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Abstract
We present Tores, a core language for encoding metatheoretic proofs. The novel features we
introduce are well-founded Mendler-style (co)recursion over indexed data types and a form of
recursion over objects in the index language to build new types. The latter, which we call index-
stratified types, are analogue to the concept of large elimination in dependently typed languages.
These features combined allow us to encode sophisticated case studies such as normalization
for lambda calculi and normalization by evaluation. We prove the soundness of Tores as a
programming and proof language via the key theorems of subject reduction and termination.
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1 Introduction

Recursion is a fundamental tool for writing useful programs in functional languages. When
viewed from a logical perspective via the Curry-Howard correspondence, well-founded recur-
sion corresponds to inductive reasoning. Dually, well-founded corecursion corresponds to
coinductive reasoning. However, concentrating only on well-founded (co)recursive definitions
is not sufficient to support the encoding of meta-theoretic proofs. There are two missing
ingredients: 1) To express fine-grained properties we often rely on first-order logic which is
analogous to indexed types in programming languages. 2) Many common notions cannot
be directly characterized by well-founded (co)recursive definitions. An example is Girard’s
notion of reducibility for functions: a term M is reducible at type A→ B if, for all terms N
that are reducible at type A, we have that M N is reducible at type B. This definition is
well-founded because it is by structural recursion on the type indices (A and B), so we want
to admit such definitions.

Our contribution in this paper is a core language called Tores that features indexed types
and (co)inductive reasoning via well-founded (co)recursion. The primary forms of types are
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19:2 Index-Stratified Types

indexed (co)recursive types, over which we support reasoning via Mendler-style (co)recursion.
Additionally, Tores features index-stratified types, which allow further definitions of types
via well-founded recursion over indices. The main difference between the two forms is that
(co)recursive types are more flexible, allowing (co)induction, while stratified types only
support unfolding based on their indices. The combination of the two features is especially
powerful for formalizing metatheory involving logical relations. This is partly because type
definitions in Tores do not require positivity, a condition used in other systems to ensure
termination and in turn logical consistency. Despite this, we are able to prove termination of
Tores programs using a semantic interpretation of types.

How to justify definitions that are recursively defined on a given index in addition to
well-founded (co)recursive definitions has been explored in proof theory (see for example Tiu
[2012], Baelde and Nadathur [2012]). While this line of work is more general, it is also more
complex and further from standard programming practice. In dependent type theories, large
eliminations achieve the same. Our approach, grounded in the Curry-Howard isomorphism,
provides a complementary perspective on this problem where we balance expressiveness and
ease of programming with a compact metatheory. We believe this may be an advantage
when considering more sophisticated index languages and reasoning techniques.

The combination of indexed (co)recursive types and stratified types is already used in
the programming and proof environment Beluga, where the index language is an extension
of the logical framework LF together with first-class contexts and substitutions [Nanevski
et al., 2008, Pientka, 2008, Cave and Pientka, 2012]. This allows elegant implementations of
proofs using logical relations [Cave and Pientka, 2013, 2015] and normalization by evaluation
[Cave and Pientka, 2012]. Tores can be seen as small kernel into which we elaborate total
Beluga programs, thereby providing post-hoc justification of viewing Beluga programs as
(co)inductive proofs.

2 Index Language for Tores

The design of Tores is parametric over an index language. Following Thibodeau et al.
[2016] we stay as abstract as possible and state the general conditions the index language
must satisfy. Whenever we require inspection of the particular index language, namely the
structure of stratified types and induction terms, we will draw attention to it.

To illustrate the required structure for a concrete index language, we use natural numbers.
In practice, however, we can consider other index languages such as those of strings, types
[Cheney and Hinze, 2003, Xi et al., 2003], or (contextual) LF [Pientka, 2008, Cave and
Pientka, 2012]. It is important to note that, for most of our design, we accommodate a
general index language up to the complexity of Contextual LF. Thus we treat index types
and Tores kinds as dependently typed.

2.1 General Structure
We refer to a term in the index language as an index term M , which may have an index type
U . In the case of natural numbers, there is a single index type nat, and index terms are built
from 0, suc, and variables u which must be declared in an index context ∆.

Index types U := nat Index contexts ∆ := · | ∆, u:U
Index terms M := 0 | sucM | u Index substitutions Θ := · | Θ,M/u

Tores relies on typing for index terms which we give for natural numbers in Fig. 1. The
equality judgment for natural numbers is given simply by reflexivity (syntactic equality). We
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also give typing for index substitutions, which supply an index term for each index variable
in the domain ∆ and describe well-formed contexts. These definitions are generic.

` ∆ ictx Index context ∆ is well-formed ∆ ` U itype Index type U is well-kinded

` · ictx
` ∆ ictx ∆ ` U itype

` ∆, u:U ictx ∆ ` nat itype

∆ `M : U Index term M has index type U in index context ∆

u:U ∈ ∆
∆ ` u : U ∆ ` 0 : nat

∆ `M : nat
∆ ` sucM : nat

∆ `M = N Index term M is equal to N

∆ `M = M

∆′ ` Θ : ∆ Index substitution Θ maps index variables from ∆ to ∆′

∆′ ` · : ·
∆′ ` Θ : ∆ ∆′ `M : U [Θ]

∆′ ` Θ,M/u : ∆, u:U

Figure 1 Index language structure

We require that both typing and equality of index terms be decidable in order for type
checking of Tores programs to be decidable.

I Requirement 1. Index type checking is decidable.

I Requirement 2. Index equality is decidable.

We can lift the kinding, typing, equality and matching rules to spines of index terms and
types generically. We write · and (·) for the empty spines of terms and types respectively.
If M0 is an index term and −→M is a spine, then M0,

−→
M is a spine. Similarly if u0:U0 is an

index type assignment and (−−→u:U) is a type spine, then (u0:U0,
−−→
u:U) is a type spine. Spines

are convenient for setting up the types and terms of Tores. Unlike index substitutions Θ
which are built from right to left, spines are built from left to right.

Throughout our development we use both a single index substitution operation M [N/u]
and a simultaneous substitution operation M [Θ]. For composition of simultaneous substitu-
tions we write Θ1[Θ2].

I Requirement 3 (Index substitution principles).

3.1. If ∆1, u:U ′,∆2 `M : U and ∆1 ` N : U ′ then ∆1,∆2[N/u] `M [N/u] : U [N/u].
3.2. If ∆′ ` Θ : ∆ and ∆ `M : U then ∆′ `M [Θ] : U [Θ].
3.3. If ∆′ ` Θ : ∆ and ∆ `M = N then ∆′ `M [Θ] = N [Θ].
3.4. If ∆ `M : U and ∆1 ` Θ1 : ∆ and ∆2 ` Θ2 : ∆1 then M [Θ1][Θ2] = M [Θ1[Θ2]].

2.2 Unification and Matching
Type checking of Tores relies on a unification procedure to generate a most general unifier
(MGU). A unifier for index termsM andN in a context ∆ is a substitution Θ which transforms
M and N into syntactically equal terms in another context ∆′. That is, ∆′ ` Θ : ∆ and

FSCD 2018



19:4 Index-Stratified Types

∆′ `M [Θ] = N [Θ]. Θ is “most general” if it does not make more commitments to variables
than absolutely necessary. A unifying substitution Θ only makes sense together with its
range ∆′, so we usually write them as a pair (∆′ | Θ). In general, there may be more than
one MGU for a particular unification problem, or none at all. However, we require here
that each problem has at most one MGU up to α-equivalence. We write the generation of
an MGU using the judgment ∆ ` M + N ↘ P , where P is either the MGU (∆′ | Θ) if it
exists or # representing that unification failed. To illustrate, we show the unification rules
for natural numbers. We write idi for the identity substitution that maps index variables
from ∆i to themselves.

∆ `M + N ↘ P Index terms M and N have MGU P

∆ ` 0 + 0↘ (∆ | id)
∆ `M + N ↘ P

∆ ` sucM + sucN ↘ P ∆ ` u + u↘ (∆ | id)

u /∈ FV(M) ∆ = ∆1, u:U,∆2 ∆′ = ∆1,∆2[M/u]
∆ ` u +M ↘ (∆′ | id1,M/u, id2) (same for M + u)

∆ ` 0 + sucM ↘ # ∆ ` sucM + 0↘ #
u ∈ FV(M) M 6= u

∆ ` u +M ↘ # (same for M + u)

I Requirement 4 (Decidable unification). Given index terms M and N in a context ∆, the
judgment ∆ ` M + N ↘ P is decidable. Either P is (∆′ | Θ), the unique MGU up to
α-equivalence, or P is # and there is no unifier.

Finally, our operational semantics relies on index matching. This is an asymmetric form
of unification: given terms M in ∆ and N in ∆′, matching identifies a substitution Θ such
that ∆′ ` M [Θ] = N . We describe it using the judgment ∆ ` M .= N ↘ (∆′ | Θ). The
notion of matching also lifts to the level of index substitutions. We omit the full specifications
here and instead state the required properties.

I Requirement 5 (Soundness of index matching).

5.1. If ∆ `M : U and ∆ `M .= N ↘ (∆′ | Θ) then ∆′ ` Θ : ∆ and ∆′ `M [Θ] = N .
5.2. If ∆1 ` Θ1 : ∆ and ∆1 ` Θ1

.= Θ2 ↘ (∆2 | Θ) then ∆2 ` Θ : ∆1 and ∆2 ` Θ1[Θ] = Θ2.

I Requirement 6 (Completeness of index matching). Suppose ` θ : ∆ and `M [θ] = N [θ] and
∆ `M + N ↘ (∆′ | Θ). Then ∆′ ` Θ .= θ ↘ (· | θ′).

3 Specification of Tores

We now describe Tores, a programming language designed to express (co)inductive proofs
and programs using Mendler-style (co)recursion. It also features index-stratified types, which
allow definitions of types via well-founded recursion over indices.

3.1 Types and Kinds
Besides unit, products and sums, Tores includes a nonstandard function type (−−→u:U); T1 → T2,
which combines a dependent function type and a simple function type. It binds a number of
index variables −−→u:U which may appear in both T1 and T2. If the spine of type declarations
is empty then (·); T1 → T2 degenerates to the simple function space. We can also quantify
existentially over an index using the type Σu:U. T , and have a type for index equality
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M = N . These two types are useful for expressing equality constraints on indices. We model
(co)recursive and stratified types as type constructors of kind Π−−→u:U. ∗. These introduce type
variables X, which we track in the type variable context Ξ. There is no positivity condition
on recursive types, as the typing rules for Mendler-recursion enforce termination without it.

A stratified type is defined by primitive recursion on an index term. For the index
type nat, the two branches correspond to the two constructors 0 and suc. Intuitively, TRec 0
will behave like T0 and TRec (sucM) will behave like Ts[M/u, TRec M/X]. For richer index
languages such as Contextual LF we can generate an appropriate recursion scheme following
Pientka and Abel [2015].

Kinds K ::= ∗ | Πu:U.K
Types T ::= 1 | T1 × T2 | T1 + T2 | (

−−→
u:U); T1 → T2 | Σu:U. T |M = N

| T M | Λu. T | X | µX:K.T | νX:K.T | TRec

Stratified Types TRec ::= RecK(0 7→ T0 | sucu, X 7→ Ts)
Index Contexts ∆ ::= · | ∆, u:U
Type Var. Contexts Ξ ::= · | Ξ, X:K
Typing Contexts Γ ::= · | Γ, x:T

I Example 1. We illustrate indexed recursive types and stratified types using vectors, i.e.
lists indexed by their length, with elements of type A. Vectors are of kind Πn: nat .∗. We
omit the kind annotation for better readability in the subsequent type definitions. One way
to define vectors is with an indexed recursive type, an explicit equality and an existential
type: Vecµ ≡ µV.Λn. n = 0 + Σm: nat . n = sucm× (A× V m).

Alternatively, they can be defined as a stratified type: VecS ≡ Rec (0 7→ 1 | sucm, V 7→
A× V ). In this case equality reasoning is implicit. While we have a choice how to define
vectors, some types are only possible to encode using one form or the other.

I Example 2. A type that must be stratified is the encoding of reducibility for simply typed
lambda terms. This example is explored in detail by Cave and Pientka [2013]; our work gives
it theoretical justification.

Here the index objects are the simple types, unit and arr A B of index type tp, as well
as lambda terms (), lam x.M and app M N of index type tm. We can define reducibility
as a stratified type of kind Πa:tp.Πm:tm.∗. This relies on an indexed recursive type Halt
(omitted here) that describes when a term m steps to a value.

Red ≡ Rec ( unit 7→ Λm.Halt m
| arr a b,Ra, Rb 7→ Λm.Halt m× (n:tm); Ra n→ Rb (app m n) )

I Example 3. To illustrate a corecursive type, we define an indexed stream of bits following
Thibodeau et al. [2016]. The index here guarantees that we are reading exactly m bits. Once
m = 0, we read a new message consisting of the length of the message n together with a
stream indexed by n. In contrast to the recursive type definition for vectors, here the equality
constraints guard the observations we can make about a stream.

Stream ≡ νStr.Λm. (·); m = 0 → Σn: nat . Str n
× (n: nat); m = sucn → Str n
× (n: nat); m = sucn → Bit

3.2 Terms
Tores contains many common constructs found in functional programming languages, such
as unit, pairs and case expressions. We focus on the less standard constructs: indexed
functions, equality witnesses, well-founded recursion and index induction.

FSCD 2018



19:6 Index-Stratified Types

Terms t, s ::= x | 〈〉 | λ~u, x. t | t ~M s | 〈t1, t2〉 | split s as 〈x1, x2〉 in t
| ini t | (case t of in1 x1 7→ t1 | in2 x2 7→ t2)
| pack (M, t) | unpack t as (u, x) in s
| refl | eq s with (∆.Θ 7→ t) | eq_abort s
| inµ t | rec f. t | corec f. t | outν t | inl t | outl t | ind t0 (u, f. ts) | t:T

Since we combine the dependent and simple function types in (−−→u:U); T1 → T2, we similarly
combine abstraction over index variables ~u and a term variable x in our function term λ~u, x. t.
The corresponding application form is t ~M s. The term t of function type (−−→u:U); T1 → T2
receives first a spine ~M of index objects followed by a term s. Each equality type M = N

has at most one inhabitant refl witnessing the equality. There are two elimination forms for
equality: the term eq s with (∆.Θ 7→ t) uses an equality proof s for M = N together with a
unifier Θ to refine the body t in a new index context ∆. It may also be the case that the
equality witness s is false, in which case we have reached a contradiction and abort using the
term eq_abort s . Both forms are necessary to make use of equality constraints that arise
from indexed type definitions and to show that some cases are impossible.

Recursive types are introduced by the “fold” syntax inµ , and stratified types are intro-
duced by inl terms. Here l ranges over constructors in the index language such as 0 and
suc. The important difference is how we eliminate recursive and stratified types. We can
analyze data defined by a recursive type using Mendler-style recursion rec f. t. This gives a
powerful means of recursion while still ensuring termination. Stratified types can only be
unfolded using outl according to the index. To take full advantage of stratified types, we also
allow programmers to use well-founded recursion over index objects, writing ind t0 (u, f. ts).
Intuitively, if the index object is 0, then we pick the first branch and execute t0; if the index
object is sucM then we pick the second branch instantiating u withM and allowing recursive
calls f inside ts. While this induction principle is specific to natural numbers, it can also be
derived for other index domains, in particular contextual LF (see Pientka and Abel [2015]).

I Example 4. Recall that vectors can be defined using the indexed recursive type Vecµ or
the stratified type VecS . Which definition we choose impacts how we write programs that
analyze vectors. We show the difference using a recursive function that copies a vector.

copy : (n: nat); Vecµ n→ Vecµ n ≡ rec f. λ n, v. case v of
| in1 z 7→ inµ (in1 z)
| in2 s 7→ unpack s as (m, p) in

split p as 〈e, p′〉 in
split p′ as 〈h, t〉 in
inµ (in2 (pack (m, 〈e, 〈h, f m t〉〉)))

To analyze the recursively defined vector, we use recursion and case analysis of the input
vector to reconstruct the output vector. If we receive a non-empty list, we take it apart and
expose the equality proofs, before reassembling the list. The recursion is valid according to
the Mendler typing rule since the recursive call to f is made on the tail of the input vector.

To contrast we show the program using induction on natural numbers and unfolding the
stratified type definition of VecS . Note that the first argument is the natural number index
n paired with a unit term argument, since index abstraction is always combined with term
abstraction. The program analyzes n and in the suc case unfolds the input vector before
reconstructing it using the result of the recursive call. In this version of copy the equality
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constraints are handled silently by the type checker.

copy : (n: nat); 1→ (·); VecS n→ VecS n ≡
ind ( 0 7→ λ v. in0 〈〉
| sucm, fm 7→ λ v. split (outsuc v) as 〈h, t〉 in insuc 〈h, fm t〉)

I Example 5. Note that Tores does not have an explicit notion of falsehood. This is
because it is definable using existing constructs: we can define the empty type as a recursive
type ⊥ ≡ µX: ∗ . X, and a contradiction term abort ≡ rec f. f : ⊥ → C, for any type C.
Our termination result with the logical relation in Section 4.3 shows that the ⊥ type contains
no values and hence no closed terms, which implies logical consistency of Tores (not all
propositions can be proven).

3.3 Typing Rules

We define a bidirectional type system in Fig. 2. We focus here on equality, recursive and
stratified types.

The introduction for an index equality type is simply refl, which is checked via equality
in the index domain. Both equality elimination forms rely on unification in the index domain
(see Section 2.2). Specifically, the eq_abort s term checks against any type because the
unification must fail, establishing a contradiction. For the term eq s with (∆′.Θ 7→ t) ,
unification must result in the MGU which by Req. 4 is α-equivalent to the supplied unifier
(∆′ | Θ). We then check the body t using the new index context ∆′ and Θ applied to the
contexts Ξ and Γ and the goal type T .

This treatment of equality elimination is similar to the use of refinement substitutions
for dependent pattern matching [Pientka and Dunfield, 2008, Cave and Pientka, 2012], and
is inspired by equality elimination in proof theory [Tiu and Momigliano, 2012, McDowell
and Miller, 2002, Schroeder-Heister, 1993]. In the latter line of work, type checking involves
trying all unifiers from a complete set of unifiers (which may be infinite!), instead of a single
most general unifier. We believe our requirement for a unique MGU is a practical choice for
type checking.

Indexed recursive and stratified types are both introduced by injections (inµ and inl ),
though their elimination forms are different. Stratified types are eliminated (unfolded) in
reverse to the corresponding fold rules. For recursive types on the other hand, the naive unfold
rules lead to nontermination, so we use a Mendler-style recursion form rec f. t, generalizing
the original formulation [Mendler, 1988] to an indexed type system. The idea is to constrain
the type of the function variable f so that it can only be applied to structurally smaller data.
This is achieved by declaring f of type (−−→u:U); X ~u→ T in the premise of the rule. Here X
represents types exactly one constructor smaller than the recursive type, so the use of f is
guaranteed to be well-founded.

I Theorem 6. Type checking of terms is decidable.

Proof. Since the typing rules are syntax directed, it is straight-forward to extract a type
checking algorithm. Note that the algorithm relies on decidability of judgments in the index
language, namely index type checking (Req. 1), equality (Req. 2) and unification (Req. 4). J
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∆; Ξ; Γ ` t⇐ T Term t checks against input type T

∆; Ξ; Γ ` t1 ⇐ T1 ∆; Ξ; Γ ` t2 ⇐ T2

∆; Ξ; Γ ` 〈t1, t2〉 ⇐ T1 × T2

∆; Ξ; Γ ` p⇒ T1 × T2 ∆; Ξ; Γ, x1:T1, x2:T2 ` t⇐ T

∆; Ξ; Γ ` split p as 〈x1, x2〉 in t⇐ T

∆; Ξ; Γ ` t⇐ Ti

∆; Ξ; Γ ` ini t⇐ T1 + T2

∆; Ξ; Γ ` t⇒ T1 + T2 ∆; Ξ; Γ, x1:T1 ` t1 ⇐ S ∆; Ξ; Γ, x2:T2 ` t2 ⇐ S

∆; Ξ; Γ ` (case t of in1 x1 7→ t1 | in2 x2 7→ t2)⇐ S

∆ `M : U ∆; Ξ; Γ ` t⇐ T [M/u]
∆; Ξ; Γ ` pack (M, t)⇐ Σu:U. T

∆; Ξ; Γ ` t⇒ Σu:U. T ∆, u:U ; Ξ; Γ, x:T ` s⇐ S

∆; Ξ; Γ ` unpack t as (u, x) in s⇐ S

∆ `M = N
∆; Ξ; Γ ` refl⇐M = N

∆; Ξ; Γ ` s⇒M = N ∆ `M + N ↘ #
∆; Ξ; Γ ` eq_abort s ⇐ T

∆; Ξ; Γ ` s⇒M = N ∆ `M + N ↘ (∆′ | Θ) ∆′; Ξ[Θ]; Γ[Θ] ` t⇐ T [Θ]
∆; Ξ; Γ ` eq s with (∆′.Θ 7→ t) ⇐ T

∆; Ξ; Γ ` t⇐ T [
−−→
M/u;µX:K.Λ ~u. T/X]

∆; Ξ; Γ ` inµ t⇐ (µX:K.Λ ~u. T ) ~M

∆; Ξ, X:K; Γ, f :((−−→u:U); X~u→ T ) ` t⇐ (−−→u:U); S[
−−→
u/v]→ T

∆; Ξ; Γ ` rec f. t⇐ (−−→u:U); (µX:K.Λ−→v . S) ~u→ T

∆; Ξ, X:K; Γ, f :((−−→u:U); S → X~u) ` t⇐ (−−→u:U); S → T [
−−→
u/v]

∆; Ξ; Γ ` corec f. t⇐ (−−→u:U); S → (νX:K.Λ−→v . T ) ~u

∆,−−→u:U ; Ξ; Γ, x:S ` t⇐ T

∆; Ξ; Γ ` λ~u, x. t⇐ (−−→u:U); S → T

∆; Ξ; Γ ` t0 ⇐ T [0/u] ∆, u: nat; Ξ; Γ, f :T ` ts ⇐ T [sucu/u]
∆; Ξ; Γ ` ind t0 (u, f. ts)⇐ (u: nat); 1→ T ∆; Ξ; Γ ` 〈〉 ⇐ 1

∆; Ξ; Γ ` t⇐ T0 ~M

∆; Ξ; Γ ` in0 t⇐ TRec 0 ~M

∆; Ξ; Γ ` t⇐ Ts[N/u; (TRec N)/X] ~M
∆; Ξ; Γ ` insuc t⇐ TRec (sucN) ~M

∆; Ξ; Γ ` t⇒ T

∆; Ξ; Γ ` t⇐ T

∆; Ξ; Γ ` t⇒ T Term t synthesizes output type T

x:T ∈ Γ
∆; Ξ; Γ ` x⇒ T

∆; Ξ; Γ ` t⇒ (−−→u:U); S → T ∆ ` ~M : (−−→u:U) ∆; Ξ; Γ ` s⇐ S[
−−→
M/u]

∆; Ξ; Γ ` t ~M s⇒ T [
−−→
M/u]

∆; Ξ; Γ ` t⇒ TRec 0 ~M

∆; Ξ; Γ ` out0 t⇒ T0 ~M

∆; Ξ; Γ ` t⇒ TRec (sucN) ~M
∆; Ξ; Γ ` outsuc t⇒ Ts[N/u; (TRec N)/X] ~M

∆; Ξ; Γ ` t⇐ T

∆; Ξ; Γ ` t:T ⇒ T

∆; Ξ; Γ ` t⇒ (νX:K.Λ ~u. T ) ~M

∆; Ξ; Γ ` outν t⇒ T [
−−→
M/u; νX:K.Λ ~u. T/X]

Figure 2 Typing rules for Tores

3.4 Operational Semantics

We define a big-step operational semantics using environments, which provide closed values
for the free variables that may occur in a term.

Term environments σ := · | σ, v/x
Function values g := λ~u, x. t | rec f. t | corec f. t | ind t0 (u, f. ts)
Closures c := (g)[θ;σ] | (corec f. t)[θ;σ] · ~N v

Values v := c | 〈〉 | 〈v1, v2〉 | ini v | pack (M, v) | refl | inµ v | inl v
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Values consist of unit, pairs, injections, reflexivity, and closures. Typing for values and
environments, which is used to state the subject reduction theorem, are given in the appendix.

The main evaluation judgment, t[θ;σ] ⇓ v, describes the evaluation of a term t under
environments θ;σ to a value v. Here, t stands for a term in an index context ∆ and term
variable context Γ. The index environment θ provides closed index objects for all the index
variables in ∆, while σ provides closed values for all the variables declared in Γ, i.e. ` θ : ∆
and σ : Γ[θ]. For convenience, we factor out the application of a closure c to values ~N and v
resulting in a value w, using a second judgment written c · ~N v ⇓ w. This allows us to treat
application of functions (lambdas, recursion and induction) uniformly. Similarly, we factor
out the application of outν to a closure c in an additional judgment written c ·outν

⇓ w. This
simplifies the type interpretation used to prove termination.

t[θ;σ] ⇓ v Term t under environments θ and σ evaluates to v

σ(x) = v

x[θ;σ] ⇓ v 〈〉[θ;σ] ⇓ 〈〉
t1[θ;σ] ⇓ v1 t2[θ;σ] ⇓ v2

〈t1, t2〉[θ;σ] ⇓ 〈v1, v2〉
t[θ;σ] ⇓ 〈v1, v2〉 s[θ;σ, v1/x1, v2/x2] ⇓ v

(split t as 〈x1, x2〉 in s)[θ;σ] ⇓ v

t[θ;σ] ⇓ v
(ini t)[θ;σ] ⇓ ini v

t[θ;σ] ⇓ ini v′ ti[θ;σ, v′/xi] ⇓ v
(case t of in1 x1 7→ t1 | in2 x2 7→ t2)[θ;σ] ⇓ v

t[θ;σ] ⇓ v
(t:T )[θ;σ] ⇓ v

t[θ;σ] ⇓ v
(pack (M, t))[θ;σ] ⇓ pack (M [θ], v)

t[θ;σ] ⇓ pack (N, v′) s[θ,N/u;σ, v′/x] ⇓ v
(unpack t as (u, x) in s)[θ;σ] ⇓ v

refl[θ;σ] ⇓ refl
s[θ;σ] ⇓ refl ∆ ` Θ .= θ ↘ (· | θ′) t[θ′;σ] ⇓ v

(eq s with (∆.Θ 7→ t) )[θ;σ] ⇓ v
t[θ;σ] ⇓ v

(inl t)[θ;σ] ⇓ inl v

(λ~u, x. t)[θ;σ] ⇓ (λ~u, x. t)[θ;σ] (rec f. t)[θ;σ] ⇓ (rec f. t)[θ;σ]
t[θ;σ] ⇓ inl v

(outl t)[θ;σ] ⇓ v

(corec f. t)[θ;σ] ⇓ (corec f. t)[θ;σ]
t[θ;σ] ⇓ c c ·outν ⇓ w

(outν t)[θ;σ] ⇓ w

(ind t0 (u, f. ts))[θ;σ] ⇓ (ind t0 (u, f. ts))[θ;σ]
t[θ;σ] ⇓ c s[θ;σ] ⇓ v c ·

−−−→
M [θ] v ⇓ w

(t ~M s)[θ;σ] ⇓ w

c · ~N v ⇓ w Closure c applied to values ~N and v evaluates to w

t[θ,
−−→
N/u;σ, v/x] ⇓ w

(λ~u, x. t)[θ;σ] · ~N v ⇓ w
t[θ;σ, (rec f. t)[θ;σ]/f ] ⇓ c c · ~N v ⇓ w

(rec f. t)[θ;σ] · ~N (inµ v) ⇓ w

(corec f. t)[θ;σ] · ~N v ⇓ (corec f. t)[θ;σ] · ~N v

t0[θ;σ] ⇓ w
(ind t0 (u, f. ts))[θ;σ] · 0 〈〉 ⇓ w

(ind t0 (u, f. ts))[θ;σ] ·N 〈〉 ⇓ v ts[θ,N/u;σ, v/f ] ⇓ w
(ind t0 (u, f. ts))[θ;σ] · (sucN) 〈〉 ⇓ w

c ·outν ⇓ w Closure c applied to observation outν evaluates to w

t[θ;σ, (corec f. t)[θ;σ]/f ] ⇓ c c · ~N v ⇓ w
((corec f. t)[θ;σ] · ~N v) ·outν ⇓ w

Figure 3 Big-step evaluation rules
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We only explain the evaluation rule for equality elimination eq s with (∆.Θ 7→ t) . We
first evaluate the equality witness s under environments θ;σ to the value refl. This ensures
that θ respects the index equality M = N witnessed by s. From type checking we know
that ∆ ` M [Θ] = N [Θ]: the key is how we extend Θ at run-time to produce a new index
environment θ′ that is consistent with θ. This relies on sound and complete index substitution
matching (see Section 2.2) to generate θ′ such that · ` θ′ : ∆ and · ` Θ[θ′] = θ. We can then
evaluate the body t under the new index environment θ′ and the same term environment σ
to produce a value v.

Notably absent is an evaluation rule for eq_abort t . This term is used in a branch of a
case split that we know statically to be impossible. Such branches are never reached at run
time, so there is no need for an evaluation rule. For example, consider a type-safe “head”
function, which receives a nonempty vector as input. As we write each branch of a case split
explicitly, the empty list case must use eq_abort t , but is never executed. We now state
subject reduction for Tores.

I Theorem 7 (Subject Reduction).

1. If t[θ;σ] ⇓ v where ∆; ·; Γ ` t ⇐ T or ∆; ·; Γ ` t ⇒ T , and ` θ : ∆ and σ : Γ[θ], then
v : T [θ].

2. If g[θ;σ] · ~N v ⇓ w where ∆; ·; Γ ` g ⇐ (−−→u:U); S → T and ` θ : ∆ and σ : Γ[θ] and
` ~N : (−−→u:U)[θ] and v : S[θ,

−−→
N/u], then w : T [θ,

−−→
N/u].

3. If c ·outν
⇓ w where c : (νX:K.Λ ~u. T ) ~M then w : T [

−−→
M/u; (νX:K.Λ ~u. T )/X].

4 Termination Proof

We now describe our main technical result: termination of evaluation. Our proof uses the
logical predicate technique of Tait [1967] and Girard [1972]. We interpret each language
construct (index types, kinds, types, etc.) into a semantic model of sets and functions.

4.1 Interpretation of Index Language
We start with the interpretations for index types and spines. In general, our index language
may be dependently typed, as it is if we choose Contextual LF. Hence our interpretation for
index types U must take into account an environment θ containing instantiations for index
variables u. Such an index environment θ is simply a grounding substitution ` θ : ∆.

I Definition 8 (Interpretation of index types JUK and index spines J
−−→
u:UK).

JUK(θ) = {M | · `M : U [θ]}

J(·)K(θ) = {·}
J(u0:U0,

−−→
u:U)K(θ) = {M0, ~M |M0 ∈ JU0K(θ), ~M ∈ J(−−→u:U)K(θ,M0/u0)}

The interpretation of an index type U under environment θ is the set of closed terms
of type U [θ]. The interpretation lifts to index spines (−−→u:U). With these definitions, the
following lemma follows from the substitution principles of index terms (Req. 3).

I Lemma 9 (Interpretation of index substitution).

9.1. If ∆ `M : U and ` θ : ∆ then M [θ] ∈ JUK(θ).
9.2. If ∆ ` ~M : (−−→u:U) and ` θ : ∆ then

−−−→
M [θ] ∈ J(−−→u:U)K(θ).
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4.2 Lattice Interpretation of Kinds
We now describe the lattice structure that underlies the interpretation of kinds in our language.
The idea is that types are interpreted as sets of term-level values and type constructors as
functions taking indices to sets of values. We call the set of all term-level values Ω and write
its power set as P(Ω). The interpretation is defined inductively on the structure of kinds.

I Definition 10 (Interpretation of kinds JKK).

J∗K(θ) = P(Ω)
JΠu:U.KK(θ) = {C | ∀M ∈ JUK(θ). C(M) ∈ JKK(θ,M/u)}

A key observation in our metatheory is that each JKK(θ) forms a complete lattice. In the
base case, J∗K(θ) = P(Ω) is a complete lattice under the subset ordering, with meet and join
given by intersection and union respectively. For a kind K = Πu:U.K ′, we induce a lattice
structure on JKK(θ) by lifting the lattice operations pointwise. Precisely, we define

A ≤JKK(θ) B iff ∀M ∈ JUK(θ). A(M) ≤JK′K(θ,M/u) B(M).

The meet and join operations can similarly be lifted pointwise.
This structure is important because it allows us to define pre-fixed points for operators

on the lattice, which is central to our interpretation of recursive types. Here we rely on the
existence of arbitrary meets, as we take the meet over an impredicatively defined subset of L.

I Definition 11 (Mendler-style pre-fixed and post-fixed points). Suppose L is a complete
lattice and F : L → L. Define µL : (L → L)→ L by

µLF =
∧
{C ∈ L | ∀X ∈ L. X ≤L C =⇒ F(X ) ≤L C}.

and νL : (L → L)→ L by

νLF =
∨
{C ∈ L | ∀X ∈ L. C ≤L X =⇒ C ≤L F(X )}.

We will mostly omit the subscript denoting the underlying lattice L of the order ≤ and
pre-fixed and post-fixed points, µ and ν.

Note that a usual treatment of recursive types would define the least pre-fixed point
of a monotone operator as

∧
{C ∈ L | F(C) ≤ C} and the greatest post-fixed point of a

monotone operator as
∨
{C ∈ L | C ≤ F(C)}, using the Knaster-Tarski theorem. However,

our unconventional definition (following Jacob-Rao et al. [2016]) more closely models Mendler-
style (co)recursion and does not require F to be monotone (thereby avoiding a positivity
restriction on recursive types).

4.3 Interpretation of Types
In order to interpret the types of our language, it is helpful to define semantic versions of
some syntactic constructs. We first define a semantic form of our indexed function type
(−−→u:U); T1 → T2, which helps us formulate the interaction of function types with fixed points
and recursion.

I Definition 12 (Semantic function space). For a spine interpretation ~U and functions
A,B : ~U → P(Ω), define ~U , A→ B = {c | ∀ ~M ∈ ~U . ∀v ∈ A( ~M). c · ~M v ⇓ w ∈ B( ~M)}.
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It will also be convenient to lift term-level in tags to the level of sets and functions
in the lattice JKK(θ). We define the lifted tags in∗ : JKK(θ) → JKK(θ) inductively on K.
If V ∈ J∗K(θ) = P(Ω) then in∗ V = in V = {in v | v ∈ V}. If C ∈ JΠu:U.K ′K(θ) then
(in∗ C)(M) = in∗ (C(M)) for all M ∈ JUK(θ). Essentially, the in∗ function attaches a tag to
every element in the set produced after the index arguments are received.

Dually we define out∗ν : JKK(θ) → JKK(θ). If V ∈ J∗K(θ) = P(Ω) then out∗ν V =
outν V = {c | c ·outν

⇓ w ∈ V}. If C ∈ JΠu:U.K ′K(θ) then (out∗ν C)(M) = out∗ν (C(M)) for all
M ∈ JUK(θ).

Finally, we define the interpretation of type variable contexts Ξ. These describe semantic
environments η mapping each type variable to an object in its respective kind interpretation.
Such environments are necessary to interpret type expressions with free type variables.

I Definition 13 (Interpretation of type variable contexts JΞK).

J·K(θ) = {·}
JΞ, X:KK(θ) = {η,X/X | η ∈ JΞK(θ),X ∈ JKK(θ)}

We are now able to define the interpretation of types T under environments θ and η.
This is done inductively on the structure of T .

I Definition 14 (Interpretation of types and constructors).

J1K(θ; η) = {〈〉}
JT1 × T2K(θ; η) = {〈v1, v2〉 | v1 ∈ JT1K(θ; η), v2 ∈ JT2K(θ; η)}
JT1 + T2K(θ; η) = in1 JT1K(θ; η)

⋃
in2 JT2K(θ; η)

J(−−→u:U); T1 → T2K(θ; η) = J(−−→u:U)K(θ), T1 → T2

where Ti( ~M) = JTiK(θ,
−−→
M/u; η) for i ∈ {1, 2}

JΣu:U. T K(θ; η) = {pack (M, v) |M ∈ JUK(θ), v ∈ JT K(θ,M/u; η)}
JT MK(θ; η) = JT K(θ; η)(M [θ])
JM = NK(θ; η) = {refl | `M [θ] = N [θ]}
JXK(θ; η) = η(X)
JΛu. T K(θ; η) = (M 7→ JT K(θ,M/u; η))
JµX:K.T K(θ; η) = µJKK(θ)(X 7→ in∗µ (JT K(θ; η,X/X)))
JνX:K.T K(θ; η) = νJKK(θ)(X 7→ out∗ν (JT K(θ; η,X/X)))
JRecK (0 7→ Tz | sucu, X 7→ Ts)K(θ; η) = RecJKK(θ) (in∗0 JTzK(θ; η))

(N 7→ X 7→ in∗suc JTsK(θ,N/u; η,X/X))
where

RecL : L → (N→ L → L)→ N → L
RecL C F 0 = C
RecL C F (sucN) = F N (RecL C F N)

The interpretation of the indexed function type J(−−→u:U); T1 → T2K(θ; η) contains closures
which, when applied to values in the appropriate input sets, evaluate to values in the
appropriate output set. The interpretation of the equality type JM = NK(θ; η) is the set
{refl} if `M [θ] = N [θ] and the empty set otherwise. The interpretation of a recursive type
is the pre-fixed point of the function obtained from the underlying type expression. Finally,
interpretation of a stratified type built from Rec relies on an analogous semantic operator
Rec. It is defined by primitive recursion on the index argument, returning the first argument
in the base case and calling itself recursively in the step case. Note that the definition of
Rec is specific to the index type it recurses over. We only use the index language of natural
numbers here, so the appropriate set of index values is JnatK = N.
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Last, we give the interpretation for typing contexts Γ, describing well-formed term-level
environments σ.

I Definition 15 (Interpretation of typing contexts).

J·K(θ; η) = {·}
JΓ, x:T K(θ; η) = {σ, v/x | σ ∈ JΓK(θ; η), v ∈ JT K(θ; η)}

4.4 Proof
We now sketch our proof using some key lemmas. The following two lemmas concern the
fixed point operators µ and ν, and are key for reasoning about (co)recursive types and
Mendler-style (co)recursion. These lemmas generalize those of Jacob-Rao et al. [2016] from
the simply typed setting.

I Lemma 16 (Soundness of pre-fixed point). Suppose L is a complete lattice, F : L → L and
µ is as in Def. 11. Then F(µF) ≤ µF .

I Lemma 17 (Function space from pre-fixed and post-fixed points). Let L = ~U → P(Ω) and
B ∈ L and F : L → L.

1. If ∀X ∈ L. c ∈ ~U , X → B =⇒ c ∈ ~U , FX → B, then c ∈ ~U , µF → B.
2. If ∀X ∈ L. c ∈ ~U , B→ X =⇒ c ∈ ~U , B→ FX , then c ∈ ~U , B→ νF .

Another key result we rely on is that type-level substitutions associate with our semantic
interpretations. Note that single index (and spine) substitutions on types are handled as
special cases of the result for simultaneous index substitutions. We omit the definitions of
type substitutions for brevity.

I Lemma 18 (Type-level substitution associates with interpretation).
Suppose ∆; Ξ ` T ⇐ K or ∆; Ξ ` T ⇒ K, and ` θ : ∆′ and η ∈ JΞ′K(θ).

1. If ∆′ ` Θ : ∆ and Ξ′ = Ξ[Θ] then JΞ′K(θ) = JΞK(Θ[θ]) and JT [Θ]K(θ; η) = JT K(Θ[θ]; η).
2. If ∆ = ∆′ and Ξ = Ξ′, X:K and ∆′; Ξ′ ` S ⇐ K or ∆′; Ξ′ ` S ⇒ K, then

JT [S/X]K(θ; η) = JT K(θ; η, JSK(θ; η)/X).

Proof. By induction on the structure of T . J

The next two lemmas concern recursive types and terms respectively.

I Lemma 19 (Recursive type contains unfolding).
Let R = µX:K.Λ ~u. S where K = Π−−→u:U. ∗ and ∆; Ξ ` R ⇒ K, and ∆ ` ~M : (−−→u:U) and
` θ : ∆ and η ∈ JΞK(θ). Then inµ JS[

−−→
M/u;R/X]K(θ; η) ⊆ JR ~MK(θ; η).

I Lemma 20 (Backward closure).
Let t be a term, θ and σ environments, and A,B ∈ ~U → P(Ω).

1. If t[θ;σ, (rec f. t)[θ;σ]/f ] ⇓ c′ ∈ ~U , A→ B, then (rec f. t)[θ;σ] ∈ ~U , in∗µA→ B.
2. If t[θ;σ, (corec f. t)[θ;σ]/f ] ⇓ c′ ∈ ~U , A→ B, then (corec f. t)[θ;σ] ∈ ~U , A→ out∗ν B.

Our final lemma concerns the semantic equivalence of an applied stratified type with
its unfolding. Note that here we only state and prove the lemma for an index language of
natural numbers. For a different index language, one would need to reverify this lemma for
the corresponding stratified type. This should be straight-forward once the semantic Rec
operator is chosen to reflect the inductive structure of the index language.
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I Lemma 21 (Stratified types equivalent to unfolding).
Let TRec ≡ RecK (0 7→ Tz | sucn, X 7→ Ts) where K = Πn: nat .Π−−→u:U. ∗ and ∆; Ξ ` TRec ⇒
K, and ∆ ` ~M : (−−→u:U) and ∆ ` N : nat and ` θ : ∆ and η ∈ JΞK(θ). Then

1. JTRec 0 ~MK(θ; η) = in0 (JTz ~MK(θ; η)) and
2. JTRec (sucN) ~MK(θ; η) = insuc (JTs[N/n; (TRec N)/X] ~MK(θ; η)).

Finally we state the main termination theorem.

I Theorem 22 (Termination of evaluation). If ∆; Ξ; Γ ` t ⇐ T or ∆; Ξ; Γ ` t ⇒ T , and
` θ : ∆ and η ∈ JΞK(θ) and σ ∈ JΓK(θ; η), then t[θ;σ] ⇓ v for some v ∈ JT K(θ; η).

5 Related Work

Our work draws inspiration from two different areas: dependent type theory and proof theory.
Dependent type theories often support large eliminations that are definitions of dependent

types by primitive recursion. They reduce the same way as term-level recursion. In general,
our work shows how to gain the power of large eliminations in an indexed type system by
simulating reduction on the level of types by unfolding stratified types in their typing rules.

In the world of proof theory, our core language corresponds to a first-order logic with
equality, inductive and stratified (recursive) definitions. Momigliano and Tiu [2004], Tiu and
Momigliano [2012] give comprehensive treatments of logics with induction and co-induction
as well as first-class equality. They present their logics in a sequent calculus style and
prove cut elimination which implies consistency of the logics. Their cut elimination proof
extends Girard’s proof technique of reducibility candidates, similar to ours. Note that they
require strict positivity of inductive definitions, i.e. the head of a definition (analogous to
the recursive type variable) is not allowed to occur to the left of an implication.

Tiu [2012] also develops a first-order logic with stratified definitions similar to our
stratified types. His notion of stratification comes from defining the “level” of a formula,
which measures its size. A recursive definition is then called stratified if the level does not
increase from the head of the definition to the body. This is a more general formulation than
our notion of stratification for types: we require the type to be stratified exactly according
to the structure of an index term, instead of a more general decreasing measure. However,
we could potentially replicate such a measure by suitably extending our index language.

Another approach to supporting recursive definitions in proof theory is via a rewriting
relation, as in the Deduction Modulo system [Dowek et al., 2003]. The idea of this system is
to generalize a given first-order logic to account for a congruence relation defined by a set
of rewrite rules. This rewriting could include recursive definitions in the same sense as Tiu.
Dowek and Werner [2003] show that such logics under congruences can be proven normalizing
given general conditions on the congruence. Baelde and Nadathur [2012] extend this work
in the following way. First, they present a first-order logic with inductive and co-inductive
definitions, together with a general form of equality. They show strong normalization for
this logic using a reducibility candidate argument. Crucially, their proof is in terms of a
pre-model which anticipates the addition of recursive definitions via a rewrite relation. Then
they give conditions on the rewrite rules, essentially requiring that each definition follows
a well-founded order on its arguments. Under these conditions, they are able to construct
a pre-model for the relation, proving normalization as a result. Although their notion of
stratification of recursive definitions is slightly more general than ours, our treatment is
perhaps more direct as the rewriting of types takes place within our typing rules, and our
semantic model accounts for stratified types directly.
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From a programmer’s view, the proof theoretic foundations give rise to programs writ-
ten using iterators; our use of Mendler-style (co)recursion is arguably closer to standard
programming practice. Mendler-style recursion schemes for term-indexed languages have
been investigated by Ahn [2014]. Ahn describes an extension of System Fω with erasable
term indices, called Fi. He combines this with fixed points of type operators, as in the Fixω
language by Abel and Matthes [2004], to produce the core language Fixi. In Fixi, one can
embed Mendler-style recursion over term-indexed data types by Church-style encodings.

Fundamentally, our use of indices is more liberal than in Ahn’s core languages. In
Fi, term indices are drawn from the same term language as programs. They are treated
polymorphically, in analogue with polymorphic type indices, i.e. they must have closed types
and cannot be analyzed at runtime. Our approach is to separate the language of index terms
from the language of programs. In Tores, the indices that appear in types can be handled
and analyzed at runtime, may be dependently typed and have types with free variables. This
flexibility is crucial for writing inductive proofs over LF specifications as we do in Beluga.

6 Conclusion and Future Work

We presented a core language Tores extending an indexed type system with (co)recursive
types and stratified types. We argued that Tores provides a sound and powerful foundation
for programming (co)inductive proofs, in particular those involving logical relations. This
power comes from the (co)induction principles on recursive types given by Mendler-style
(co)recursion as well as the flexibility of recursive definitions given by stratified types. Type
checking in Tores is decidable and types are preserved during evaluation. The soundness
of our language is guaranteed by our logical predicate semantics and termination proof.
We believe that Tores balances well the proof-theoretic power with a simple metatheory
(especially when compared with full dependent types).

An important question to investigate in the future is how to compile a practical language
that supports (co)pattern matching into the core language we propose in Tores. Similarly
it would also be interesting to explore how our treatment of indexed recursive and stratified
types could help (or hinder) proof search. Such issues are important to solve in order to
create a productive user experience for dependently typed programming and proving.
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A Appendix

A.1 Kinding
We employ a bidirectional kinding system to show when kinds can be inferred and when
kinding annotations are necessary. The judgments use two contexts: an index context ∆ and
a type variable context Ξ. Note that in general the kinds assigned to type variables in Ξ
may depend on index variables in ∆.

∆; Ξ ` T ⇐ K Check type T against kind K

∆; Ξ ` 1⇐ ∗
∆; Ξ ` T1 ⇐ ∗ ∆; Ξ ` T2 ⇐ ∗

∆; Ξ ` T1 × T2 ⇐ ∗
∆; Ξ ` T1 ⇐ ∗ ∆; Ξ ` T2 ⇐ ∗

∆; Ξ ` T1 + T2 ⇐ ∗

∆ ` (−−→u:U) itype ∆,−−→u:U ; Ξ ` S ⇐ ∗ ∆,−−→u:U ; Ξ ` T ⇐ ∗

∆; Ξ ` (−−→u:U); S → T ⇐ ∗
∆ ` U itype ∆, u:U ; Ξ ` T ⇐ ∗

∆; Ξ ` Σu:U. T ⇐ ∗

∆ `M : U ∆ ` N : U
∆; Ξ `M = N ⇐ ∗

∆, u:U ; Ξ ` T ⇐ K

∆; Ξ ` Λu. T ⇐ Πu:U.K
∆; Ξ ` T ⇒ ∗
∆; Ξ ` T ⇐ ∗

∆; Ξ ` T ⇒ K Infer a kind K for type T

X:K ∈ Ξ
∆; Ξ ` X ⇒ K

∆; Ξ ` T ⇒ Πu:U.K ∆ `M : U
∆; Ξ ` T M ⇒ K[M/u]

∆; Ξ, X:K ` T ⇐ K

∆; Ξ ` µX:K.T ⇒ K

∆; Ξ, X:K ` T ⇐ K

∆; Ξ ` νX:K.T ⇒ K

K = Πu: nat .K ′ ∆; Ξ ` T0 ⇐ K ′[0/u] ∆, u: nat; Ξ, X:K ′ ` Ts ⇐ K ′[sucu/u]
∆; Ξ ` RecK(0 7→ T0 | sucu, X 7→ Ts)⇒ K

Figure 4 Kinding rules for Tores
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A.2 Value Typing
Values are the results of evaluation. Note that values are closed, and hence their typing
judgment does not require a context. However, closures do contain terms (typed with the
main typing judgment) and environments (typed against the contexts ∆ and Γ).

v : T Value v has type T

· ` θ : ∆ σ : Γ[θ] ∆; ·; Γ ` g ⇐ T

(g)[θ;σ] : T [θ] 〈〉 : 1
· `M = N

refl : M = N

v1 : T1 v2 : T2
〈v1, v2〉 : T1 × T2

v : Ti
ini v : T1 + T2

· `M : U v : T [M/u]
pack (M, v) : Σu:U. T

v : T [
−−→
M/u;µX:K.Λ ~u. T/X]

inµ v : (µX:K.Λ ~u. T ) ~M

v : T0 ~M

in0 v : TRec 0 ~M

v : Ts[N/u;TRec N/X] ~M
insuc v : TRec (sucN) ~M

· ` θ : ∆ σ : Γ[θ] · ` ~N : ~U v : S[θ,
−−→
N/u]

∆; ·, X:K; Γ, f :((−−→u:U); S → X~u) ` t⇐ (−−→u:U); S → T [
−−→
u/u′]

(corec f. t)[θ;σ] · ~N v : (νX:K.Λ
−→
u′ . T )[θ] ~N

σ : Γ Environment σ has domain Γ

· : ·
σ : Γ v : T

(σ, v/x) : Γ, x:T

Figure 5 Value and environment typing
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