Indexed Copatterns Reasoning about Infinite Structures by Observations

David Thibodeau Brigitte Pientka

McGill University

September 24, 2013

Representing Infinite Data

- Plays an important role when reasoning about Input/Output interactions, interactions between server and client, more generally processes
 - Bisimilarity
 - Fairness properties
- Infinite data = circular data:
 - Representing closures when describing evaluation [Tofte, Milner; 1988]
 - Representing circular proofs [Brotherston, 2005]
- Infinite data = diverging computation
 - Diverging small-step evaluation for lambda terms (e.g. Ω)
 - Diverging big step semantics [Leroy and Grall, 2009] mixing finite and infinite computation

How to represent and reason about infinite derivations?

Existing Solutions

General proof systems - lack support for binders

- Coq: loss of subject reduction in the presence of coinduction [Giménez, 1996; Oury, 2008]
- Agda: limitation on definitional equality of coinductive terms

Proof systems supporting binders through Higher Order Abstract Syntax:

- Type theories:
 - Twelf [Harper et al., 1993]: No support for coinduction
 - Beluga [Pientka and Dunfield, 2010]: This talk is about adding support for coinduction and coinductive certified programming
- Proof theory:
 - Abella [Gacek, 2008]: supports coinduction ; no executable program

Current work

Support representing and reasoning about infinite derivations via indexed coinductive datatypes.

New Paradigm: Coinduction as Dual to Induction

We don't understand coinduction through constructors, but through observations (POPL'13, joint work with Andreas Abel, Brigitte Pientka, and Anton Setzer).

In Beluga:

Inductive datatype

datatype List : ctype =
| Nil : List
| Cons : Nat → List → List;

Coinductive datatype

codatatype Stream : **ctype** = | Head : Stream \rightarrow Nat | Tail : Stream \rightarrow Stream;

The kind **ctype** introduces (co)inductive type.

Induction and Coinduction

Inductive datatypes are introduced via constructors and eliminated via pattern matching.

```
rec append : List \rightarrow List \rightarrow List
fn xs \Rightarrow fn ys \Rightarrow case xs of
| Nil \Rightarrow ys
| Cons x xs' \Rightarrow Cons x (append xs' ys);
```

Induction and Coinduction

Inductive datatypes are introduced via constructors and eliminated via pattern matching.

```
rec append : List \rightarrow List \rightarrow List
fn xs \Rightarrow fn ys \Rightarrow case xs of
| Nil \Rightarrow ys
| Cons x xs' \Rightarrow Cons x (append xs' ys);
```

Coinductive datatypes are eliminated via observations and introduced via copattern matching.

```
rec fib : Stream
observe
| Head \Rightarrow 0
| Tail Head \Rightarrow 1
| Tail Tail \Rightarrow zipWith plus fib (Tail fib);
```

Induction and Coinduction

Inductive datatypes are introduced via constructors and eliminated via pattern matching.

rec append : List \rightarrow List \rightarrow List fn xs \Rightarrow fn ys \Rightarrow case xs of	
$ $ Nil \Rightarrow ys	
Cons x xs' \Rightarrow Cons x (append xs' ys));

Coinductive datatypes are eliminated via observations and introduced via copattern matching.

```
rec fib : Stream
observe
| Head \Rightarrow 0
| Tail Head \Rightarrow 1
| Tail Tail \Rightarrow zipWith plus fib (Tail fib);
```

The observations on this "observe" value will make it step.

```
Head fib \rightarrow 0
Head (Tail fib) \rightarrow 1
Tail (Tail fib) \rightarrow zipWith plus fib (Tail fib)
```

Previous Contribution (POPL'13)

- A symmetric calculus mixing induction and coinduction in an equational style.
- A coverage algorithm following the style of Agda's interactive mode.
- Proofs of subject reduction and progress.

Contribution

Two examples using indexed codatatypes

- Indexed streams carrying information about sequences of bits inside the stream. (No binders)
- ► A type-preserving environment-based interpreter where we represent closures coinductively following [Tofte, Milner; 1988].

Goal

Illustrate the idea and usefulness of indexed codatatypes through our prototype in Beluga.

Beluga

2-level proof environment

- ▶ Specification level: Logical Framework LF [Harper et al. 1993]
 - Higher Order Abstract Syntax
 - Binders represented by function space
 - Kind **type** introduces LF type.
- Computational level supports inductive and coinductive definitions, recursion and pattern matching
 - · Computational types can be indexed by LF terms
 - Kind ctype introduces computational (co)datatypes
 - Explicit handling of contexts and substitutions
 - Contextual object: LF term E is packaged with its surrounding context psi: [ψ .E ..].
 - Context ψ represents all free variables in E.
 - ...: Identity substitution representing dependency of ψ on E.
 - Binder: [ψ . lam $\lambda x.E..x$]

Indexed (co)datatypes

Indices in datatypes refine types.

Indexed (co)datatypes

Indices in datatypes refine types.

Indices in codatatypes restrict the type of terms observations can be applied to.

Build Word from Indexed Stream

Suppose we want to extract from a stream of words (e.g. bytes) from our indexed stream of bits.

```
datatype Byte : ctype =
| Nil : Byte
| Cons : Bit \rightarrow Byte \rightarrow Byte;
```

Given a stream observing N inputs return a word (consisting of the N observations) and the remaining stream

```
rec buildByte : {N: [. nat]} Stream [. N] \rightarrow
                                  (Byte * Stream [. z]) =
mlam N \Rightarrow fn s \Rightarrow case [. N] of
| [. z] \Rightarrow (Nil , s)
| [. s N] \Rightarrow
let (bs, s') = buildByte [. N] (RemBits s) in
let b = GetBit s in
      (Cons b bs, s');
```

Input: 01110010001111010010011101110101 ... Output: (01110010, 001111010010011101110101 ...)

David Thibodeau (McGill University)

From Bit Stream to Byte Stream

Then, we can get a stream of words from the indexed stream.

```
codatatype ByteStream : ctype = | Byte : ByteStream \rightarrow Byte | Tail : ByteStream \rightarrow ByteStream;
```

Given a stream observing N inputs produce a stream of words

```
rec byteStream : {N : [. nat]} Stream [. N] \rightarrow ByteStream =
mlam N \Rightarrow fn s \Rightarrow
let (w, s') = buildByte [. N] s in
observe Byte \Rightarrow w
| Tail \Rightarrow byteStream [. N] (Next s');
```

Input: 01110010001111010010011101110101 ... Output: [01110010, 00111101, 00100111, 01110101, ...]

Simply Typed Lambda Calculus with Fixpoints

$$t ::= c \mid T_1 \to T_2$$
 Types
$$e ::= x \mid e_1 \mid e_2 \mid abs \ x.e \mid fix \ f(x) = e$$
 Terms

In Beluga, we represent such language in the Logical Framework LF.

datatype tp : type = | arr : tp \rightarrow tp \rightarrow tp | c : tp; datatype tm : tp \rightarrow type = | app : tm (arr A B) \rightarrow tm A \rightarrow tm B | abs : (tm A \rightarrow tm B) \rightarrow tm (arr A B) | fix : (tm (arr A B) \rightarrow tm A \rightarrow tm B) \rightarrow tm (arr A B);

Operational Semantics with Closures [Tofte, Milner; 1988]

 $\phi \vdash e \Downarrow v$ term *e* steps to value *v* in environment ϕ .

$$\begin{aligned} \phi &::= \cdot \mid \phi, (x, v) & \text{Environments} \\ v &::= \langle x.e \; ; \; \phi \rangle & \text{Values} \end{aligned}$$

e in closure depends on *x* and variables in ϕ . ϕ defines a value for all free variables in *e*. ϕ in closure *cl* can have reference to *cl*. Closures might be circular.

$$\frac{x \in \text{Dom } \phi}{\phi \vdash x \Downarrow \phi(x)} \qquad \overline{\phi \vdash \text{abs } x.e \Downarrow \langle x.e ; \phi \rangle}$$
$$\frac{cl_{\infty} = \langle x.e ; \phi, (f, cl_{\infty}) \rangle}{\phi \vdash \text{fix } f(x) = e \Downarrow cl_{\infty}}$$
$$\frac{\phi \vdash e_1 \Downarrow \langle x.e ; \phi' \rangle \quad \phi \vdash e_2 \Downarrow v_2 \quad \phi', (x, v_2) \vdash e \Downarrow v}{\phi \vdash e_1 e_2 \Downarrow v}$$

Coinductive Closures

These closures being infinite, we need a coinductive definition of values.

$\phi ::= \cdot \mid \phi, (\mathbf{x}, \mathbf{v})$	Environments
$m{v}::=\langle x.m{e}\ ;\ \phi angle$	Values

schema ctx = tm A;

and codatatype Val : [.tp] \rightarrow ctype = | Val : Val [.B] \rightarrow Val' [.B]

and datatype Val': [.tp]
$$\rightarrow$$
 ctype =
| Closure : [ψ ,x:tm A .tm B] \rightarrow Env [ψ]
 \rightarrow Val' [.arr A B];

 $\begin{array}{rcl} {\rm rec} \ {\rm eval} \ : \ [\psi. \ {\rm tm} \ {\rm A}] \ \rightarrow \ {\rm Env} \ [\psi] \ \rightarrow \ {\rm Val} \ [.{\rm A}] \ = \\ {\rm fn} \ {\rm e} \ \Rightarrow \ {\rm fn} \ \phi \ \Rightarrow \ {\rm case} \ {\rm e} \ {\rm of} \end{array}$

- ψ links free variables in *e* to variables in ϕ .
- ▶ $\phi \vdash e \Downarrow v$ term *e* steps to value *v* in environment ϕ .
- By case analysis on *e*.

which corresponds to $\frac{x \in \mathsf{Dom} \phi}{\phi \vdash x \Downarrow \phi(x)}$

lookup: [ψ . tm A] \rightarrow Env [ψ] \rightarrow Val [.A]

 $\begin{array}{l} \operatorname{rec} \operatorname{eval} : \ [\psi. \ \operatorname{tm} \ A] \to \operatorname{Env} \ [\psi] \to \operatorname{Val} \ [.A] = \\ \operatorname{fn} \ e \Rightarrow \ \operatorname{fn} \ \phi \Rightarrow \operatorname{case} \ e \ \operatorname{of} \\ | \ [\psi. \ \#p \ .. \] \Rightarrow \ | \operatorname{lookup} \ [\psi. \#p \ .. \] \phi \\ | \ [\psi. \ \operatorname{abs} \ (\lambda x. E \ .. \ x)] \Rightarrow \\ (\operatorname{observe} \ \operatorname{Val} \Rightarrow \operatorname{Closure} \phi \ [\psi, \ x: \operatorname{tm} \ .. \ E \ .. \ x]) \end{array}$

which corresponds to $\overline{\phi \vdash \text{abs } x.e \Downarrow \langle x.e ; \phi \rangle}$

rec eval : [ψ . tm A] \rightarrow Env [ψ] \rightarrow Val [.A] =
fn e \Rightarrow fn $\phi \Rightarrow$ case e of
| [ψ . #p ..] \Rightarrow lookup [ψ .#p ..] ϕ | [ψ . abs (λ x.E .. x)] \Rightarrow (observe Val \Rightarrow Closure ϕ [ψ , x:tm _ . E .. x])
| [ψ . fix (λ f. λ x.E .. f x)] \Rightarrow unfold [ψ , f:tm _ , x:tm _ . E .. f x] ϕ

which corresponds to
$$rac{cl_{\infty} = \langle x.e \; ; \; \phi, (f, cl_{\infty}) \rangle}{\phi \vdash \operatorname{fix} f(x) = e \Downarrow cl_{\infty}}$$

where unfold creates a reference to itself

$$\begin{array}{rcl} \textbf{rec unfold} &: & [\psi, \texttt{f:tm (arr A B), x:tm A. tm B}] \\ & \rightarrow & \texttt{Env } [\psi] \rightarrow \texttt{Val } [. (arr A B)] = \\ \textbf{fn cl} \Rightarrow & \textbf{fn } \phi \Rightarrow \\ (\textbf{observe Val} \Rightarrow \texttt{Closure (Cons (unfold cl } \phi) \phi) \texttt{cl}); \end{array}$$

rec eval : $[\psi$. tm A] \rightarrow Env $[\psi] \rightarrow$ Val [.A] = fn e \Rightarrow fn $\phi \Rightarrow$ case e of $| [\psi. \#p ...] \Rightarrow lookup [\psi.\#p ...] \phi$ (observe Val \Rightarrow Closure ϕ [ψ , x:tm _ . E .. x]) $| [\psi. fix (\lambda f. \lambda x.E \dots f x)] \Rightarrow$ unfold [ψ , f:tm _ , x:tm _ . E .. f x] ϕ \mid [ψ . app (E1 ...) (E2 ...)] \Rightarrow let Closure ϕ ' [ψ , x:tm _ . E .. x] = Val (eval [ψ . E1 ..] ϕ) in let v2 = eval [ψ . E2 ..] ϕ in eval [ψ ,x:tm _ . E .. x] (Cons v2 ϕ ') ;

which corresponds to

$$\frac{\phi \vdash e_1 \Downarrow \langle x.e \ ; \ \phi' \rangle \quad \phi \vdash e_2 \Downarrow v_2 \quad \phi', (x, v_2) \vdash e \Downarrow v}{\phi \vdash e_1 \ e_2 \Downarrow v}$$

Related work

- Coinductive proofs in Abella
 - Bisimulation proofs in π -calculus
 - Attempt to implement closure based interpreter example (broken)
- Operational Semantics in Agda [Danielsson, 2012]
 - Uses partiality monad,
 - No support for binders
- Pretty big-step semantics [Charguéraud, 2012]
 - Eliminates duplication of premisses when dealing with divergence
 - · Uses traces to relate inductive and coinductive interpretation of rules

Conclusion

- A prototype for coinductive Beluga supporting inductive and coinductive reasoning in a symmetric fashion
- Examples:
 - Indexed streams keeping track of how much of the current word is still to be read;
 - A type-preserving environment-based interpreter with closures;
 - · Reasoning about divergence of lambda terms;
 - Bisimulation of processes in the pi-calculus.
- Moving the idea of copatterns towards dependent types.

Current work

- Extend the meta theory to indexed coinductive types;
- Solve some type reconstruction issues in the implementation;
- Define a notion of coverage for indexed copatterns;
- Extend notion of productivity of [Abel, Pientka; ICFP'13] to indexed types.