction and Coinduction

Inductive datatypes are introduced via constructors and eliminated via
pattern matching.

rec append : List → List → List
fn xs ⇒ fn ys ⇒ case xs of
| Nil ⇒ ys
| Cons x xs’ ⇒ Cons x (append xs’ ys);

Coinductive datatypes are eliminated via observations and introduced via
copattern matching.

rec fib : Stream
observe
| Head ⇒ 0
| Tail Head ⇒ 1
| Tail Tail ⇒ zipWith plus fib (Tail fib);

The observations on this “observe” value will make it step.

Head fib → 0
Head (Tail fib) → 1
Tail (Tail fib) → zipWith plus fib (Tail fib)

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 5 / 18

Previous Contribution (POPL’13)

I A symmetric calculus mixing induction and coinduction in an
equational style.

I A coverage algorithm following the style of Agda’s interactive mode.

I Proofs of subject reduction and progress.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 6 / 18

Contribution

Two examples using indexed codatatypes

I Indexed streams carrying information about sequences of bits inside
the stream. (No binders)

I A type-preserving environment-based interpreter where we represent
closures coinductively following [Tofte, Milner; 1988].

Goal

Illustrate the idea and usefulness of indexed codatatypes through our
prototype in Beluga.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 7 / 18

Beluga

2-level proof environment
I Specification level: Logical Framework LF [Harper et al. 1993]

• Higher Order Abstract Syntax
• Binders represented by function space
• Kind type introduces LF type.

I Computational level supports inductive and coinductive definitions,
recursion and pattern matching

• Computational types can be indexed by LF terms
• Kind ctype introduces computational (co)datatypes
• Explicit handling of contexts and substitutions
• Contextual object: LF term E is packaged with its surrounding context

psi: [ψ.E ..].
− Context ψ represents all free variables in E.
− .. : Identity substitution representing dependency of ψ on E.
− Binder: [ψ. lam λx.E..x]

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 8 / 18

Indexed (co)datatypes

Indices in datatypes refine types.

datatype List : [. nat] → ctype =
| Nil : List [. z]
| Cons : Bit → List [. N] →List [. s N]
;

Indices in codatatypes restrict the type of terms observations can be
applied to.

codatatype Stream : [. nat] → ctype =
| GetBit : Stream [. s N] → Bit
| RemBits : Stream [. s N] → Stream [. N]
| Next : Stream [. z] → Stream [. N]
;

If l : Stream [. s N] then Next l is not welltyped.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 9 / 18

Indexed (co)datatypes

Indices in datatypes refine types.

datatype List : [. nat] → ctype =
| Nil : List [. z]
| Cons : Bit → List [. N] →List [. s N]
;

Indices in codatatypes restrict the type of terms observations can be
applied to.

codatatype Stream : [. nat] → ctype =
| GetBit : Stream [. s N] → Bit
| RemBits : Stream [. s N] → Stream [. N]
| Next : Stream [. z] → Stream [. N]
;

If l : Stream [. s N] then Next l is not welltyped.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 9 / 18

Build Word from Indexed Stream

Suppose we want to extract from a stream of words (e.g. bytes) from our
indexed stream of bits.

datatype Byte : ctype =
| Nil : Byte
| Cons : Bit → Byte → Byte;

Given a stream observing N inputs return a word (consisting of the N
observations) and the remaining stream

rec buildByte : {N: [. nat]} Stream [. N] →
(Byte * Stream [. z]) =

mlam N ⇒ fn s ⇒ case [. N] of
| [. z] ⇒ (Nil , s)
| [. s N] ⇒

let (bs, s’) = buildByte [. N] (RemBits s) in
let b = GetBit s in
(Cons b bs, s’);

Input: 01110010001111010010011101110101 ...
Output: (01110010, 001111010010011101110101 ...)
David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 10 / 18

From Bit Stream to Byte Stream

Then, we can get a stream of words from the indexed stream.

codatatype ByteStream : ctype =
| Byte : ByteStream → Byte
| Tail : ByteStream → ByteStream;

Given a stream observing N inputs produce a stream of words

rec byteStream : {N : [. nat]} Stream [. N] → ByteStream =
mlam N ⇒ fn s ⇒
let (w, s’) = buildByte [. N] s in
observe Byte ⇒ w

| Tail ⇒ byteStream [. N] (Next s’);

Input: 01110010001111010010011101110101 ...
Output: [01110010, 00111101, 00100111, 01110101, ...]

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 11 / 18

Simply Typed Lambda Calculus with Fixpoints

t ::= c | T1 → T2 Types

e ::= x | e1 e2 | abs x .e | fix f (x) = e Terms

In Beluga, we represent such language in the Logical Framework LF.

datatype tp : type =
| arr : tp → tp → tp
| c : tp;

datatype tm : tp → type =
| app : tm (arr A B) → tm A → tm B
| abs : (tm A → tm B) → tm (arr A B)
| fix : (tm (arr A B) → tm A → tm B) → tm (arr A B);

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 12 / 18

Operational Semantics with Closures [Tofte, Milner; 1988]

φ ` e ⇓ v term e steps to value v in environment φ.

φ ::= · | φ, (x , v) Environments

v ::= 〈x .e ; φ〉 Values

e in closure depends on x and variables in φ.
φ defines a value for all free variables in e.
φ in closure cl can have reference to cl . Closures might be circular.

x ∈ Dom φ

φ ` x ⇓ φ(x) φ ` abs x .e ⇓ 〈x .e ; φ〉

cl∞ = 〈x .e ; φ, (f , cl∞)〉
φ ` fix f (x) = e ⇓ cl∞

φ ` e1 ⇓ 〈x .e ; φ′〉 φ ` e2 ⇓ v2 φ′, (x , v2) ` e ⇓ v

φ ` e1 e2 ⇓ v

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 13 / 18

Coinductive Closures

These closures being infinite, we need a coinductive definition of values.

φ ::= · | φ, (x , v) Environments

v ::= 〈x .e ; φ〉 Values

schema ctx = tm A;

datatype Env : {ψ:ctx} ctype =
| Empty : Env []
| Cons : Val [.A] → Env [ψ]

→ Env [ψ, x:tm A]

and codatatype Val : [.tp] → ctype =
| Val : Val [.B] → Val’ [.B]

and datatype Val’ : [.tp] → ctype =
| Closure : [ψ,x:tm A .tm B] → Env [ψ]

→ Val’ [.arr A B];

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 14 / 18

Type Preserving Evaluator

rec eval : [ψ. tm A] → Env [ψ] → Val [.A] =
fn e ⇒ fn φ ⇒ case e of

I ψ links free variables in e to variables in φ.

I φ ` e ⇓ v term e steps to value v in environment φ.

I By case analysis on e.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 15 / 18

Type Preserving Evaluator

rec eval : [ψ. tm A] → Env [ψ] → Val [.A] =
fn e ⇒ fn φ ⇒ case e of
| [ψ. #p ..] ⇒ lookup [ψ.#p ..] φ

which corresponds to
x ∈ Dom φ

φ ` x ⇓ φ(x)

lookup: [ψ. tm A] → Env [ψ] → Val [.A]

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 15 / 18

Type Preserving Evaluator

rec eval : [ψ. tm A] → Env [ψ] → Val [.A] =
fn e ⇒ fn φ ⇒ case e of
| [ψ. #p ..] ⇒ lookup [ψ.#p ..] φ
| [ψ. abs (λx.E .. x)] ⇒
(observe Val ⇒ Closure φ [ψ, x:tm _ . E .. x])

which corresponds to φ ` abs x .e ⇓ 〈x .e ; φ〉

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 15 / 18

Type Preserving Evaluator

rec eval : [ψ. tm A] → Env [ψ] → Val [.A] =
fn e ⇒ fn φ ⇒ case e of
| [ψ. #p ..] ⇒ lookup [ψ.#p ..] φ
| [ψ. abs (λx.E .. x)] ⇒
(observe Val ⇒ Closure φ [ψ, x:tm _ . E .. x])

| [ψ. fix (λf. λx.E .. f x)] ⇒
unfold [ψ, f:tm _ , x:tm _ . E .. f x] φ

which corresponds to
cl∞ = 〈x .e ; φ, (f , cl∞)〉
φ ` fix f (x) = e ⇓ cl∞

where unfold creates a reference to itself

rec unfold : [ψ,f:tm (arr A B), x:tm A. tm B]
→ Env [ψ] → Val [. (arr A B)] =

fn cl ⇒ fn φ ⇒
(observe Val ⇒ Closure (Cons (unfold cl φ) φ) cl);

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 15 / 18

Type Preserving Evaluator

rec eval : [ψ. tm A] → Env [ψ] → Val [.A] =
fn e ⇒ fn φ ⇒ case e of
| [ψ. #p ..] ⇒ lookup [ψ.#p ..] φ
| [ψ. abs (λx.E .. x)] ⇒
(observe Val ⇒ Closure φ [ψ, x:tm _ . E .. x])

| [ψ. fix (λf. λx.E .. f x)] ⇒
unfold [ψ, f:tm _ , x:tm _ . E .. f x] φ

| [ψ. app (E1 ..) (E2 ..)] ⇒
let Closure φ’ [ψ,x:tm _ . E .. x] =

Val (eval [ψ. E1 ..] φ) in
let v2 = eval [ψ. E2 ..] φ in

eval [ψ,x:tm _ . E .. x] (Cons v2 φ’)
;

which corresponds to

φ ` e1 ⇓ 〈x .e ; φ′〉 φ ` e2 ⇓ v2 φ′, (x , v2) ` e ⇓ v

φ ` e1 e2 ⇓ v

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 15 / 18

Related work

I Coinductive proofs in Abella
• Bisimulation proofs in π-calculus
• Attempt to implement closure based interpreter example (broken)

I Operational Semantics in Agda [Danielsson, 2012]
• Uses partiality monad,
• No support for binders

I Pretty big-step semantics [Charguéraud, 2012]
• Eliminates duplication of premisses when dealing with divergence
• Uses traces to relate inductive and coinductive interpretation of rules

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 16 / 18

Conclusion

I A prototype for coinductive Beluga supporting inductive and
coinductive reasoning in a symmetric fashion

I Examples:
• Indexed streams keeping track of how much of the current word is still

to be read;
• A type-preserving environment-based interpreter with closures;
• Reasoning about divergence of lambda terms;
• Bisimulation of processes in the pi-calculus.

I Moving the idea of copatterns towards dependent types.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 17 / 18

Current work

I Extend the meta theory to indexed coinductive types;

I Solve some type reconstruction issues in the implementation;

I Define a notion of coverage for indexed copatterns;

I Extend notion of productivity of [Abel, Pientka; ICFP’13] to indexed
types.

David Thibodeau (McGill University) Indexed Copatterns September 24, 2013 18 / 18

