
An Intensional Type Theory of Coinduction
using Copatterns

David Thibodeau

School of Computer Science

Mcgill University, Montreal

December 2020

A thesis submitted to McGill University in partial fulfillment of the requirements of the

degree of Doctor of Philosophy

© David Thibodeau, 2020

i

Abstract

Reasoning about well-founded programs and finite data is well-understood nowa-

days. On the other hand, representation and reasoning of interactive or constantly-

running systems which exhibit an infinite structure lack fairly behind. This thesis

focuses on bridging this gap by proposing a language allowing both representations

and reasoning about finite and infinite data alike. To do so, we build on our recent

idea of copatterns, a syntactic device to represent infinite computation through obser-

vations, and extend it into an indexed type system. Indexed types allow us to encode

invariants in types using indices from a decidable domain. In our setting, the index do-

main is left abstract and we present a general framework for admitting valid domains.

We also design a coverage algorithm and use it to prove type preservation and progress.

Moreover, we establish termination criteria for programs in our language. We prove

the validity of those criteria by showing them sufficient to a normalisation preserving

translation from our indexed copattern language to a core calculus with (co)recursors.

This calculus is shown to be normalizing by a logical relation argument. We showcase

the use of indexed copatterns by implementing Howe’s method as a case study in a

prototype implementation of copatterns in the proof assistant Beluga.

ii

Résumé

Raisonner au sujet des programmes et données d’ordre fini est bien compris de

nos jours. Par opposition, la représentation et le raisonnement de processus interactifs

ou à exécution constante dont le comportement s’apparente à des structures infinies

ne sont pas aussi bien compris. Cette thèse vise à améliorer notre compréhension

en proposant un langage permettant la représentation et le raisonnement de données

à la fois finies et infinies. Ce langage bâti sur le concept de comotifs, un élément

syntactique permettant la représentation de programmes infinis à travers un processus

d’observations. Cette thèse offre une version des comotifs adaptée au systèmes de types

annotés. Les types annotés permettent aux programmeurs d’encoder des invariants

dans les types en utilisant des annotations provenant de domaines décidables. Dans

notre théorie, les domaines sont abstraits et nous présentons une infrastructure pour

valider l’utilisation de domaines particuliers. De plus, cette thèse décrit un algorithme

de couverture et l’utilise de façon à prouver la préservation des types et le progrès des

programmes. Nous établissons aussi des critères de terminaison pour les programmes

de notre langage. Nous démontrons la validité de ces critères à travers une traduction

préservant la normalisation de notre langage à comotifs vers un calcul ayant accès à

des (co)récurseurs. La démonstration de la normalisation de ce calcul est faite grâce

à un argument de candidats de réductibilité. Nous avons implémenté un prototype

des comotifs annotés dans l’assistant de preuves Beluga et nous faisons usage de ce

prototype pour implémenter la méthode de Howe.

iii

Acknowledgements

I first want to thank my advisor Brigitte Pientka who supported me over the last

nine years and taught me so much about being a researcher. Prakash Panangaden was

always there when I had questions and his curiosity on any new subject was inspiring.

Andreas Abel guided me on the project of copatterns at its very beginning and was

very patient and positive despite my struggles.

Francisco Ferreira is always there to help whenever I need it and I did need it often.

We shared ideas, we programmed together, we had many laughs. Andrew Cave always

seemed to know the answers, and more crucially would always ask the right questions

to pinpoint where things went wrong. He helped shape how I approach and solve

problems. Jacob Errington kept me sane through the last years of this long adventure.

I used him sometimes as a rubber duck but he would always listen and engage. There

were so many more people who were part of the Complogic lab in the last nine years

and who helped me in one way or another: Stefan Knudsen, Rohan Jacob-Rao, Shawn

Otis, Steven Thephsourinthone, François Thiré, Agata Murawska, Aı̈na Linn Georges,

Tao Xue, Mathieu Boespflug, Olivier Savary Belanger, Matthias Puech, Aliya Hameer,

Jason Hu, Hanneli Andreazzi Tavante, ...

In addition, my friends and my family always were so supportive of my work and

always there for me. They might not have understood the details of my research, but

it did not matter. Without them I would not have made it this far.

I thank my thesis defence committee for all their time and all their interesting ques-

tions: Prakash Panangaden, Clark Verbrugge, Stefan Monnier, and Hamed Hatami. I

also want to give special thanks to my external reviewer Herman Geuvers.

Finally, I would not have been able to complete my PhD and write this thesis

without the financial support from the Natural Sciences and Engineering Research

Council of Canada (NSERC) through the Alexander Graham Bell Canada Graduate

Scholarship and from McGill University through the Lorne Trottier Fellowship and

Lorne Trottier Science Accelerator Fellowship.

iv

Contribution of the Author

• Chapter 2 is based on [Thibodeau et al., 2016] where I am the first author and I

developed the ideas under the supervision of my co-authors.

• The calculus and proof of normalisation of Sections 3.1 and 3.2 in Chapter 3 are

loosely based on [Jacob-Rao et al., 2018]. My contributions to this publication

was to extend the calculus and the proofs to a coinductive setting.

• Chapter 4 is taken from [Momigliano et al., 2019]. My contribution was to ex-

tend Beluga to index copatterns and to build the mechanization of the proof

(Section 4.2) under the supervision of my co-authors. The development of Sec-

tion 4.2 was done by Alberto Momigliano.

Contents

Contents v

List of Figures vii

1 Introduction 1

1.1 Coinduction . 3

1.2 Contributions . 13

2 Indexed Codata Types 15

2.1 Main Idea . 16

2.2 Index Domain . 27

2.3 Syntax . 32

2.4 Operational Semantics . 40

2.5 Coverage and Progress . 48

2.6 Related Work . 55

2.7 Conclusion . 57

3 Normalisation 58

3.1 Core Calculus . 60

3.2 Normalisation of Core Language . 71

3.3 Function Criteria . 85

3.4 Translation . 91

3.5 Function Criteria Are Sufficient for the Translation 107

v

vi CONTENTS

3.6 Commuting Translation and Evaluation . 117

3.7 Related Work . 129

3.8 Conclusion . 131

4 Case Study: Howe’s Method 132

4.1 A summary of Howe’s method . 135

4.2 Mechanizing Howe’s method in Beluga . 145

4.3 Related work . 167

4.4 Conclusions . 170

5 Conclusion 172

5.1 Future Work . 173

Bibliography 176

List of Figures

2.1 Building indexed streams . 20

2.2 Index-Contexts and index-Substitution . 29

2.3 Index-Types and index-Terms for Nat . 30

2.4 Equality of index terms for Nat . 30

2.5 Unification of Index Terms . 32

2.6 Grammar of types and kinds . 33

2.7 Kinding rules . 35

2.8 Grammar of terms and copatterns . 36

2.9 Typing rules for terms . 37

2.10 Type Checking for Patterns . 39

2.11 Definition of values . 41

2.12 Matching . 42

2.13 Typing and application of substitutions . 44

2.14 Operational Semantics . 45

2.15 Covering of a copattern set . 49

2.16 Coverage . 51

3.1 Typing rules for the target language . 61

3.2 Typing rules for the target language (continued) 62

3.3 Definition of values . 66

3.4 Stepping rules . 67

3.5 Interpretation of types . 75

vii

viii LIST OF FIGURES

3.6 Coinductive guardedness . 88

3.7 Translation of Copatterns . 98

3.8 Translation of copatterns using refinements . 99

3.9 Translation of copatterns using refinements (continued) 100

3.10 Translation of spines . 102

3.11 Translation of terms . 103

3.12 Lifting ρ to arbritary types . 104

3.13 Function translation . 106

3.14 Enhanced (co)pattern matching . 120

4.1 (Related) simultaneous substitutions . 140

4.2 Definition of the Howe relation . 141

4.3 Properties of simultaneous substitutions . 144

4.4 Grammar of Beluga . 147

4.5 LF definition of intrinsically typed terms . 149

4.6 Inductive definition of values and evaluation . 150

4.7 Core language definitions of Value and Eval 151

4.8 Coinductive definition of applicative similarity 152

4.9 The Howe relation . 163

4.10 Howe related substitutions . 165

4.11 Substitutivity property of the Howe relation . 166

4.12 The Howe relation is included in open similarity 168

Chapter 1

Introduction

Nowadays, computer systems are integral to our modern society. They are in our phones;

they handle our money; they control the chain of production. Unlike in the older days

where computers would be used to perform a single task to completion such as a calculation,

modern infrastructures are ever running complex systems which perform critical tasks often

concurrently. The importance of such systems requires us to rely on the correctness of their

behaviour: we do not want our private messages to be sent to the wrong person, our banks

to miscount our money, or our planes to crash. Correctness cannot be simply assumed. It is

critical that those systems be verified.

Verification comes in many forms. Testing is a very common and powerful method, but

only offers partial guarantees. It only covers cases that are tested and most of the time

it is not possible to test all cases. Alternatively, proof theory allows us to directly prove

properties about systems. For complex systems, this is a difficult task. It requires one to

describe the large amount of specifications and behaviours of those systems and take on

intricate proofs that they indeed satisfy the invariants.

Type theory strikes a balance which allows us to encode specific properties directly as

part of the code. Those are proven in the code itself and checked statically when typing the

programs. Thus, there are no corner cases that could fall off the cracks as is the case in

testing. It is modular enough that you can target specific invariants within the code without

1

2 CHAPTER 1. INTRODUCTION

having to specify everything. As such, it scales better to larger systems than full correctness

proofs.

Some questions that arise from using such a system for proving invariants are “what

are the methods of proof needed to prove such invariants?” and “how can we encode such

methods in a programming language so that the type system can automatically check them?”.

There is not a single answer that fits all invariants. There are nevertheless some general

classifications we can make.

Systems such as traditional batch programs have a finite behaviour in nature. They have

a starting point and an ending after finitely many steps. This finite behaviour also exists in

many data structures such as natural numbers, lists, and trees. Finite structures are very

common in computer science due to the finite limitation of time and space. Finite structures

and properties can be defined inductively: we define some base cases and, given some existing

objects, we can build new ones. For example, lists are built from an empty list and a cons

operator that adds an element to the front of an existing list. Reasoning over those is done

by the principle of induction: it suffices to show that what we are trying to prove holds on

the base cases, and that if it holds on the existing objects, such as the smaller list l, it also

holds for the ones we build from those such the list cons (a, l).

Most modern systems however behave very differently: we do not want them to stop

but we rather want them to continue indefinitely, always ready to answer the next query.

They are our operating systems, our webservers, our streams of messages. Them stopping to

respond is a bug rather than a feature. Queries answered by those systems can be modeled

as never ending streams of states. A property over them can thus also be seen as infinite in

nature as it needs to be proven for every single of those states.

The method to encode and reason about such infinite structures is coinduction, the dual

of induction. This duality has a clear semantic intuition that we go over in Section 1.1, but

its syntactic representation in the context of type theory is still an open question. This is

because we are trying to fit infinite structures into systems that are operate under finite time

and space constraints.

Providing a syntactic representation of coinduction in the context of (indexed) type

1.1. COINDUCTION 3

theory is the focus of this thesis. Specifically, we build and showcase an ML like language

with support for indexed (co)inductive types through a syntactic device called copatterns

and prove metaproperties about this language and its features.

The rest of this chapter is organized as follows:

• We describe the duality of induction and coinduction and thus provide a semantic

definition of coinduction;

• We present an overview of existing languages featuring coinduction;

• We explain what copatterns are and how they work;

• We discuss the details of this thesis’ contributions and how the rest of this thesis is

organized.

1.1 Coinduction

The first recorded uses of coinduction were by Park [1979, 1981] and Milner [1982] in the

context of concurrency. It was used in particular to reason about fair merges of sequences.

The name of coinduction was first used by Milner and Tofte [1991] who described a proof

method to study semantics of programming languages. It was built on a semantic under-

standing of the principle of induction from domain theory. We provide an overview of its

definition.

Semantic Intuition of Coinduction

Suppose that L is a complete lattice, that is, a partially ordered set (with ordering ≤) in

which all subsets have both a supremum and an infimum. It follows that L itself has both a

least and greatest element (respectively denoted ⊥ and >, respectively). The usual example

is the power set of a set A (denoted P(A)) under subset inclusion. The supremum is simply

the union of all elements of a subset B of P(A), while the infimum is simply the intersection

of all elements of B. The least element of P(A) is simply ∅ while its greatest element is A

itself.

4 CHAPTER 1. INTRODUCTION

A function F : L → L is said to be monotone if it preserves ≤, that is, for all x

and y in L, x ≤ y implies F(x) ≤ F(y). We have by (possibly transfinite) induction on

n that Fn−1(⊥) ≤ Fn(⊥). In the base case, ⊥ ≤ F(⊥) since ⊥ is the least element of

L. In the inductive case, if Fn−2(⊥) ≤ Fn−1(⊥), then by monotonicity of F , we have

Fn−1(⊥) ≤ Fn(⊥). This leads us to conclude that we have the chain.

⊥ ≤ F(⊥) ≤ F(F(⊥)) ≤ · · · ≤ Fn(⊥) ≤ . . .

By Kleene’s fixed-point theorem, the supremum of this chain is the least fixed-point of F ,

denoted µF .

Let us look at an example. Let Ω be the set of all terms in our programming language

(as generated by our grammar). Suppose L = P(Ω). Let F(X) = 1+X, that is, the disjoint

union of the one element set 1 and the input set X. Then, our Kleene chain is

∅ ⊂ {in1 ()} ⊂ {in1 (), in2 (in1 ())} ⊂ {in1 (), in2 (in1 ()), in2 (in2 (in1 ()))}
⊂ · · · ⊂ {ini2(in1 ()) | i = 1, . . . , n} ⊂ . . .

The supremum of that chain is {ini2 (in1 ()) | i ∈ N}, where in0
2 (in1 ()) is simply in1 (). If

we define zero to be in1 () and suc to be in2 , then the least fixed point is the set of all

natural numbers.

This is the idea behind inductive datatypes. The operator F describes the constructors

of the type and the set of terms that can be built with those constructors are terms existing

in its least fixed point.

Given a complete lattice L of a set A with ordering ≤, we define the lattice Lop as the

set A together with the ordering ≥, that is, for all a, b ∈ A if a ≤ b, then b ≥ a. Clearly,

the suprema and infima of L are infima and suprema of Lop, respectively. It follows that

Lop is also a complete lattice. A monotone operator F : L → L is also a monotone operator

F : Lop → Lop. We thus can build the chain

> ≥ F(>) ≥ F(F(>)) ≥ · · · ≥ Fn(>) ≥ . . .

By Kleene’s fixed point theorem, the least fixed point of F is the supremum of this chain.

This chain is still valid under the original ordering, with the infimum νF being the greatest

fixed point of F .

1.1. COINDUCTION 5

Going back to our previous example, we can build the chain

Ω ⊃ ({in1 ()} ∪ {in2 x | x ∈ Ω}) ⊃ ({in1 (), in2 (in1 ())} ∪ {in2 (in2 x) | x ∈ Ω})
⊃ · · · ⊃

(
{in1 ()} ∪ {ini2 (in1 ()) | i = 1, . . . , n− 1} ∪ {inn2 x | x ∈ Ω}

)
⊃ . . .

The infimum of this chain is the set {ini2 (in1 ()) | i ∈ N} ∪ {in∞2 }, that is, the set of all

natural numbers, together with the smallest infinite ordinal ω. Those can be described as

the coinductive natural numbers.

Coinduction as a Programming Language Feature

Since the world of programming languages and type theories is vast, it would be difficult

to give an exhaustive account. As such, we limit our discussion here to a few we deem

important. The first occurrences of coinduction in programming languages seem to have

been developed independently by Mendler et al. [1986] and Hagino [1987, 1989] by building

upon its duality with induction, either from a fixed point semantics, or from an equiva-

lent categorical semantics. We also describe how coinduction is defined in both Coq and

Isabelle/HOL

Infinite Objects in NuPRL

Mendler et al. [1986] extends NuPRL with coinduction by defining types �, which corre-

sponds to Ω in our interpretation above, and inf(x.c) where x is a variable binding and c is a

term which may contain x. The latter is inhabited by a term e if e inhabits approximations

(λx.c)n(�) for all n. That is, the infima of our Kleene chain. They also establish that inf(x.c)

is extensionally equal to [inf(x.c)/x]c.

Codatatypes in ML

While Mendler et al. [1986] built coinduction by encoding Kleene chains in their language,

Hagino [1987, 1989] designed a syntactic description for coinductive types that was dual to

the syntax of inductive types in ML. An inductive type (or datatype) is defined as a series

6 CHAPTER 1. INTRODUCTION

of constructors:

datatype T = c1 of A1 | · · · | cn of An

Thus, each constructor ci acts as a function from Ai → T . If duality in domain theory was

to reverse the ordering relation, we understand categorical duality by reversing the direction

of the arrows. That would give us a function T → Ai that can be seen as a destructor of T

into type Ai. Coinductive types (called codatatypes by Hagino) are thus defined as:

codatatype T = d1 is A1 & . . . & dn is An

This definition basically generates recursive records. For example, we can define the type of

streams as

codatatype Stream = head is Nat & tail is Stream

Analyzing datatypes is done through case statements:

case t of

| c1 x1 ⇒ t1

| c2 x2 ⇒ t2

...

t evaluates to a term c_i v_i and the corresponding branch is taken resulting in the term

[v_i/x_i]t_i. For codatatypes, we build them using merge statements:

merge

& d1 ⇐ t1

& d2 ⇐ t2

...

Building a stream simply requires us to provide a head and a tail.

fun zeroes = merge

& head ⇐ zero

& tail ⇐ zeroes

To prevent infinite unfolding in case of recursion, the body of a merge statement is only

reduced when applied to a destructor.

1.1. COINDUCTION 7

Guarded Induction in Coq

Coquand [1994] and Giménez [1995] view inductive types as well-founded trees whose nodes

are defined by constructors. Coinductive types are simply viewed as trees for which the well-

foundedness requirements are relaxed. Constructors still govern how we define coinductive

terms but they are restricted in how they are unfolded. In particular, they are only unfolded

lazily. As such, constructors form guards that ensure productivity of terms. This is the

approach followed by the Coq proof assistant [INRIA, 2020].

For example, we can define streams with the single constructor cons : Nat → Stream

→ Stream. Coinductive terms can be defined through corecursive definitions using CoFixpoint.

The stream of zeroes would thus look like the following:

CoFixpoint zeroes : Stream := cons 0 zeroes.

The laziness is obtained by only allowing reduction of cofixed points under case analysis,

as case analysis needs to know which constructor is at the head position. Cofixed point

definitions are deemed wellfounded if their corecursive calls are done under a constructor

such as cons. The reduction rules for a stream then works as follows:

match zeroes with (cons x xs) ⇒ t end

 match (cons 0 zeroes) with (cons x xs) ⇒ t end

match (cons 0 zeroes) with (cons x xs) ⇒ t end

 t[0/x,zeroes/xs]

While such reductions ensure programs using lazy definitions do not unfold indefinitely, it

fails to satisfy subject reduction [Giménez, 1996, Oury, 2008], the property that evaluation

preserves types. We go over the argument leading to its failure below.

(Co)datatypes in Isabelle/HOL

Isabelle/HOL [Nipkow et al., 2002] takes on a definitional approach to development of exten-

sions and libraries. That is, they are defined from existing constructs instead of added as new

axioms. There have been several approaches to coinduction in HOL over the years [Paulson,

8 CHAPTER 1. INTRODUCTION

1994, Hausmann et al., 2005], we only focus on the most recent body of work on bringing

codatatypes to Isabelle/HOL [Traytel et al., 2012, Blanchette et al., 2014].

Blanchette et al. [2014] describe a new library for coinduction in Isabelle/HOL in which

coinductive terms are built using constructors (such as nil and cons for lazy lists). How-

ever, manipulation of terms is done via existing terms via discriminators and observations.

Discriminators are boolean functions to check whether a term has a specific principal con-

structor (e.g. whether the list is empty or not). Observations are defined for subterms under

specific constructors (such as head and tail for non-empty lists).

Functions producing potentially infinite codatatype terms are built via primitive core-

cursion which can only be performed under constructors. One cannot pattern match over

constructors of codatatypes, but can only use discriminators and observations to obtain in-

formations about them. The library does allow for conditionals on the left-hand side of

functions to facilitate writing them. A user can thus specify the conditions for which a list

is empty, and what are the values supplied for the head and the tail in the case where it is

not empty. This generalizes merge definitions from Hagino [1987, 1989].

They assert equality for coinductive terms via a coinduction rule. Two coinductive terms

s and t are deemed equal if there is a relation R such that s R t and R is a bisimulation.

That is, for all t1 and t2 such that t1 R t2, we have either t1 and t2 are both empty, or

t1.head = t2.head and t1.tail R t2.tail. Bisimulation generalizes definitional equality to infinite

objects by stipulating they behave the same, when observed. While traditional approaches

for coinduction in Isabelle/HOL require the user to provide a specific relation R manually,

Blanchette et al. [2014] are able in many cases to automatically generate a canonical relation.

The Failure of Coinduction in Coq

The failure of Coq is one of the main inspirations of the body of work leading to this thesis:

offering a strong candidate for coinduction in intensional type theories. Those type theories

rely on a weak equality limited to terms sharing a same normal form. This equality was

one of the important factor leading to its success: equalities can be computed automatically.

However, it also imposes severe limitations that sometimes are hard to bypass. For example,

1.1. COINDUCTION 9

it does not allow function extensionality and thus would not allow NuPRL’s definition of

coinduction. It is also the cause of the failure to preserve types.

Let us define a type U with a single constructor in taking a U as its single argument.

CoInductive U : Type :=

| in : U → U.

The only inhabitant of this type is thus defined by the cofixed point

CoFixpoint u : U := in u.

We shall build a term eq_u : u ≡ in u.

Here, ≡ refers to the propositional equality. Propositional equality is an inductive relation

defined via a single constructor refl which stands for reflexivity and thus states that x ≡
x for any x. In a closed context, propositional equality will behave exactly the same as

intensional equality as any proof of equality will reduce to reflexivity. It is nevertheless a

powerful tool as it allows us to reason directly with equalities and thus prove complicated

equations that are not obvious from reductions alone.

The key part of the failure of subject reduction lies in this term eq_u. We will build it in

such a way that it evaluates to refl. However, refl has type x ≡ x, which is not the same

equality as u ≡ in u since u itself not equal to in u definitionally. Thus, the type of eq_u

is not preserved under the reduction.

Let us now build eq_u. First, we need to be able to force unfolding of u. This is done

through a force operation which simply uses case analysis.

Definition force (x : U) : U :=

match x with in y ⇒ in y

end

Since force places x under a case analysis, it will be unfolded and matched against in y.

From this, we can build a proof term of type ∀x:U.x ≡ force x as follows:

Definition eq (x : U) : x ≡ force x :=

match x with in y ⇒ refl

end

10 CHAPTER 1. INTRODUCTION

Now, Definition eq_u : u ≡ force u := eq u, which reduces to refl while its type re-

duces to u ≡ in u, as described above.

There is no easy way to fix definitional equality to save subject reduction. It has been

argued by McBride [2009] and subsequently formalized by Berger and Setzer [2018] that any

equality admitting unfolding of codata is undecidable. Decidable equality is an important

property on which a dependent type theory such as Coq’s is relying to ensure that type

checking itself is decidable: since Coq allows terms to inhabit types, type checking needs to

be able to compare terms for equality.

We noted above that NuPRL’s treatment of coinduction treated unfoldings as equal.

NuPRL’s equality is undecidable by very design; they admit an equality reflection rule

allowing equalities proven propositionally to be used definitionally. By contrast, in Coq,

one must use explicit conversions when facing propositional equalities. However, this allows

them to handle conversions of definitional equality automatically via reductions. In a similar

vein, one cannot convert a bisimulation into equality in Coq as it is the case in Isabelle/HOL,

but would have to prove a substitutivity property for a given bisimulation.

Thus, the problem of coinduction in Coq lies in the paradigm of defining codata using

constructors mixed with dependent pattern matching which naturally refines types based on

the information learned by the unfolding. A natural solution is to find shelter in the dual

paradigm: definition by means of observations.

Copatterns

Pattern matching offers more than just an induction principle for inductive data; it allows

simultaneous and deep matching and is quite a powerful abstraction. On the other hand,

coinduction defined by destructors (or observations) as described by Hagino [1987, 1989] is in

contrast pretty low level. Observation matching takes the form of a simple record indicating

the value at each observation. If multiple observations are needed to be applied one after

the other, then several nested record definitions need to be provided. To offer a convenient

high level abstraction, we invented copatterns [Abel et al., 2013, Abel and Pientka, 2013,

2016, Setzer et al., 2014, Thibodeau et al., 2016]. The interest in this approach has already

1.1. COINDUCTION 11

started to grow; support for copatterns has been added to the proof assistant Agda [Norell,

2007] in version 2.3.4 [Agda team, 2014] and has since then become the default way to

handle coinduction. An extension to copatterns was also added to OCaml by Laforgue and

Régis-Gianas [2017].

Despite its name, copatterns are not the dual of patterns but instead subsume both

patterns and observations. We define coinductive types by observations; streams are made

of a head and a tail. Definitions of coinductive terms still are done by supplying a term for

each observation. However, the machinery we provide to build such term is more advanced.

Let us introduce copatterns by means of interactive program development. Say we want

to build a stream of natural numbers starting at a number of our choice and decreasing until

it reaches 0. When it does, it goes to a constant, say 5, and decreases again to zero, and so

on. Thus, the stream might look like the following:

3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, . . .

Now, this stream cycleNats has type Nat → Stream where the input denotes the starting

number.

fun cycleNats : Nat → Stream = ?

Given its type, we introduce a variable of type Nat to the left hand side

fun cycleNats : Nat → Stream =

| x ⇒ ?

Now, the hole has type Stream. We can thus split on the result which will provide us with

the observations head and tail.

fun cycleNats : Nat → Stream =

| x .head ⇒ ?

| x .tail ⇒ ?

We can complete the first branch as the head of the stream is simply the input x. For the

tail branch, we need to know if the current number is 0 or not. We thus want to match on

x.

12 CHAPTER 1. INTRODUCTION

fun cycleNats : Nat → Stream =

| x .head ⇒ x

| zero .tail ⇒ ?

| (suc y) .tail ⇒ ?

The two last branches continue the stream and thus will make a recursive call. In the case

when x is 0, we simply go to our constant 5. If x was suc y for some y, then we simply

decrease the number by 1, which is the variable y.

fun cycleNats : Nat → Stream =

| x .head ⇒ x

| zero .tail ⇒ cycleNats 5

| (suc y) .tail ⇒ cycleNats y

More generally, copatterns allow for any mixing of patterns and observations, and it allows

for deep patterns and deep observation matching. A simple example of deep observations is

the Fibonacci stream:

fun fib : Stream =

| .head ⇒ 0

| .tail .head ⇒ 1

| .tail .tail ⇒ addS fib fib.tail

where addS denotes the pointwise addition between the two streams.

fun addS : Stream → Stream → Stream =

| s1 s2 .head ⇒ s1.head + s2.head

| s1 s2 .tail ⇒ addS s1.tail s2.tail

We can see how the addition work using the following diagram:

fib 0 1 1 2 3 5 8

↗ ↗ ↗ ↗ ↗
fib.tail 1 1 2 3 5 8 13

↗ ↗ ↗ ↗ ↗ ↗
addS fib fib.tail 1 2 3 5 8 13 21

1.2. CONTRIBUTIONS 13

Applying the observation tail to fib in the last copattern branch is safe because fib

only reduce if another observation is applied later. It is also important that the definition of

addS does not unfold its input in an ungarded way, which is not the case here as they are

unfolded only when the resulting stream is being unfolded.

The current line of work on copatterns is limited to the simply-typed case. This the-

sis thus extends the theory to indexed copatterns to allow us not only to encode infinite

structures but to also allow coinductive reasoning.

1.2 Contributions

The contributions of this thesis are the following:

• In Chapter 2, we present a first order type theory with support for induction and

coinduction through copatterns. We handle dependencies on (co)data from indices

using explicit equalities. During type checking, these are accumulated in the context

by means of unification, thus yielding linear (co)patterns. This is an alternative to

inaccessible patterns [Brady et al., 2004, Goguen et al., 2006b]. We define a non

deterministic coverage algorithm following interactive splitting à la Agda [Norell, 2007].

This type theory is proven to be type preserving and to satisfy progress.

• In Section 2.2, We describe a framework for admitting arbitrary index domains to rea-

son over in the type theory. The framework relies on a small of number of requirements

on the typing and unification of the provided domain. We use as an example a simple

domain of natural numbers, but we believe it can accommodate a number of more

involved domains such as contextual LF Nanevski et al. [2008], Pientka [2008], Pientka

and Dunfield [2008] or even coinductive domains.

• In Chapter 3, we provide criteria for termination for our copattern language. We prove

the subset of programs satisfying these criteria to be terminating via a normalisa-

tion preserving translation to a normalising core calculus. This core calculus supports

(co)induction through Mendler-style (co)recursors [Mendler, 1991] and is proven nor-

malizing through argument following the technique of Tait [1967] and Girard [1972].

14 CHAPTER 1. INTRODUCTION

• We implemented a prototype of indexed copatterns over contextual LF by extending

the proof assistant Beluga [Pientka and Dunfield, 2010]. Using this prototype, we

describe in Chapter 4 as a case study a mechanization of Howe’s method to show that

bisimilation of programs in a simply typed λ-calculus with recursion over (lazy) lists

is a congruence.

Chapter 2

Indexed Codata Types

This chapter lays the foundation of an indexed type theory with copatterns. Indexed types

[Zenger, 1997, Xi and Pfenning, 1999] separate the language of indices from the language of

types and programs. It is a restriction on dependent types and, by virtue of its simplicity,

it thus facilitates answering the metatheoretical questions surrounding the extension of co-

patterns with dependencies. While indexed data types allow us to for example specify and

statically enforce properties about finite lists and trees, indexed codata types allow us to

specify and statically enforce properties about streams and traces.

The contributions of this chapter are the following:

• We extend an ML like language with support for indexed (co)data types and deep

(co)pattern matching. To keep the design modular, we keep the index domain abstract

and specify the key properties it must satisfy. In particular, we require for the index

domain a decision procedure to reason about equalities and a unification procedure to

compute the most general unifier of two index objects. We illustrate these properties

by considering the domain of natural numbers.

• The core language provides a clean foundation for dependent (co)pattern matching

where we track and reason with dependencies among indices using equality constraints

that are accumulated in a context. Our equality context may contain both satisfiable

and contradictory equality constraints. This provides a foundation for (co)pattern

15

16 CHAPTER 2. INDEXED CODATA TYPES

matching that may serve as an alternative to existing approaches [Brady et al., 2004,

Goguen et al., 2006a, Pientka and Dunfield, 2008].

• We describe the operational semantics as a small-step semantics and prove type preser-

vation. In addition, we provide a sound non-deterministic algorithm to generate cov-

ering sets of copatterns and use it to prove progress.

The flexibility of the index domain allows us not only to build a first step towards

dependent copatterns, but also to provide foundations for extensions of indexed languages

to a corecursive settting. The language itself can be seen as a foundation for extending

languages such as DML [Xi and Pfenning, 1999] and ATS [Xi, 2004] to support indexed

codata. Choosing LF [Harper et al., 1993] as an index language, our work serves as a general

foundation for writing both inductive and coinductive definitions and proofs about formal

systems.

The remainder of this chapter is organized as follows. We illustrate the main ideas of

indexed (co)data types through several examples in Section 2.1. In Section 2.2, we discuss

the framework allowing us to define index domains. In Section 2.3, we introduce the language

supporting both indexed data types and codata types together with (co)pattern matching in a

symmetric way. Section 2.4 describes the operational semantics and prove type preservation.

Section 2.5 presents coverage, proves its soundness and decidability, and proves progress.

2.1 Main Idea

Indexed recursive types allow us to, for example, specify and program with lists that track

their length thereby avoiding run-time checks for cases which cannot happen. We consider

here a variation of this example: a recursive type Msg which describes a message consisting

of bits and tracks its length by choosing as an index domain Nat. Our pseudo-code follows

closely the underlying foundation where we model data types using recursive types and

disjoint sums together with equality constraints.

data Msg (n:Nat) : type =

| nil : n = zero * 1

2.1. MAIN IDEA 17

| cons : Σm:Nat. n = suc m * Bit * Msg m

The type Msg n defines messages inductively. The constructor nil describes an empty

message and so its length n must be zero. The constructor allows us to build a message

of length suc m by appending a Bit to an existing message of length m. We denote the

existential binding of m using a Σ-type and require the user to show that n = suc m. As

in ML-like languages, we require that constructors that correspond to the base case in our

inductive definition take in formally an argument of type unit (denoted by 1). When we

pattern match on a message w of type Msg n, we need to consider the following two cases: if m

stands for an empty message, written as nil (e, ()), then we also obtain an equality proof

e that n = zero; if m stands for a message cons <m, (e, h, w’)> where m is the witness

for the existential in the definition of cons and e stands for the equality proof n = suc m.

In both cases, we can further pattern match on the equality proof e, writing ℘ as the witness

which forces the type checker to solve the accumulated constraints setting in the base case

n to zero and in the step case n to suc m. As our index domain is restricted to a decidable

domain, equality proofs can always be derived and reconstructed when elaborating a surface

program into our core language.

Dually to model a stream of bits which keeps track of how many bits belong to one

message we define three different observations:

codata Str (n:Nat) : type =

| get-bit : Πm:Nat. n = suc m → Bit

| next-bits : Πm:Nat. n = suc m → Str m

| done : n = zero → NextMsg

and data Next-Msg : type =

| next-msg : Σn:Nat. Str n

Given a stream with index n, we can observe the next bits (next-bits) and get the current

bit (get-bit), provided that we supply some number m (which we universally quantify over

using a Π-type) and an equality proof that n = suc m. We are done reading all bits belonging

to our message if n = zero, i.e. we can get the next message as long as we provide a proof for

18 CHAPTER 2. INDEXED CODATA TYPES

n = zero. This definition of a stream allows us to enforce that we read the correct number

of bits belonging to a message.

When we pattern match on a data type, we also learn about equality constraints that

must hold. When we make observations on a codata type, we must supply an equality proof

that satisfies the equality constraint that guards the observation.

Message Processing Using Deep (Co)Pattern Matching

Interactions of a system with input/output devices or other systems are performed through

a series of queries and responses which are represented using a stream of bits that can be

read by the system. Processing requests over those streams can be error prone. If one reads

too many or not enough bits, then there is a disconnect between the information a program

reads and the one that was sent which potentially could be exploited by an attacker. To

avoid such problems, we propose to use indexed codata types to parametrize a stream with

a natural number indicating how many bits we are entitled to read until the next message

starts. Thus, one can guarantee easily that a program will not leave parts of a message on

top of the stream but that they consume all of it. We will use this example of message

passing to highlight the role of indices in writing programs that use (co)pattern matching.

First, we want to read a message from the stream Str n and return the message together

with the remaining stream. This is enforced in the type of the function read-msg below.

The type can be read informally as: For all n given Str n we return a message together with

Str zero which indicates that we are done reading the entire message.

fun read-msg: Π n:Nat. Str n → Msg n * Str zero =

| zero s ⇒ (nil (℘, ()), s)

| (suc m) s ⇒
let c = s.get-bit m ℘ in

let (w, s’) = read-msg m (s.next-bits m ℘) in

(cons <m, (℘, (c, w))>, s’)

2.1. MAIN IDEA 19

The program read-msg is written by pattern matching on the index object n. Using fun-

abstractions we pattern match on multiple input arguments simultaneously. If n is zero, then

we are finished reading all bits belonging to the message and we simply return the empty

message together with the remaining stream s. When we construct a message nil, we also

must supply a proof that zero = zero which is done via ℘. ℘ is a proof term for equalities

and generalizes reflexivity with the rules provided by the index domain. In the case of our

index domain of natural numbers, it is equivalent to reflexivity. If n is not zero, but of the

form suc m, we observe the first element c, the bit at position suc m, in the stream using

the observation .get-bit. We then read the rest of the message w by making the recursive

call read-msg m (s.next-bits m ℘) and then build the actual message by consing c to

the front of w. Note that in order to make the observation get-bit or next-bits we must

supply two arguments, namely m and a proof that suc m = suc m. When constructing the

message, we provide as a witness m together with a proof that suc m = suc m. It seems

reasonable to assume that these arguments and equality proofs can be inferred in practice;

however we make them explicit in our core language to emphasize their dual role in indexed

(co)data types.

So far we have seen how to make observations about streams and use them. Next,

we show how to build a stream which is aware of how many bits belong to a message

effectively turning it into a stream of messages. This is accomplished via two mutually

recursive functions (shown in Figure 2.1) mixing pattern and copattern matching: the first

marshals the size of the message with the message stream and the second one continues to

create the message stream. We assume that we have parametric polymorphism here (which

we do not treat in our foundation).

The function get-msg takes in a stream s of bits and a stream of natural numbers that

tells us the size of a message. It then returns a message of the required size by reading the

appropriate number of bits from s using the function msg-str and creating a stream of type

Str n where n is the size of the message. The function msg-str is defined by (co)pattern

matching; the first branch says we can only make the observation done provided that n is

zero; in this case we are done reading all bits belonging to the message. The second branch

20 CHAPTER 2. INDEXED CODATA TYPES

codata ’a Stream : type =

| head : ’a

| hail : ’a Stream

fun get-msg: Bit Stream → Nat Stream → Next-Msg =

| s ns ⇒ let n = ns.head in next-msg <n, msg-str n s ns.tail>

and msg-str: Π n:Nat. Bit Stream → Nat Stream → Str n =

| zero s ns .done ℘ ⇒ get-msg s ns

| (suc n) s ns .get-bit m ℘ ⇒ s.head

| (suc n) s ns .next-bits m ℘ ⇒ msg-str n s.tail ns

Figure 2.1: Building indexed streams

tells us if the size of the message is suc n, we can make the observation get-bit provided

we have a proof ℘ showing that suc m is equal to suc n. Note that our (co)pattern remains

linear – the fact that m is forced to be equal to n is guaranteed by the equality proof ℘

that solves the resulting constraint suc n = suc m. The pattern ℘ indicates to the type

checker that it needs to unify equality constraints. We exploit here the fact that equality

and unification is decidable in our index domain. If we can solve the constraint, as is the case

here, we keep track of the solution n := m : Nat in our context of assumptions and continue

to type check the body of the branch under this constraint; if we can disprove the arising

equality constraint, we keep a contradiction in our context of assumption and continue to

check the body. This allows for an elegant treatment of linear (co)patterns in the presence

of dependent types.

Last, we show how to generate a bit stream where every message contains two random

bits. This illustrates deep copattern matching.

fun gen-bit-str : Str (suc (suc zero)) =

| .get-bit (suc zero) ℘ ⇒ random-bit-gen ()

| .next-bits (suc zero) ℘ .get-bit zero ℘ ⇒ random-bit-gen ()

2.1. MAIN IDEA 21

| .next-bits (suc zero) ℘ .next-bits zero ℘ .done ℘ ⇒
next-msg (suc (suc z)) gen-bit-str

Revisiting the Duality of (Co)Inductive Definitions

So far we have concentrated on two aspects: 1) how inductive data is constructed and ana-

lyzed by pattern matching while coinductive data is observed and analyzed by observations;

2) the role of indices and equality constraints in (co)pattern matching. For data of type

Msg m, we provided a way of constructing a message for each m. Dually, our codata type

Str n provided observations for all possible n.

An important question to clarify is whether (co)data type definitions need or should be

exhaustive, i.e. provide a constructor or observation for each possible index. What does it

mean to have no constructor for a possible index? And dually, what does it mean to have

no observation for a possible index? We discuss these questions by looking at how we define

even numbers inductively and coinductively.

data Even (n:Nat) : type =

| ev-z : n = zero * 1

| ev-ss : Σm:Nat. n = suc (suc m) * Even m

Above is the inductive version of the definition. Clearly, inductive definitions do not need

to be covering. No case for suc zero is shown here. Even n states that we can construct

a proof that zero is even using ev-z provided we have a proof that n = zero. For clarity,

we define the type of the constructor ev-z as n = zero * 1 where 1 stands for unit (or

top). Similarly, we can construct a proof that n is even, if there exists a number m s.t.

n = suc (suc m) and m is even.

The set of terms inhabiting this predicate is the least fixed point defining even numbers.

Note that there is no way that we can construct a witness for Even (suc zero) and this type

is empty. Modelling the empty type data 0 : type by declaring no constructors, we could

make this more explicit by adding a constructor ev-sz of type n = (suc zero) * 0. This

explicitly states that Even (suc zero) cannot be constructed without any assumptions,

22 CHAPTER 2. INDEXED CODATA TYPES

since 0 is not inhabitated. We typically omit such a case in the definition of our inductive

types, but these impossible cases might arise when we pattern match on elements of the type

Even.

Now, we wish to define Even coinductively. We simply proceed by taking the dual of the

definitions. That is, we build the greatest fixed point. We start with the set containing all

natural numbers and refine it until we get only even numbers. This refinement process is

obtained by simply applying observations which restrict our options. We have an observation

to reject suc zero and another one that ensures a given number is even only if it is of the

form suc (suc n) for an even number n. This leads us to the following definition:

codata Coeven (n:Nat) : type =

| cev-sz : n = suc zero → 0

| cev-ss : Πm:Nat. n = suc (suc m) → Coeven m

If n = suc zero then we return the empty type. If we make an observation cev-sz and

have a proof that n = suc zero then we have arrived at a contradiction. The observation

cev-ss extracts a proof of Coeven m from a proof of Coeven (suc (suc m)).

This discussion highlights the difference between the definition of constructors and ob-

servations. If we omit a constructor for a given index, then the indexed data type is not

inhabited and it is interpreted as being impossible. Dually, if we omit an observation for a

given index, then the indexed codata type is still inhabited and it corresponds to holding

trivially.

We now prove that both interpretations give us the same set of terms. First we show

that Even n implies Coeven n:

fun ev-to-coev : Πn:Nat. Even n → Coeven n =

| n (ev-z (℘, x)) .cev-sz ℘

| n (ev-z (℘, x)) .cev-ss m ℘

| n (ev-ss <m, (℘, e)>) .cev-sz ℘

| n (ev-ss <m, (℘, e)>) .cev-ss k ℘ ⇒ ev-to-coev e

We write this function by pattern matching on Even n. In the case where Even zero, we

want to return Coeven zero. As elements of Coeven zero are defined by the observations we

2.1. MAIN IDEA 23

can make about it, we consider two sub-cases. If we try to make the observation cev-sz, we

must provide a proof that zero = suc zero. This will be refuted by the decision procedure

in our index domain, i.e. the decision procedure will succeed, but add a contradiction to the

context of assumptions, from which anything follows. Again, as a pattern, ℘ causes the type

checker to try to solve the equality constraint. If they are satisfiable, it adds the constraints

to the context of assumptions. If they are unsatisfiable, it adds a marker that there is a

contradiction. In latter cases, we can simply omit the right hand side, since an unsatisfiable

equality constraint makes the branch unreachable.

If we try to make the observation cev-sz, then we must provide a term for the type

Πm:Nat. zero = suc (suc m) → Coeven m.

Abstracting on the left, we have an argument zero = suc (suc m) for which there is no

proof. From this contradiction, the case holds trivially.

Finally, we consider the case where Even (suc (suc m)). In this case, we can again

make two possible observations, cev-sz and cev-ss. In the first case, we again arrive at a

contradiction, since suc (suc n) = suc zero is false. In the last case, we accumulate and

solve two equality constraints while type checking the (co)pattern: n = suc (suc m) and

n = suc (suc k). Then we proceed to check the body of the branch in the context where

n := suc (suc k):Nat and k := m:Nat.

This example highlights mixing pattern and copattern matching and reasoning with

equality constraints; it also highlight how impossible cases arise and how we treat them.

Can we also prove that Coeven n implies Even n? – For an arbitrary predicate it does

not hold that the coinductive interpretation implies the inductive one. The greatest fixed

point could be strictly larger than the least. In the case of Even and Coeven however, we

can indeed show this property by induction on n.

fun coev-to-ev : Πn:Nat. Coeven n → Even n =

| zero c ⇒ ev-z (℘, ())

| (suc zero) c ⇒ abort (c.cev-sz ℘)

| (suc (suc n)) c ⇒ ev-ss <n, (℘ , coev-to-ev n (c.cev-ss n ℘))>

24 CHAPTER 2. INDEXED CODATA TYPES

When n = suc zero, we assume Coeven (suc zero) and observe (c.cev-sz ℘) which

results in an object of type 0 – however, we know that this type is not inhabited and hence

we abort. abort eliminates 0 and serves as an abbreviation for a function matching on a

term without constructors that would have no branches.

Lambda Terms as Index Language: Reasoning about Divergence

So far, all of our examples used the natural numbers as our index domain. In this example

we will use an encoding of the λ-calculus using contextual LF [Nanevski et al., 2008, Pientka,

2008]. We represent λ-terms as the following LF signature:

Exp : type.

app : Exp → Exp → Exp.

lam : (Exp → Exp) → Exp.

This signature creates a type Exp with applications app m n, λ-abstractions lam (λx.m

x[x]), and variables x. LF signatures make use of higher-order abstract syntax to encode

variable binders using the LF function type.

Now, terms of the index domain are pairs of an LF term together with its binding con-

text, written g ` t. If the term is closed and the context is empty, we will simply omit the

turnstile and write t. We distinguish bound variables x defined within the λ-calculus of our

index-domain with meta-variables m, n, and p that denote terms from our index domain

which have of type g ` Exp. Meta-variables are paired with a substitution, written m[s],

that serves to mediate between the expected context for the meta-variable and the ambient

context in which it occurs. These substitutions are usually simultaneous substitutions. How-

ever, our example will only feature terms depending on a single variable. For readability, we

will often omit writing the substitutions when they are identity or weakening substitutions.

For our needs, we will simply consider the fixed signature defined above instead of all

of contextual LF. However, the meta-properties that contextual LF [Nanevski et al., 2008,

Pientka, 2008] satisfies include the criteria for an index domain that we will present in

Section 2.2 and its framework thus justifies our representation of the λ-calculus. The system

2.1. MAIN IDEA 25

Beluga [Pientka and Dunfield, 2010] provides an implementation of such an indexed language

over contextual LF.

Now, let us consider a data type denoting the big-step evaluation of lambda terms.

data Eval : (m : Exp) (n : Exp) : type =

| ev-lam : Σp:(x:Exp ` Exp).m = (lam λx.p[x]) * n = (lam λx.p[x])

| ev-app : Σm1:Exp.Σm2:Exp.Σp:(x:Exp ` Exp).m = (app m1 m2)

* (Eval m1 (lam λx.p[x]) * Eval p[m2/x] n)

Eval is a predicate on two terms that are closed. Thus, there is no case for variables.

ev-lam states that lambda abstractions evaluate to themselves; if the left-hand side m is a

λ-abstraction lam λx.p[x], then so is the right-hand side. The variable p has type x :

Exp ` Exp indicating its dependency on a variable x, as it is used under the binding for x.

ev-app requires the input to be app m1 m2 for some closed m1 and m2. The evaluation of

an application simply evaluates the left-hand side to a λ-abstraction lam λx.p[x] and then

evaluates the body of the abstraction under the substitution m2 for x, leading to the output.

A proof of evaluation is then just a series of constructors representing a particular step in

the evaluation. Thus, the proof forms a trace of the evaluation sequence. For example, the

simple term app (lam λx.x) (lam λx.x) evaluates by simply doing a β-reduction since

both the left-hand side of the application and the result of the substitution are lam λx.x

which reduces to itself. This is captured by the term

ev-app 〈lam λx.x, 〈lam λx.x, 〈(x:Exp ` x),

(℘, ev-lam 〈(x:Exp ` x), (℘, ℘)〉,
ev-lam 〈(x:Exp ` x), (℘, ℘)〉)〉〉〉

which has type Eval (app (lam λx.x) (lam λx.x)) (lam λx.x). Here, x:Exp ` x is

the instantiation for p from the declaration of Eval. Since p had type x:Exp ` Exp which

depends on a variable x, the term we provide also exists in the context x:Exp. In our case,

the provided term is simply the variable x. We provide both terms of the application and

use reflexivity to show it is equal to the expected type. The left-hand side of the application

being the λ-abstraction lam λx.x, we use ev-lam as it evaluates to iself. Similarly, the

resulting substitution x[lam λx.x/x] becomes lam λx.x which also evaluates to itself.

26 CHAPTER 2. INDEXED CODATA TYPES

If a term in our indexed language forms a trace of evaluation, and the evaluation of a

given λ-expression diverges, such a term will be infinite. It appears naturally that divergence

should be described coinductively. However, it is not obtained by defining a coinductive

version of Eval as we did with Coeven but rather by describing the negation of it. To make

sense of it, let us have a look at the definition.

codata Div (m:Exp) : type =

| div-lam : Πp:(x:Exp ` Exp).m = lam λx.p[x] → 0

| div-app : Πm1:Exp.Πm2:Exp.m = app m1 m2

→ Div m1 + (Σp:(x:Exp ` Exp).Eval m1 (lam λx.p[x]) * Div p[m2/x])

Studying div-app first, once the equality is assured we either obtain a proof of divergence

of m1 or the evaluation of m1 into lam λx.p[x] and the divergence of p[m2/x]. This choice is

represented through a disjunction. Now, if we want to build a term of Div (app m1 m2) for

some given m1 and m2, we need to provide either proofs of divergence (m1, or p[m2/x] given

that Eval m1 (lam λx.p)).

As for div-lam, we stated above that λ-abstractions evaluate trivially to themselves.

Hence, they can never diverge. Thus, we simply need to provide a term of type 0.

With such a predicate, it is natural to want to prove divergence of some terms. Let us

start by proving that given Div e1 then Div (app e1 e2) for all e2.

fun div1 : Πe1.Πe2. Div e1 → Div (app e1 e2) =

| e1 e2 d .div-lam p ℘

| e1 e2 d .div-app e1’ e2’ p ℘ ⇒ inl d

Now, we are trying to prove divergence of applications, hence we trivially fulfill the branch

for div-lam using the empty function. For applications, the equality holds so we know m1

= app n1 n2. Then, we use d through the left injection inl to obtain the proof we require.

This is a very simple proof that does not make use of recursion.

Let us build a concrete λ-expression that makes use of a coinduction hypothesis; we will

prove that the term app (lam λx.app x x) (lam λx.app x x) diverges. The left-hand

side of the term is already a λ-abstraction so it evaluates to itself. Then, the substitution

2.2. INDEX DOMAIN 27

gives us the term app (lam λx.app x x) (lam λx.app x x) which is the original term.

Now we found a loop and thus obviously this term diverges. As a program, it is defined as

follows:

fun om-div : Div (app (lam λx.app x x) (lam λx.app x x)) =

| .div-lam p ℘

| .div-app (lam λx.app x x) (lam λx.app x x) ℘ ⇒
inr 〈(x:Exp ` app x x),

(ev-lam 〈(x:Exp ` app x x), (℘, ℘)〉), om-div〉

The div-lam case is handled in the same way it was handled in div1 as we expect an

application instead of an abstraction. The application case follows the right injection as

the left-hand side of our term evaluates to itself, described by ev-lam 〈x:Exp ` app x

x, (℘, ℘)> Then, the result of the substitution is the same as the original term, so it can

be proved using the recursive call. This call is guarded as it is done under the observation

div-app from the left-hand side and thus is a valid use of the coinduction hypothesis.

2.2 Index Domain

Our programming language is parametric over the index domain which we describe abstractly

with U . This index domain can be natural numbers, strings, types [Cheney and Hinze, 2003,

Xi et al., 2003], or (contextual) LF [Cave and Pientka, 2012]. Index objects are abstractly

referred to as index-term C and have index-type U . As a running example we will use natural

numbers to illustrate the requirements our index domain must satisfy. It can be defined as

containing a single index-type Nat and index-terms are simply built of zero, suc, and variables

u.

Index-Type U ::= Nat

Index-Term C ::= u | zero | suc C

Variables that occur in index-terms must be declared in an index-context ∆ and they are

28 CHAPTER 2. INDEXED CODATA TYPES

instantiated via an index-substitution θ. Their definition is concrete in the framework:

Index-Context ∆ ::= · | ∆, u : U | ∆, u := C : U | ∆,#
Index-Substitution θ ::= · | θ, C/u

In our setting, the index-context also contains equality constraints. The constraint

u:=C:U says that the index-variable u is equal to the index-term C. Such constraints arise

in typing (co)patterns (see the function msgStr from Section 2.1). The index-context also

keeps track of contradictions, written #, that may arise when we encounter in a (co)pattern

a constraint that can never be satisfied.

Index-substitutions are built by supplying an index-term for an index-variable. We in-

terpret · as the identity index-substitution. We define the lookup of the instantiation for a

variable u as follows:

θ(u) = C Variable u is bound to term C in substitution θ

(θ, C/u)(u) = C

(θ, C/u′)(u) = θ(u) if u 6= u′

(·)(u) = u

We use index-substitutions to model the run-time environment of index variables. Look-

ing up u in the substitution θ returns the index-term C to which u is bound at run-time.

The index-context ∆ captures the information that is statically available and is used during

type checking.

Typing of Index Domain

We define the well-formedness of index-contexts and index-substitutions in Fig. 2.2. The def-

inition of index-contexts is mostly straightforward noting that ∆, u:=C:U is a well-formed

index-context if ∆ is well-formed, the index-type U is well-formed in ∆, and the index-term C

has index-type U . We make sure that there are no circularities in ∆. An index-substitution

θ provides a mapping for declarations in the index-context ∆′ and guarantees that all in-

stantiations have the expected index-type and are compatible with existing constraints. Our

2.2. INDEX DOMAIN 29

` ∆ ictx well-formed index-context ∆

` · ictx
` ∆ ictx ∆ ` U : Type ∆ ` C : U

` ∆, u := C : U ictx
` ∆ ictx
` ∆,# ictx

∆ ` U : Type ` ∆ ictx
` ∆, u : U ictx

∆ ` θ : ∆′ θ maps index variables from ∆′ to ∆

∆ ` θ : ∆′ ∆ ` θ(u) : [θ]U

∆ ` θ : ∆′, u:U

∆ ` θ : ∆′ # ∈ ∆

∆ ` θ : ∆′,#

∆ ` θ : ∆′ ∆ ` θ(u) : [θ]U ∆ ` θ(u) = [θ]C

∆ ` θ : ∆′, u:=C:U ∆ ` θ : ·

Figure 2.2: Index-Contexts and index-Substitution

judgment ∆ ` θ : ∆′ states that a given instantiation θ, computed via pattern matching at

run-time, matches the assumptions in ∆′ that were made statically during type checking. It

is defined inductively on the domain ∆′. Although all instantiations computed by pattern

matching are ground (i.e. ∆ is empty), we state the relationship between θ and ∆ more

generally. If ∆′ contained a contradiction, the contradiction must also be present in ∆. We

still require in this case that θ provides consistent and well-typed instantiations for all the

remaining declarations in ∆′.

The presentation of an index domain must include kinding and typing rules, which we

will denote by the judgments ∆ ` U : Type and ∆ ` C : U , respectively. We provide the

rules for the example of natural numbers in Figure 2.3.

Our index domain must satisfy several properties. The first one is the substitution

property which we list here as a requirement. We provide proofs of each of the requirements

for our example domain Nat.

Requirement 1 (Index-Substitution Lemma).

If ∆ ` θ : ∆′ and ∆′ ` C : U then ∆ ` [θ]C : [θ]U .

Proof for Nat. By induction on ∆′ ` C : U .

30 CHAPTER 2. INDEXED CODATA TYPES

∆ ` U : Type Index-type U is well-kinded in ∆

∆ ` Nat : Type

∆ ` C : U Index-term C has type U

∆ ` zero : Nat
∆ ` C : Nat

∆ ` suc C : Nat

∆(u) = U

∆ ` u : U

Figure 2.3: Index-Types and index-Terms for Nat

∆ ` C1 = C2 Term C1 is equal to Term C2 in ∆.

∆ ` zero = zero
∆ ` C1 = C2

∆ ` suc C1 = suc C2 ∆ ` u = u

∈ ∆

∆ ` C1 = C2

u:=C ′:U ∈ ∆ ∆ ` C ′ = C
∆ ` u = C

u:=C ′:U ∈ ∆ ∆ ` C = C ′

∆ ` C = u

Figure 2.4: Equality of index terms for Nat

In addition to the typing rules we also require that equality on the index language is

decidable and takes into account the equality constraints in ∆. Equality is defined using the

judgment ∆ ` C1 = C2. To illustrate we give the definition of equality for natural numbers

in Fig. 2.4. We note that if a contradiction lives in the context, any two index-terms are

equal. An index-variable u can be equal to an arbitrary index-term C if the context contains

a constraint u := C ′ and C is equal to C ′.

Typing Judgement for Equality in Patterns Type checking of (co)patterns will need

to solve equations C1 = C2 using unification on our index domain, and thus introduce term

assignments to variables in ∆, yielding ∆′. Unification for the index domain is represented

2.2. INDEX DOMAIN 31

by the judgment ∆ ` C1 = C2 ↘ ∆′. We define unification for the index domain of

natural numbers in Figure 2.5. Note that the unification should always succeed in producing

an index-context ∆′. If C1 and C2 are unifiable, then the arising equality constraints are

recorded in ∆′. However, if C1 and C2 are not unifiable, we should return a ∆′ that contains

a contradiction #. There are two possible sources of failure: either the two terms are

syntactically different or the occurs check fails. As we keep track of constraints in ∆, checking

whether u occurs in u′ where u′:=C:U ∈ ∆, we must check whether u occurs in C. Our well-

formedness of ∆ guarantees that our context is not cyclic and hence the occurs check will

terminate. Our definition of unification is then straightforward. As we must guarantee that

∆ remains well-formed, we may permute it to an equivalent well-formed context (written as

∆ ∼ ∆′) when unifying u with an index-term C.

Properties about Unification

As we alluded during our examples, typing of (co)patterns will rely on solving equality

constraints. We therefore rely on the correctness of the unification algorithm. In particular,

we require that unification will always succeed, possibly yielding a context containing a

contradiction.

Requirement 2 (Unification of Index-Terms). For any ∆, C1, C2 and U such that ∆ `
C1 : U and ∆ ` C2 : U , there is a ∆′ such that ∆ ` C1 = C2 ↘ ∆′.

Further, we require that our unification algorithm produces the most general unifier.

Requirement 3. If ∆ ` C1 = C2 ↘ ∆′, then for all ∆0 and θ such that ∆0 ` θ : ∆, we

have that ∆0 ` [θ]C1 = [θ]C2 if and only if ∆0 ` θ : ∆′.

Proof for Nat. By induction on ∆ ` C1 = C2 ↘ ∆′.

Using these requirements, we can show that the unification algorithm is stable under

substitution.

Lemma 2.1. If ∆ ` C1 = C2 ↘ ∆′ and ∆1 ` θ : ∆ then there is a ∆′1 such that ∆1 `
[θ]C1 = [θ]C2 ↘ ∆′1 and ∆′1 ` θ : ∆′.

32 CHAPTER 2. INDEXED CODATA TYPES

∆ ` C1 = C2 ↘ ∆′ Given the index-terms C1 and C2 in context ∆, we synthesize the most

general index-context ∆′ such that ∆ ≺ ∆′ and ∆′ ` C1 = C2.

∆ ` zero = zero↘ ∆

∆ ` C1 = C2 ↘ ∆′

∆ ` suc C1 = suc C2 ↘ ∆′ ∆ ` u = u↘ ∆

∆ ` zero = suc C ↘ ∆,# ∆ ` suc C = zero↘ ∆,#

∆ ∼ ∆0, u:U,∆1 ∆0 ` C : U

∆ ` u = C ↘ ∆0, u:=C:U,∆1

∆ ∼ ∆0, u:U,∆1 ∆0 ` C : U

∆ ` C = u↘ ∆0, u:=C:U,∆1

∆ ` occursn+1(u,C)

∆ ` u = C ↘ ∆,#

∆ ` occursn+1(u,C)

∆ ` C = u↘ ∆,#

u:=C ′:U ∈ ∆ ∆ ` C ′ = C ↘ ∆′

∆ ` u = C ↘ ∆′
u:=C ′:U ∈ ∆ ∆ ` C = C ′ ↘ ∆′

∆ ` C = u↘ ∆′

∆ ` occursn(u,C) u occurs in C under n constructors

∆ ` occurs0(u, u)

∆ ` occursn(u,C)

∆ ` occursn+1(u, suc C)

u′:=C:U ∈ ∆ ∆ ` occursn(u,C)

∆ ` occursn(u, u′)

Figure 2.5: Unification of Index Terms

Proof. By Requirements 2 and 3.

2.3 Syntax

We now present the syntax of types and terms of our copattern language. We shall first

discuss the grammar or types and kinds and show kinding, before moving to typing of terms

and (co)patterns.

Types (Figure 2.6) admit the standard unit types 1, pairs of types T1× T2, and function

types S → T . We make use of the indices using dependent function types Πu:U.T and

dependent product types Σu:U.T . Index objects from our index domain U can be embedded

2.3. SYNTAX 33

Kinds K ::= type | Πu:U.K

Types S, T ::= X | 1 | T1 × T2 | S → T | C1 = C2 | Πu:U.T | Σu:U.T | T ~C
| Λu.T | µX.T | νX.T | D | R

Variants D ::= 〈c1 T1 | · · · | cn Tn〉
Records R ::= {d1 : T1, . . . , dn : Tn}

Figure 2.6: Grammar of types and kinds

and returned by computations by returning an object of type Σu:U.1. Our core language

also includes equality constraints between index objects. They typically are used inside

(co)recursive type definitions. As we have seen in the examples, we use equalities in two

forms: constrained products (written as C1 = C2 × T) in defining indexed data types and

constrained (or guarded) functions (written as C1 = C2 → T) in defining indexed codata

types. As we require that our index domain comes with decidable equality, we believe that

the equality proofs can always be reconstructed when elaborating source level programs into

our core language.

The main feature of our type system is that it supports indexed recursive and in-

dexed corecursive types. We defined recursive types from our examples using the types

(µX.Λ~u.D) ~C. The type variable X denotes recursive occurrences of the type itself in-

side D. The binding Λ~u.D binds an arbitrary number of index variables u and stands for

the iterated application Λu1.Λu2. · · · .Λun.D. The variant D is a labelled sum (written as

〈c1 T1 | · · · | cn Tn〉) which represents the constructors and the types of the arguments they

expect. The arguments ~C at the end are the parameters passed to the type to instantiate

the recursive type family. In Section 2.1, we had the type Eval p[m2/x] n as part of the

constructor ev-app. The arguments ~C in this case are p[m2/x] and n. While the grammar

and kinding rules show those elements of what we call a recursive type to be separate, typing

will force them to be build like that. Dually, in the corecursive type will be constructed as

(νX.Λ~u.R) ~C which builds a record R (denoted as {d1 : T1, . . . , dn : Tn}) where the labels di

are the observations we can make.

34 CHAPTER 2. INDEXED CODATA TYPES

Example 1 (Indexed Recursive Types). Datatypes C = µX.λ~u.D for D = 〈c1 T1 | · · · | cn Tn〉
describe least fixed points. Choosing as index domain natural numbers, we can model our

previous definition of Msg as follows in our core language.

µMsg.λu.〈Nil : u = zero× 1 ,

Cons : Σu′:Nat.u = suc u′ × (Bit×Msg u′)〉

Example 2 (Indexed Corecursive Types). Record types C = νX.λ~u.R with R = {d1 :

T1, . . . , dn : Tn} are recursive labeled products and describe infinite data. As for data,

non-recursive record types are encoded by a void ν-abstraction ν .λ~u.R. Consider our previ-

ous codata type definition for indexed streams, i.e. Str, with the three observations, GetBit,

NextBits, and Done. Depending on the index n we choose the corresponding observation.

It directly translates to the following:

νStr.λm. { Done : m = zero → NextMsg ,

NextBits : Πn:Nat.m = suc n→ Str n ,

GetBit : Πn:Nat.m = suc n→ Bit }
µNextMsg. 〈 NextMsg : Σn:Nat.Str n 〉

Dually to data types where we employ Σ and product types, we use Π and simple function

types when defining codata types.

In order to facilitate reading in the rest of the thesis, we will adopt the following conven-

tion for recursive and corecursive types. For a type T depending on a single type variable

X, we build the functional F defined as X 7→ T . Then, if T is Λ~u.D, we can denote the

recursive type µX.Λ~u.D as µF and the resulting substitution [
−−→
C/u; (µX.Λ~u.D)/X]Dc as

Fc(µF) ~C where Dc denotes the type in D for the constructor c. Moreover, we will iterate

over all c ∈ F to actually mean all c ∈ D. We equivalently will use Fi(µF) ~C to denote the

type in D at position i. In a similar fashion, for F = Λ~u.R, we use νF for the corecursive

type νX.Λ~u.R.

Kinding is expressed using the judgment ∆; Ξ ` T : K that indicates that type T has

kind K. Since types can contain indices with free variables, the judgment carry the index-

context ∆. In addition, the context Ξ is used to accumulate type variables introduces by

(co)recursive types. The kinding rules appear in Figure 2.7. Product types, arrow types,

2.3. SYNTAX 35

∆; Ξ ` T : K Type T has kind K in contexts ∆ and Ξ

∆; Ξ ` 1 : type
∆; Ξ ` T1 : type ∆; Ξ ` T2 : type

∆; Ξ ` T1 × T2 : type
∆; Ξ ` S : type ∆; Ξ ` T : type

∆; Ξ ` S → T : type

∆ ` U : Type ∆, u:U ; Ξ ` T : type
∆; Ξ ` Πu:U.T : type

∆ ` U : Type ∆, u:U ; Ξ ` T : type
∆; Ξ ` Σu:U. T : type

∆; Ξ ` Ti : type

∆; Ξ ` 〈c1 T1 | · · · | cn Tn〉 : type

∆; Ξ ` Ti : type

∆; Ξ ` {d1 : T1, . . . , dn : Tn} : type

X:K ∈ Ξ
∆; Ξ ` X : K

∆; Ξ ` T : Πu:U.K ∆ ` C : U

∆; Ξ ` T C : [C/u]K

∆, u:U ; Ξ ` T : K

∆; Ξ ` Λu.T : Πu:U.K

∆; Ξ, X:K ` T : K

∆; Ξ ` µX:K.T : K

∆; Ξ, X:K ` T : K

∆; Ξ ` νX:K.T : K
∆ `M : U ∆ ` N : U

∆; Ξ `M = N : type

Figure 2.7: Kinding rules

variants and record types are well kinded against type if all of their components are kinded

against type. Π-types and Σ-types are kinded against type if their bodies are kinded against

type in the extended index-context. Equality types M = N are kinded against type if M and

N are typed against the same index-type U . Types variables X are well-kinded against kind

K if Ξ(X) = K. Type applications T C are kinded against [C/u]K if T is kinded against

Πu : U.K. (Co)recursive types µX:K.T and νX:K.T types are kinded against K if T is

kinded against K in the extended type variable context Ξ, X:K.

Terms and Typing

Terms are simply applications of heads together with spines h ? E. If the spine is empty

(aka ·), we simply write the head h by itself. Heads include variables x, unit (written

as ()), pairs (written as (v1, v2)), dependent pairs (written as pack 〈C, v〉), the canonical

term for equalities which denotes reflexivity (written as ℘), and function definitions (written

36 CHAPTER 2. INDEXED CODATA TYPES

Terms t ::= h ? E

Heads h ::= x | () | (t1, t2) | ℘ | c t | pack 〈C, t〉 | fun f.~b
Spines E ::= · | t E | .d E | C E
Branches b ::= q 7→ t | q
Patterns p ::= x | (p1, p2) | ℘ | c p | pack 〈u, p〉
Copatterns q ::= · | p q | u q | .d q

Figure 2.8: Grammar of terms and copatterns

as fun f.~b). All but function definitions and variables are introduction forms which are

eliminated via pattern matching; dually, we make observations about functions, universals

and coinductive types through applications, which are carried by spines E.

Simultaneous (co)patterns are described using a spine that is built out of patterns (written

as p) and observations (written as .d). Patterns themselves are derived from terms and can

be defined using pattern variables x, pairs (written as (p1, p2)), pattern instances (written

as pack 〈C, p〉) and patterns formed with a data constructor c.

Branches in case-expressions are modelled by q 7→ t. We also allow branches with no

body – they will only succeed if the copattern q is impossible, i.e. we arrived at some equality

constraints that lead to a contradiction. Strictly speaking, it is not necessary as we could

always write some arbitrary expression for the body which would be inaccessible and thus

can never be reached. In the remainder of this thesis we will often describe functions as

fun f.
−−−→
q 7→ t in order to expose its copatterns or qi, or even it’s right-hand side t. This not

does preclude that some (or even all) branches are missing right-hand sides. It is merely

done for the sake of notational convenience.

Notation 1. Given two spines E and E ′, we will denote their concatenation simply by E E ′.

Similarly, we will append a term t, a index-term C or an observation .d at the end of a spine

by simply writing E t, E C, or E .d, respectively.

Moreover, if we have a term t which represents the application h ? E and a spine E ′, we

will use the notation t ? E to denote the concatenation of E to the spine E ′. Hence t ? E is

2.3. SYNTAX 37

equivalent to writing h ? E E ′.

As our last piece of notation, if the spine of a term is empty, that is h ? ·, we will simply

omit it entirely and consider the head h as a term.

∆; Γ ` t : T In index-context ∆ and context Γ, term t has type T .

∆; Γ ` h : T ′ ∆; Γ;T ′ ` E ↘ T

∆; Γ ` h ? E : T

∆; Γ ` t : T ′ ∆ ` T = T ′

∆; Γ ` t : T

∆; Γ ` h : T In index-context ∆ and context Γ, head h has type T .

Γ(x) = T

∆; Γ ` x : T ∆; Γ ` () : 1

∆; Γ ` t1 : T1 ∆; Γ ` t2 : T2

∆; Γ ` (t1, t2) : T1 × T2

∆ ` C : U ∆; Γ ` t : [C/u]T

∆; Γ ` pack 〈C, t〉 : Σu:U.T

∆; Γ ` t : Fc(µF) ~C

∆; Γ ` c t : µF ~C
∆ ` C1 = C2

∆; Γ ` ℘ : C1 = C2

for each i ∆; Γ, f :T ` bi : T

∆; Γ ` fun f.~b : T

∆; Γ ` bi : T In index-context ∆ and context Γ, branch bi has type T .

∆; Γ;T ` q ↘ ∆′; Γ′;T ′ ∆′; Γ′ ` t : T ′

∆; Γ ` q 7→ t : T

∆; Γ;T ` q ↘ ∆′; Γ′;T ′ # ∈ ∆′

∆; Γ ` q : T

∆; Γ;T ` E ↘ T ′ In index-context ∆ and context Γ, spine E eliminates function of type

T into type T ′

∆; Γ;T ` · ↘ T

∆ ` C : U ∆; Γ; [C/u]T ` E ↘ T ′

∆; Γ; Πu:U.T ` C E ↘ T ′

∆; Γ ` t : S ∆; Γ;T ` E ↘ T ′

∆; Γ;S → T ` t E ↘ T ′
∆; Γ;Fd(νF) ~C ` E ↘ T

∆; Γ; (νF) ~C ` .d E ↘ T

Figure 2.9: Typing rules for terms

The typing rules appear in Figure 2.9. Applications h E type against T simply if heads h

type against T ′ and spines E eliminate T ′ into T . As we have constraints in ∆, we also include

38 CHAPTER 2. INDEXED CODATA TYPES

a type conversion rule. The judgment ∆ ` T1 = T2 is defined recursively on the structure of

types. When we compare ∆ ` (T1
~C) = (T2

~C ′), we simply compare ∆ ` T1 = T2 and for all

i we have ∆ ` Ci = C ′i falling back to the comparison on index types.

Most rules for heads are standard. Typing of index object C refers to typing of index-

terms as described in Section 2.2. A constructor c takes a term of type Fc(µF) ~C, yielding

a term of type µF ~C. Dually, an observation .d takes a term of type νF ~C yielding a term

of type Fd(νF) ~C. The witness for an equality C1 = C2 is simply ℘ provided C1 and C2 are

equal in our index domain using our rules from Figure 2.4.

The function abstraction (written as fun f.~b) introduces branches b of the form q 7→ t. A

branch is well typed if the copattern q checks against the overall type T of the function and

synthesizes a new index-context ∆′, a new context Γ′, and the output type T ′, against which

the term t is checked. The contexts ∆′ and Γ′ describe the types of the variables occurring in

the pattern together with equality constraints. Note that ∆′ not only accumulates equality

constraints, but might also contain a contradiction, if some equality constraint is not satisfied.

Our typing rules will then still guarantee that the body t is effectively simply typed, as all

equalities that appear in the body and must be satisfied will be trivially true.

As mentioned earlier, we also allow branches that consist only of a (co)pattern but have no

body. This allows programmers to write inaccessible (co)patterns. We check such branches

by verifying that ∆′ contains a contradiction. In this case, we know that the branch cannot

be taken during runtime and is essentially dead-code.

Spines are essentially typed pointwise. t E eliminates a function type S → T into T ′

where t has type S and E eliminates T into T ′. C E eliminates a universal type Πu:U.T

into T ′ where C has type U and E eliminates [C/u]T into T ′. .d E eliminates a codata type

(νF) ~C into T where .d is an observation of F E eliminates Fd(νF) ~C into T ′. Since non

empty spines only provide arguments or observations, the only heads that are well typed

against a non empty spines are variables and functions. For any term other term, term

typing simply reduces into head typing.

The typing rules for (co)patterns (see Fig. 2.10) are defined using the following two

2.3. SYNTAX 39

∆; Γ ` p : T ↘ ∆′; Γ′ Pattern p of type T extends contexts ∆; Γ into ∆′; Γ′.

∆; Γ ` x : T ↘ ∆; Γ, x:T

∆; Γ ` p : Fc(µF) ~C ↘ ∆′; Γ′

∆; Γ ` c p : µF ~C ↘ ∆′; Γ′

∆; Γ ` p1 : T1 ↘ ∆′; Γ′ ∆′; Γ′ ` p2 : T2 ↘ ∆′′; Γ′′

∆; Γ ` (p1, p2) : T1 × T2 ↘ ∆′′; Γ′′

∆, u:U ; Γ ` p : P ↘ ∆′; Γ′

∆; Γ ` pack 〈u, p〉 : Σu:U.P ↘ ∆′; Γ′
∆ ` C1 = C2 ↘ ∆′

∆; Γ ` ℘ : C1 = C2 ↘ ∆′; Γ

∆; Γ;T ` q ↘ ∆′; Γ′;T ′
Copattern q eliminates type T into type T ′ and extend-
ing contexts ∆; Γ into ∆′; Γ′.

∆; Γ;T ` · ↘ ∆; Γ;T

∆; Γ ` p : S ↘ ∆′; Γ′ ∆′; Γ′;T ` q ↘ ∆′′; Γ′′;T ′

∆; Γ;S → T ` p q ↘ ∆′′; Γ′′;T ′

∆; Γ;Fd(νF) ~C ` q ↘ ∆′; Γ′;T

∆; Γ; νF ~C ` .d q ↘ ∆′; Γ′;T

∆, u:U ; Γ;T ` q ↘ ∆′; Γ′;T ′

∆; Γ; Πu:U.T ` u q ↘ ∆′; Γ′;T ′

Figure 2.10: Type Checking for Patterns

judgments:

∆; Γ ` p : T ↘ ∆′; Γ′ Typing for pattern p

∆; Γ;T ` q ↘ ∆′; Γ′;T ′ Typing for copattern q

In both typing judgments, the index-context ∆ and the context Γ contain variable decla-

rations that were introduced at the outside. We assume that all variables occurring in the

(co)pattern are fresh with respect to ∆ and Γ and occur linearly, although this is not explic-

itly enforced in our rules. When we check a pattern p against a type T in the index-context

∆ and context Γ, we synthesize an index-context ∆′ such that ∆′ is an extension of ∆ (i.e.

∆ ≺ ∆′) and Γ′ is an extension of Γ. We note that as we check the pattern p we may

update and constrain some of the variables already present in ∆. This happens in the rule

for pack 〈C, p〉 where we fall back to type checking patterns in our domain and in the rule

40 CHAPTER 2. INDEXED CODATA TYPES

for ℘ where we unify two index objects C1 and C2, and return a new index-context ∆′ such

that ∆′ ` C1 = C2. For simplicity, we thread through both the index-context ∆ and the

context Γ, although only ∆ may actually be refined.

The typing rules for patterns are straightforward except for equality. A pattern ℘ checks

against C1 = C2 provided that C1 and C2 unify in our domain and ∆′ contains the solution

which makes C1 and C2 equal. It might also be the case that C1 does not unify with C2, i.e.

there is no instantiation for the index-variables in C1 and C2 that makes C1 and C2 equal.

In this case, we expect the judgment ∆ ` C1 = C2 ↘ ∆′ to introduce in ∆′ a contradiction

which will make typing of the expression in the branch trivial. This is necessary for the

substitution lemma to hold.

Copattern spines allow us to make observations on a type T in the index-context ∆ and

context Γ. As we process the copattern spine from left to right, we synthesize a type T ′.

Intuitively, T ′ is the suffix of T . As copattern spines also contain patterns we also return a

new index-context ∆′ and context Γ′.

Example 3. Recall our previous program genBitStr which generated a stream where every

message consisted of two bits. This program can be elaborated into our core language

straightforwardly to a program of type Str 2.

fun genBitStr.

| .GetBit (suc zero) ℘ 7→ RandomBitGen ()

| .NextBits (suc zero) ℘ .GetBit z ℘ 7→ RandomBitGen ()

| .NextBits (suc zero) ℘ .NextBits (suc zero) ℘ .Done ℘

7→ NextMsg (pack 〈(suc zero), genBitStr〉)

2.4 Operational Semantics

In order to set the stage for the operational semantics, we first discuss value typing as values

will guide the flow of the semantics in order to make it deterministic. Value typing is similar

to term typing and is split into judgments for terms, heads, and spines (Figure 2.11). Unlike

term typing, value typing is done exclusively on closed terms. Terms with empty spines v ? ·

2.4. OPERATIONAL SEMANTICS 41

t value Term t is a value.

v value
v ? · value

v value E value v � E
v ? E value

h value Head h is a value.

() value

v1 value v2 value

(v1, v2) value
v value
c v value ℘ value

v value
pack 〈C, v〉 value

for each i bi 6= · 7→ ti

fun f.~b value

E value Spine E is a value

· value
E value
C E value

v value E value
v E value

E value
.d E value

Figure 2.11: Definition of values

are values at type T if their heads v are values at type T . If the spine E is not empty, we

require both the heazvd h and the spine to be themselves values, and for the head to not

match with the spine, denoted by h � E. We shall discuss this judgment after we introduce

matching.

Spines are values if terms in them are values. Unit () and reflexivity ℘ are values. Pairs

of values (v1, v2) are themselves values. Packing an index with a value pack 〈C, v〉 is also

value. Constructors applied to values c vare values. Functions are always values as long as

no branch has an empty copattern as its left-hand side. This last condition is important as

a function with an empty copattern would be able to reduce against any spine.

Matching appears in Figure 2.12. It is split between a matching of valued terms against

patterns, and of valued spines against copatterns. In the former case, we return substitutions

θ and σ which make both sides equal. We note that while matching is done on terms, unless

the pattern is a variable, the matching will effectively be done against the head, with the spine

being empty. Variables match against anything. Constructors match if they share the same

constructor and their bodies match. Pairs match pointwise. Dependent pairs match if their

42 CHAPTER 2. INDEXED CODATA TYPES

v = [θ;σ]p Value v matches against pattern p yielding substitutions θ;σ.

v = [·; v/x]x,

v · = [θ;σ]p

(c v) · = [θ;σ]c p ℘ = [·; ·]℘

v1 · = [θ1;σ1]p1 v2 · = [θ2;σ2]p2

(v1, v2) · = [θ1, θ2;σ1, σ2](p1, p2)

v · = [θ;σ]p

(pack 〈C, v〉) · = [θ, C/u;σ]pack 〈u, p〉

E = [θ;σ]q@E ′
Spine E matches against copattern q yielding substitutions θ;σ
and leftover spine E ′.

E = [·; ·] ·@E
v = [θ1;σ1]p E = [θ2;σ2]q@E ′

v E = [θ1, θ2;σ1, σ2](p q)@E ′

E = [θ;σ]q@E ′

.d E = [θ;σ](.d q)@E ′
E = [θ;σ]q@E ′

C E = [θ, C/u;σ](u q)@E ′

E ?= q Spine E partially matches against copattern q.

q 6= ·
· ?= q

v = [θ;σ]p for some θ;σ E ?= q

v E ?= p q

E ?= q

.d E ?= .d q

E ?= q

C E ?= u q

Figure 2.12: Matching

right-hand sides match; we simply substitute the index-term C in ther pattern variable u.

Matching of spines against copatterns returns substitutions θ and σ, and a leftover spine E ′.

The copattern may be shorter than the spine and thus only consume part of it. Observations

must simply be the same on both sides. Patterns are simply matched against values using

the previous judgment. We simply associate index-terms to index-variables in copatterns

and add them to the substitution.

It will happen that a spine E does not match with a copattern q, written E 6= q if there

are no substitutions θ;σ or spines E ′ such that E = [θ;σ]q@E ′. We note that we can decide

this negation of matching simply because we can decide matching, which is shown in the

2.4. OPERATIONAL SEMANTICS 43

following lemma:

Lemma 2.2. The judgments v = [θ;σ]p and E = [θ;σ]q@E ′ are decidable.

Proof. By induction on p and q and case analysis on v and E, respectively.

As we mentioned above, the judgment h � E indicates that the head h will not form a

reduction with the spine E and thus the term h ? E is a value. In our copattern language,

it has the single rule

for all i, E 6= qi for some i, E ?= qi

(fun f.
−−−→
q 7→ t) � E

We encode this rule in its own judgment even though there is a single rule in order to maintain

a uniform representation between this language and our core calculus from Chapter 3. The

operational semantics of the latter requires more than rule to indicate when matching of a

head and a spine fails to produce a reduction.

Let us focus for now on this one rule. The first assumption simply indicates the spine does

not match against any of the copatterns, since a matching branch would trigger a reduction.

The second assumption requires that at least one branch represents a partial match. Partial

matches are spines matching a prefix of q but not the whole of it. We simply require the spine

E to be of shorter length than the copattern, and we need to make sure the observations

match, and the values match their corresponding patterns. The reason we require partial

matches is to reject stuck terms from a non-covering function to be considered values. This

way, we distinguish between terms that are stuck from terms that are waiting for additional

inputs. The progress theorem we define below thus will reject stuck terms but accept terms

that are awaiting additional inputs.

Let us now discuss the definition and application of substitutions (Figure 2.13). Its

definition follows the definition of index-substitutions from Section 2.2. Substitutions σ

are lists of pairs of variables x and values v. When applied to x, it replaces it with its

corresponding value v. If the variable it is applied to is not in σ, then it just leaves it

alone. As such, the empty substitution · acts simply as a identity substitution. Applying

substitutions to terms is done pointwise. We assume that copatterns q in fun f.
−−−→
q 7→ t only

44 CHAPTER 2. INDEXED CODATA TYPES

[θ;σ]t = t′ Applying substitutions θ and σ to term t yields term t′

[θ;σ]x = σ(x)
[θ;σ]() = ()
[θ;σ](c t) = c [θ;σ]t
[θ;σ]℘ = ℘

[θ;σ](h ? E) = [θ;σ]h ? [θ;σ]E
[θ;σ](t1, t2) = ([θ;σ]t1, [θ;σ]t2)
[θ;σ](pack 〈C, t〉) = pack 〈[θ]C, [θ;σ]t〉
[θ;σ](fun f.

−−−→
q 7→ t) = fun f.

−−−−−−−→
q 7→ [θ;σ]t

σ(x) = v Variable x is bound to value v in substitution σ.

(σ, v/x)(x) = t
(σ, v/y)(x) = σ(x) if x 6= y
(·)(x) = x

∆; Γ ` σ : Γ′ Substitution σ maps context Γ′ to context Γ in index-context ∆.

∆; Γ ` σ : ·
∆; Γ ` σ : Γ′ ∆; Γ ` σ(x) : T

∆; Γ ` σ : Γ′, x:T

Figure 2.13: Typing and application of substitutions

introduce fresh variables. Alternatively, one would apply α-renaming to copatterns and their

right-hand sides to keep variable fresh. Thus, pushing the substitution in will keep those

bound variables intact.

The typing of substitutions also follows the one for index-substitutions. It is denoted by

the judgment ∆; Γ ` σ : Γ′. It is defined inductively on the context Γ′. Any well-formed

substitution σ can be used as weakening substitutions from the empty context · as there will

be no free variable to which apply σ. A substitution σ from the context Γ′, x:T to context

Γ in ∆ is well typed if ∆; Γ ` σ(x) : T and σ is a valid substitution from Γ′ to Γ.

Even though typing is done inductively on Γ′, we admit the following typing derivations

for · and σ, v/x:

Lemma 2.3. The empty substitution · has typing ∆; Γ,Γ′ ` · : Γ′.

2.4. OPERATIONAL SEMANTICS 45

t −→ t′ Term t steps to term t′

h −→ h′

h ? E −→ h′ ? E
h value E −→ E ′

h ? E −→ v ? E ′
E value E = [θ;σ]qi@E

′

(fun f.
−−−→
q 7→ t) ? E −→ [θ;σ, (fun f.

−−−→
q 7→ t)/f]t ? E ′

h −→ h′ Head h steps to head h′

t1 −→ t′1
(t1, t2) −→ (t′1, t2)

v1 value t2 −→ t′2
(v1, t2) −→ (v1, t

′
2)

t −→ t′

pack 〈C, t〉 −→ pack 〈C, t′〉
t −→ t′

c t −→ c t′

E −→ E ′ Spine E steps to spine E ′

t −→ t′

t E −→ t′ E
v value E −→ E ′

v E −→ v E ′
E −→ E ′

.d E −→ .d E ′
E −→ E ′

C E −→ C E ′

Figure 2.14: Operational Semantics

Proof. By induction on Γ′.

Lemma 2.4. If ∆; Γ ` σ : Γ′ and ∆; Γ ` v : T then ∆; Γ ` σ, v/x : Γ′, x:T .

Proof. By induction on ∆; Γ ` σ : Γ′. The inductive case makes use of the exchange property

for Γ′.

We recall that variables are heads, and substitutions replace them with terms. Thus, if

σ(x) = h ? E, the substitution [θ;σ](x ? E ′) will be (h ? E) ? [θ;σ]E ′. As we mentioned on

Page 36, this is notation for h ? E [θ;σ]E ′, which is a well defined term.

Now that everything is in place, we can discuss the operational semantics. It appears

in Figure 2.14. We step applications pointwise. Heads and spines simply follow congruence

rules on subterms. In order to obtain a deterministic operational semantics, we restrict the

flow of the semantics to only be applied when a subterm v is a value.

Since we are under closed terms, the only applications with non empty spines have

functions as heads. We do β-reduction by matching E against a qi, yielding substitutions θ

46 CHAPTER 2. INDEXED CODATA TYPES

and σ and leftover spine E ′. Since copatterns are linear, the substitutions are simply obtained

by associating to the variables their corresponding terms in E. The leftover spine E ′ is then

obtained by simply taking the tail of the spine E which exceeds in length the matching qi.

The resulting step yields the application [θ;σ, (fun f.
−−−→
q 7→ t)/f]ti ? E

′. Once again, we recall

the notation introduced at Page 36 to justified this last term being well-formed even though

[θ;σ, (fun f.
−−−→
q 7→ t)/f]ti is itself a term.

We note that by forcing some rules to be usable only when some subterms are values,

we ensure the operational semantics is deterministic. For example, applications will first

evaluate the left-hand side, then evaluate the right-hand side.

We also define the multi steps judgments t −→∗ t′ and h −→∗ h′ and E −→∗ E ′. They

are simply defined as the reflexive transitive closure of their one step equivalent t −→ t′. We

only provide the rules for one of them. The others follow the same pattern.

t −→∗ t
t −→ t1 t1 −→∗ t′

t −→∗ t′

Additionally, we will use a variant of this judgment in which the number of steps is explicit:

t −→n t′. Once again, it has equivalent formulations for heads and spines. The rules for

them are as expected:

t −→0 t

t −→ t1 t1 −→n t′

t −→n+1 t′

Type Preservation

Let us prove that the operational semantics preserve types. As a notational convenience, we

define combined typing judgments for substitutions and evaluation contexts as follow:

∆ ` θ : ∆′ ∆; Γ ` σ : [θ]Γ′

∆; Γ ` (θ;σ) : (∆′; Γ′)

` (θ;σ) : (∆; Γ) [θ]T `v E ↘ T ′

` (θ;σ;E) : (∆; Γ;T)↘ T ′

Lemma 2.5 ((Co)patterns are stable under substitutions). The following hold:

1. If ∆; Γ ` p : T ↘ ∆′; Γ′ and ∆1; Γ1 ` (θ;σ) : (∆; Γ) then there are ∆′1 and Γ′1 such that

∆1; Γ1 ` p : [θ]T ↘ ∆′1; Γ′1 and ∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

2.4. OPERATIONAL SEMANTICS 47

2. If ∆; Γ;T ` q ↘ ∆′; Γ′;T ′ and ∆1; Γ1 ` (θ;σ) : (∆; Γ) then there are ∆′1 and Γ′1 such

that ∆1; Γ1; [θ]T ` q ↘ ∆′1; Γ′1; [θ]T ′ and ∆′1; Γ′1 ` (θ;σ) : (∆′; Γ′).

Proof. Implicitly we assume that the variables bound in p and q are fresh for dom(θ;σ). The

proofs are done by induction on ∆; Γ ` p : T ↘ ∆′; Γ′ and ∆; Γ;T ` q ↘ ∆′; Γ′;T ′. The

case for ℘ in Statement 1 makes use of Lemma 2.1.

Lemma 2.6 (Substitution lemma). The following hold:

1. If ∆; Γ ` t : T and ∆′; Γ′ ` (θ;σ) : (∆; Γ) then ∆′; Γ′ ` [θ;σ]t : [θ]T .

2. If ∆; Γ ` h : T and ∆′; Γ′ ` (θ;σ) : (∆; Γ) then ∆′; Γ′ ` [θ;σ]h : [θ]T .

3. If ∆; Γ;T ` E ↘ T ′ and ∆′; Γ′ ` (θ;σ) : (∆; Γ) then ∆′; Γ′; [θ]T ` [θ;σ]E ↘ [θ]T ′.

Proof. By mutual induction on the derivations ∆; Γ ` t : T , and ∆; Γ ` h : T , and ∆; Γ;T `
E ↘ T ′, respectively. Cases involving indices use Req. 1. The function case uses Lemma 2.5.

Lemma 2.7. If ∆; Γ;T ` E ↘ T ′ and ∆; Γ;T ′ ` E ′ ↘ T ′′ then ∆; Γ;T ` E E ′ ↘ T ′′.

Proof. By induction on ∆; Γ;T ` E ↘ T ′.

We recall that if t = h?E ′, then we defined the operation t?E as h?E ′ E. The following

lemma shows this operation preserves typing.

Lemma 2.8. If ∆; Γ ` t : T and ∆; Γ;T ` E ↘ T ′ then ∆; Γ ` t ? E : T ′.

Proof. By induction on ∆; Γ ` t : T . At the base case is t = h ? E ′ and ∆; Γ ` h : S and

∆; Γ;S ` E ′ ↘ T . By Lemma 2.7, we have ∆; Γ;S ` E ′ E ↘ T ′ and so ∆; Γ ` h ? E ′ E :

T ′.

Lemma 2.9 (Adequacy of (co)pattern matching). the following hold:

1. Suppose ` v : T where v is a value. If ` p : T ↘ ∆; Γ and v = [θ;σ]p, then

` (θ;σ) : (∆; Γ).

48 CHAPTER 2. INDEXED CODATA TYPES

2. Suppose T ` E ↘ T ′′ where E is a value. If T ` q ↘ ∆; Γ;T ′ and E = [θ;σ]q@E ′

then ` (θ;σ;E ′) : (∆; Γ;T ′)↘ T ′′.

Proof. By induction on the judgments v = [θ;σ]p and E = [θ;σ]q@E ′. The case for ℘ uses

Req. 3.

Theorem 2.10 (Type preservation). The following hold:

1. If ` t : T and t −→ t′ then ` t′ : T .

2. If ` h : T and h −→ h′ then ` h′ : T .

3. If T ` E ↘ T ′ and E −→ E ′ then T ` E ′ ↘ T ′.

Proof. By induction on the stepping derivation. The interesting case is

E value E = [θ;σ]qi@E
′ σ′ = σ, (fun f.

−−−→
q 7→ t)/f

(fun f.
−−−→
q 7→ t) E −→ [θ;σ′]ti ? E

′

` fun f.−−−−→qi 7→ ti : T ′ and T ′ ` E ↘ T by inversion on typing.

f :T ′;T ′ ` qi ↘ ∆i; Γi;Ti and ∆i; Γi ` ti : Ti by inversion on typing.

T ′ ` qi ↘ ∆i; Γ′i;Ti where Γi = Γ′i, f :T ′ by Lemma 2.5.

` (θ;σ;E ′) : (∆i; Γ′i;Ti)↘ T by Lemma 2.9.

` (θ;σ, (fun f.
−−−→
q 7→ t)/f ;E ′) : (∆i; Γi;Ti)↘ T by definition of substitution.

` [θ;σ, (fun f.
−−−→
q 7→ t)/f]ti : [θ]Ti by Lemma 2.6.

` [θ;σ]ti ? E
′ : T by Lemma 2.8.

2.5 Coverage and Progress

In this section, we define a notion of coverage for copatterns. That is, applying any spine long

enough to a function with a covering copattern set will yield a match. The goal of coverage

is twofold. On the one hand, it is required to prove progress, that is, that evaluation does

not get stuck because of missing copattern cases. The proof of progress apppears at the end

2.5. COVERAGE AND PROGRESS 49

of this section. This also ensures that the encoding of a proof covers all possible cases. In

addition, coverage will be used in Chapter 3 to establish a normalisation criterion for our

language.

Together with the definition of coverage, we provide proofs of that it is sound and decid-

able. The former states that copatterns sets accepted by the coverage algorithm are indeed

covering all inputs of a given type. The latter ensures we can decide for any copattern set

whether it is covering based on the algorithm.

E / Q : T
Copattern set Q at type T matches against a spine E or
its extension

∃q ∈ Q E = [θ;σ]q@E ′

E / Q : T

∀d ∈ F E@.d / Q : F(νF) ~C

E / Q : νF ~C

∀v : S E@v / Q : T
E / Q : S → T

∀C : U E@C / Q : [C/u]T

E / Q : Πu:U.T

Figure 2.15: Covering of a copattern set

Let us talk first about what it means to be covering all inputs. Given Type T , let Q

be a set of tuples q ↘ ∆′; Γ′;T ′ such that for each tuple, the judgment T ` q ↘ ∆′; Γ′;T ′

holds. We shall write T ` Q when the type the copatterns in Q eliminate is relevant. Let

us choose a valued spine E and a copattern set Q such that T `v E ↘ T ′ and T ` Q hold.

Then the judgment E /Q : T ′ indicates that the copattern set Q covers E or its extensions.

That is, either there is a q ↘ ∆i; Γi;Ti ∈ Q where E = [θ;σ]q@E ′ for some θ;σ;E ′, or we

can add any well typed element to the tail of E until one of them does. This brings us to

the following definitions:

Definition 2.1 (Covering sets and functions). A copattern set T ` Q is said to be covering

if for all values T ` E ↘ T ′ we have E / Q : T ′. Moreover, a function ` fun f.
−−−→
q 7→ t : T is

covering if its copattern set T ` {~q} is covering.

50 CHAPTER 2. INDEXED CODATA TYPES

We note that we can discuss coverage of a function in an open context by simply choosing

some arbitrary instantiations θ and σ and looking at the copattern set [θ]T ` {~q}. This

follows from Lemma 2.5.

The goal of our coverage algorithm is to generate a covering set Q. However, it does

not account for writing overlapping and fall-through patterns. In this sense, our notion of

coverage is not complete: there are sets Q of copatterns which a programmer might write in

a program and one would consider covering, but for which one cannot derive T ` · =⇒∗ Q.

However, it would be possible to check that for all copattern spines q in the generated

covering set Q, there exists a copattern spines q′ in a given program s.t. q is an instance of

q′. For simplicity, we omit this generalization.

For copattern T ` q ↘ ∆; Γ;T ′ and copattern set T ` Q, we define judgments T `
q ↘ ∆; Γ;T ′ =⇒∗ Q and q ↘ ∆; Γ;T ′ =⇒ Q both defined in Figure 2.16. The main

judgment T ` q ↘ ∆; Γ;T ′ =⇒∗ Q means that the (finite) set Q of copatterns is the

coverage-preserving refinement of the copattern q. The copattern q is being refined by

applying successively any of the single refinement rules defined by the second judgment

q ↘ ∆; Γ;T ′ =⇒ Q.

There are two different types of refinements. The first one introduces a variable or

observation by analysis on the resulting type. If we have an arrow type S → T , we introduce

a variable of that type, yielding the copattern q@x. If we have a corecursive type νF ~C,

for each observation d ∈ F , we create a new copattern q@ .d.

The second type of refinement splits on a variable. We expose a variable occuring in

q, and its type in ∆ or Γ. We write q[x] for a copattern q with a single distinguished

position in which the variable x occurs. We consider in this judgment the contexts to be

unordered, so the notation Γ, x : T (or ∆, u : U) is simply to expose any variable x ∈ Γ

(X ∈ ∆, respectively), no matter its actual position in the context. The splitting is done by

examining the type of the exposed variable. If x : T1 × T2, we introduce two new variables

x1 : T1 and x2 : T2 and perform the instantiation q[(x1, x2)]. If the variable is of recursive type

µF ~C, we introduce a new copattern for each constructor c ∈ F with the variable replaced

by c x′ where x′ : Fc(µF) ~C. If we have an equality constraint C1 = C2, we replace it by

2.5. COVERAGE AND PROGRESS 51

q ↘ ∆; Γ;T =⇒ Q Copattern q refines into copatterns Q.

(Co)Pattern Introduction

(q ↘ ∆; Γ; Πu:U.T) =⇒ {q@u↘ ∆, u:U ; Γ;T}
(q ↘ ∆; Γ;S → T) =⇒ {q@x↘ ∆; Γ, x:S;T}

(q ↘ ∆; Γ; νF ~C) =⇒ {q@.di ↘ ∆; Γ;Fi(νF) ~C}i
Pattern Refinement

(q[x]↘ ∆; Γ, x : C1 = C2;T) =⇒ {q[℘]↘ ∆′; Γ;T} provided ∆ ` C1 = C2 ↘ ∆′

(q[x]↘ ∆; Γ, x : T1 × T2;T) =⇒ {q[(x1, x2)]↘ ∆; Γ, x1:T1, x2:T2;T}
(q[x]↘ ∆; Γ, x : Σu:U.T ′;T) =⇒ {q[pack 〈u, x′〉]↘ ∆, u:U ; Γ, x′:T ′;T}

(q[x]↘ ∆; Γ, x : µF ~C;T) =⇒ {q[ci xo]↘ ∆; Γ, x′:Fi(µF) ~C;T}i

T ` q ↘ ∆; Γ;T ′ =⇒∗ Q Copattern q ↘ ∆; Γ;T ′ can be refined in multiple steps into
copatterns Q.

T ` q ↘ ∆; Γ;T ′ =⇒∗ {q ↘ ∆; Γ;T ′}

q ↘ ∆; Γ;T ′ =⇒ Q′ for all (qi ↘ ∆i; Γi;Ti) ∈ Q′, T ` qi ↘ ∆i; Γi;Ti =⇒∗ Qi

T ` q ↘ ∆; Γ;T ′ =⇒∗
⋃
iQi

Figure 2.16: Coverage

℘. As such, we keep all the branches no matter whether they turned out to be unreachable.

This is needed to be able to decide coverage, which is in turn necessary for the normalisation

criteria in Chapter 3.

Theorem 2.11 (Decidability of coverage). The judgment T ` q ↘ ∆; Γ;T ′ =⇒∗ Q is

decidable.

Proof. Each copattern refinement either introduces a new element in the copattern spine

(a variable, a meta-variable or an observation), or introduces a language construct (℘, (de-

52 CHAPTER 2. INDEXED CODATA TYPES

pendent) pairs, constructors). Thus, a derivation for the copattern set will be bounded by

the sum of the lengths of all copatterns in the set plus all language constructs in all the

copatterns. Since this number is finite, T ` q ↘ ∆; Γ;T ′ =⇒∗ Q is decidable.

Let us now prove soundness of the copattern refinement rules. Soundness ensures that

a covering set will indeed match any input of adequate length. Moreover, if an input is too

short to trigger a match, then any long enough extension will trigger one. We encode that

idea in the judgmentFirst, we prove that refinements preserve coverage. This, combined

with the fact that the empty copattern covers all input, will ensure that any copattern set

resulting from copattern refinements will be covering.

Lemma 2.12. If E = [θ;σ]q and E ′ = [θ′;σ′]q′ then E E ′ = [θ, θ′;σ, σ′](q q′).

Proof. By induction on E = [θ;σ]q.

Lemma 2.13. The following hold:

1. If E = [θ;σ]q@(v E ′), then E = [θ;σ, v/x](q x)@E ′.

2. If E = [θ;σ]q@(C E ′), then E = [θ, C/u;σ](q u)@E ′.

3. If E = [θ;σ]q@(.d E ′), then E = [θ;σ](q .d)@E ′.

4. If E = [θ;σ](q[x])@E ′, then E = [θ;σ′](q[℘])@E ′ where σ = σ′, ℘/x.

5. If E = [θ;σ](q[x])@E ′, then E = [θ;σ′](q[(x1, x2)])@E ′ where σ′ = σ′′, v1/x1, v2/x2 and

σ = σ′′, (v1, v2)/x for some σ′′.

6. If E = [θ′;σ](q[x])@E ′, then E = [θ;σ′](q[pack 〈u, x′〉])@E ′ where σ′ = σ′′, v/x′ and

σ = σ′′, (pack 〈C, v〉)/x for some σ′′ and θ = θ′, C/u.

7. If E = [θ;σ](q[x])@E ′, then E = [θ;σ′](q[c x′])@E ′ where σ′ = σ′′, v/x′ and σ =

σ′′, (c v)/x for some σ′′.

Proof. By induction on the matching derivations.

Lemma 2.14. If q ↘ ∆; Γ;T ′ =⇒ Q and T ` E ↘ T ′′ where E is a value and E =

[θ;σ]q@E ′, for some θ;σ;E ′, then E / Q : T ′′.

2.5. COVERAGE AND PROGRESS 53

Proof. By case analysis on the judgment q ↘ ∆; Γ;T ′ =⇒ Q.

Case: q ↘ ∆; Γ; Πu:U.T1 =⇒ {q u↘ ∆, u:U ; Γ;T1}

By Lemma 2.9, we have Πu:[θ]U.[θ]T1 ` E ′ ↘ T ′′. By inversion, either E ′ = · or

E ′ = C E ′′ for some ` C : [θ]U . In the former case, let us choose some C ′:[θ]U . By

definition of matching, we have C ′ = [C ′/u]u. By Lemma 2.12, E C = [θ, C ′/u;σ](q u).

Hence, E@C ′ / {q@u ↘ ∆, u:U ; Γ;T1} : [θ, C ′/u]T1. Since the choice of C ′ was arbitrary,

we can conclude E / {q u ↘ ∆, u:U ; Γ;T1} : Πu:[θ]U.[θ]T1. In the latter case, we have

E = [θ;σ]q@(C E ′). By Lemma 2.13, we obtain E = [θ, C/u;σ](q u)@E ′ and thus E/{q u↘
∆, u:U ; Γ;T1} : [θ, C/u]T1.

The other cases for (co)pattern introduction are similar. The cases for pattern refinement

follow directly from Lemma 2.13.

Theorem 2.15 (Soundness of coverage). If T ` q ↘ ∆; Γ;T ′ =⇒∗ Q and T ` E ↘ T ′′

where E is a value and E = [θ;σ]q@E ′, for some θ;σ;E ′, then E / Q : T ′′.

Proof. By induction on the derivation T ` q =⇒∗ Q. The inductive case is proved using

Lemma 2.14.

Corollary 2.16. If T ` · =⇒∗ {~q}, then ` fun f.−−−→q 7→ t : T is covering.

Progress

Now we can move on to progress. We want to prove that well typed terms do not get stuck.

In order for the theorem to hold, we require every function to be covering.

Lemma 2.17. The following hold:

1. If E v = [θ;σ]q, then E ?= q.

2. If E C = [θ;σ]q, then E ?= q.

3. If E .d = [θ;σ]q, then E ?= q.

54 CHAPTER 2. INDEXED CODATA TYPES

Proof. All statements are proved the same way. We only prove the first one. By induction

on E v = [θ;σ]q. The base case is v · = [θ;σ](p ·). Then E = · and we can build · ?= p ·.
The inductive cases simply appeal to the induction hypothesis.

Lemma 2.18. If E /Q : T then there is a q ∈ Q such that either E = [θ;σ]q@E ′ or E ?= q.

Proof. By induction on E / Q : T . In the base, case we trivially have that E = [θ;σ]q@E ′.

The inductive cases are all similar, so we only show the case for E/Q : S → T . By induction

hypothesis we have that for some q, either E v = [θ;σ]q@E ′ or E v ?= q. In the former case,

if E ′ = · then by Lemma 2.17, we have E ?= q. Otherwise, we simply have E ′ = E ′′ v and so

E = [θ;σ]q@E ′′.

Theorem 2.19 (Progress). Suppose for every function fun f.
−−−→
q 7→ t, we have · ↘ ·; ·;T ′ =⇒∗

{qi}. Then the following hold:

1. If ` t : T then either there is a t′ such that t −→ t′ or t is a value.

2. If ` h : T then either there is a h′ such that h −→ h′ or h is a value.

3. If T ′ ` E ↘ T then either there is a E ′ such that E −→ E ′ or E is a value.

Proof. By mutual induction on the derivations of ` t : T , and ` h : T , and T ′ ` E ↘ T .

Most cases simply make appeal to the induction hypotheses. We present the interesting case:

Case:
` fun f.

−−−−−→
q 7→ h E : T ′ T ′ ` E ↘ T

` fun f.−−−→q 7→ t ? E : T

By induction hypothesis on T ′ ` E ↘ T we get either E is a value or some E ′ such that

E −→ E ′. In the latter case, we are done.

In the former case, by Lemma 2.2, we can decide if E = [θ;σ]qi@E
′ for some qi. If one of

them matches, then fun f.
−−−−−→
q 7→ h E ? E −→ [θ;σ]ti ? E

′. If none of them matches, then by

Lemma 2.18, we must have E ?= q. It follows that fun f.
−−−→
q 7→ t � E and so fun f.

−−−→
q 7→ t ? E

is a value.

2.6. RELATED WORK 55

2.6 Related Work

Our work models finite data using dependent sums and infinite data using dependent records

where fields share a given index. This is in contrast to dependent records that allow a

particular field to depend on previous ones [Betarte, 1998].

Most closely related to our development is the work on DML [Xi and Pfenning, 1999]

where the authors also accumulate equality constraints during type checking to reason about

indices. However, in DML all indices are erased before running the program while we reason

about indices and their instantiation during run-time. As indices are also computationally

relevant in fully dependently typed languages, we believe our work lays the groundwork

for understanding the interaction of indices and (co)pattern matching in these languages.

Finally, our work may be seen as extending DML to support both lazy and eager evaluation

using (co)pattern matching.

Dependent type theories provide in principle support to track data dependencies on

infinite data, although this has not received much attention in practice. Agda [Norell, 2007],

a dependently typed proof and programming environment based on Martin-Löf’s type theory,

has support for copatterns since version 2.3.4 [Agda team, 2014]. We can directly define

equality guards and using large eliminations we can match on index arguments. Cockx and

Abel [2018, 2020] recently refined Agda’s termination checking in the presence of copatterns

and developed the underlying theory. They assert coverage via splitting trees which bear

close resemblance to our coverage derivations.

Agda uses inaccessible patterns (also called dot-patterns) [Brady et al., 2004, Goguen

et al., 2006b] to maintain linear pattern matching in a dependently typed setting. Inaccessible

patterns mark patterns that are fully determined by their type. They do not bind additional

variables not already occuring in the rest of the pattern, which is then linear. Our approach

offers an alternative view which is mostly notational where relationships between arguments

in a pattern are kept in the index context while the pattern is fully linear. The equality

checks are done during type checking and the constraints are irrelevant at run-time since a

matching branch will always satisfy all of its constraints.

Our work draws on the distinction between finite data defined by constructors and infinite

56 CHAPTER 2. INDEXED CODATA TYPES

data described by observations which was pioneered by Hagino [1987]. Hagino models finite

objects via initial algebras and infinite objects via final coalgebras in category theory. This

work, as others in this tradition such as Cockett and Fukushima [1992] and Tuckey [1997],

concentrates on the simply typed setting. Extensions to dependent types with weakly final

coalgebra structures have been explored [Hancock and Setzer, 2005]. However in this line of

work one programs directly with coiterators and corecursors instead of using general recursion

and deep copattern matching. Further, equality is not treated first-class in their system –

however, we believe understanding the role of equality constraints is central to arriving at a

practical sound foundation for dependently typed programming.

Our development of indexed patterns and copatterns builds on the growing body of work

[Zeilberger, 2007, Licata et al., 2008] which relates focusing and linear logic to programming

language theory via the Curry-Howard isomorphism. Zeilberger [2008] and Krishnaswami

[2009] have argued that focusing calculi for propositional logic provide a proof-theoretic

foundation for pattern matching in the simply-typed setting. Our work extends and continues

this line of work to first-order logic (= indexed types) with (co)recursive types and equality.

Our work also takes inspiration from the proof theory described by Baelde [2012], Baelde

et al. [2010] and the realization of this work in the Abella system [Baelde et al., 2014b].

While Baelde’s proof theory supports coinductive definitions and equality, coinduction is

defined by a non-wellfounded unfolding of a coinductive definition. Proofs in this work would

correspond to programs written by (co)iteration. This is in contrast to our work, which is

centered around the duality of (co)data types and supports simultaneous deep (co)pattern

matching.

Finally, our approach of defining infinite data using records bears close similarity to the

treatment and definition of objects and methods in foundations for object-oriented languages.

To specify invariants about objects and methods and check them statically, DeLine and

Fähndrich [2004] propose typestates. While this work focuses on the integration of typestates

with object-oriented features such as effects, subclasses, etc., we believe many of the same

examples can be modelled in our framework.

2.7. CONCLUSION 57

2.7 Conclusion

In this chapter, we have presented an extension of a general purpose programming language

with support for indexed (co)datatypes to allow the static specification and verification of

invariants of infinite data such as streams or bisimulation properties. In this development,

the index domain was kept abstract and clearly state structural requirements our index

domain must satisfy. The language extends an ML like language with indexed (co)datatypes

and deep (co)pattern matching. We use equality constraints to reason about dependencies

between index arguments providing a clean foundation for dependent (co)pattern matching.

We describe the operational semantics using a continuation-based abstract machine and

prove that our language’s operational semantics preserves types. We also provide a non

deterministic algorithm to generate covering sets of copatterns, ensuring that terms do not

get stuck during evaluation.

We note that we defined typing rules as a type assignment system without regard for

decidability of type checking as a property of our language. While we do not treat it in the

context of this thesis, we believe it would be straightforward to convert our typing rules to a

bidirectional type checker and prove it to be decidable. This hinges on the requirement for

our index domains to be decidable.

The rest of this thesis builds on the language we presented above. Chapter 3 describes a

normalisation criterion to ensure that programs are terminating and thus can be considered

as proofs. Chapter 4 expands on the idea of using contextual LF as an index domain by

going over a case study of Howe’s method.

Chapter 3

Normalisation

The propositions-as-types principle is the underlying concept allowing us to treat programs

as proofs. To ensure validity of proofs, the system used to define proofs must be consistent.

In addition, a proof must cover all cases and all calls to (co)induction hypotheses must

be justified. A programming language used to encode proofs must equivalently be able

to guarantee those properties. We touched on coverage of our copattern language in the

previous chapter. However, we haven’t discussed whether our language yielded a consistent

proof system or how to distinguish valid uses of (co)inductive hypotheses.

In a program, (co)inductive hypotheses correspond to (co)recursive calls. Valid calls

to induction hypotheses must be recursive calls made on smaller outputs while valid calls

to coinduction hypotheses are corecursive calls made in guarded positions. This is not

guaranteed by our type system: our copattern language implements a general recursion

scheme which does not disallow uses of (co)recursive calls based on size of the input, or on

any form of guardedness. In particular, we can easliy define the (well-typed) term:

fun loop : A → A

| a 7→ loop a

for any type A. This function, when applied to any term a : A, produces an infinite loop. A

similar problem arises with the function:

fun eager : Stream

58

59

| .head 7→ 0

| .tail 7→ eager.tail

Taking eager.tail just leads to the infinite unfolding eager.tail −→ eager.tail because the

corecursive call is not guarded. Thus, we need to make an external check to ensure functions

are safe. This check will look at every recursive call and verify that they are made on smaller

arguments than the input, or that the corecursive call is guarded by an observation on the

left-hand side and is not unfolded on the right-hand side. Safe functions will be deemed

structurally (co)recursive. We shall go over the specifics of the definition in Section 3.3.

This structural (co)recursiveness check, paired together with coverage and well-typedness

of programs will serve as conditions to show the language is normalizing. Normalisation will

in turn ensure consistency, allowing us to treat our language as a proof assistant. This proof

of normalisation is the core of this chapter.

Rather than proving normalisation on our subset language directly, we will show it holds

for a core calculus. This core calculus defines (co)recursion using Mendler-style operators

[Mendler, 1991] whose typing ensures (co)recursive calls are safe. Thus, in this language

every well typed program is terminating. We prove normalisation of this calculus using a

logical relation argument following the technique of Tait [1967] and Girard [1972].

Once we have proven that this calculus is normalizing, we need to relate it to our copattern

language. To do so, we define a translation from the latter to the former and prove this

translation to be normalisation preserving, thus ensuring the translatable subset of our

copattern language is itself normalizing. The key part is that for the translation to be

normalisation preserving it can only translate a subset of our typable terms as we need to

weed out non-terminating programs. To that end, we show that well-typedness, coverage, and

structural (co)recursiveness are sufficient conditions for the translation to succeed. Hence,

programs satisfying those conditions are normalizing.

This chapter presents the pieces of the proof in the following order. We first introduce

the calculus in Section 3.1 and prove its normalisation in Section 3.2. We discuss the criteria

for the translation in Section 3.3 and the translation itself in Section 3.4. We show the

criteria to be sufficient in Section 3.5, and that the translation preserves normalisation in

60 CHAPTER 3. NORMALISATION

Section 3.6.

3.1 Core Calculus

We now describe the core calculus, its syntax and semantics. We prove a substitution

lemma, subject reduction, and progress. We reuse the type system from Section 2.3. We will

largerly ignore labels attached to variants and records, using instead positional information.

For convenience, we copy here the grammar:

Kinds K ::= type | Πu:U.K

Types S, T ::= X | 1 | T1 × T2 | S → T | C1 = C2 | Πu:U.T | Σu:U.T | T ~C

| Λ~u.T | µX.T | νX.T | D | R
Variants D ::= 〈c1 T1 | · · · | cn Tn〉
Records R ::= {d1 : T1, . . . , dn : Tn}

Terms, on the other hand, differ from the ones in our copattern language. Namely, we

add elimination forms for terms represented by patterns and we have introduction forms for

variables and observations matching.

Terms t, s ::= h ? E

Heads h ::= x | () | λx.t | Λu.t | (t1; . . . ; tn) | (t1, t2) | split s as (x1, x2) in t

| ini t | (case t of
−−−−−−−→
ini xi 7→ ti) | pack 〈C, t〉 | unpack t as 〈u, x〉 in s

| ℘ | eq s with t | eq abort s | inµ t | outµ | rec f, ι, ρ, ~u, x. t
| inν | corec f, ι, ρ, ~u, x. t

Spines E ::= · | .outiE | .outν E | t E | C E

We have function abstractions λx.t and Λu.t to introduce term and index variables, re-

spectively. split s as (x1, x2) in t, and unpack t as 〈u, x〉 in s eliminate (dependent) pairs

by binding each component to a variable. Equalities are eliminated by eq s with t and

eq abort s . The former takes an equality proof s and a body t which is valid under this

equality. The latter aborts when the equality s is false.

Instead of using constructors, terms of recursive types are introduced by the “fold” syntax

inµ while the i-th branch of a variant is chosen using injections ini . Elimination of recursive

3.1. CORE CALCULUS 61

∆; Ξ; Γ ` t : T Term t is of type T

∆; Ξ; Γ ` t : T ′ ∆; Ξ; Γ;T ′ ` E ↘ T

∆; Ξ; Γ ` t ? E : T

∆; Ξ; Γ ` t : T ′ ∆; Ξ; Γ ` T = T ′

∆; Ξ; Γ ` t : T

∆; Ξ; Γ;T ` E ↘ T ′ Spine eliminates function of type T into type T ′

∆; Ξ; Γ ` t : S ∆; Ξ; Γ;T ` E ↘ T ′

∆; Ξ; Γ;S → T ` t E ↘ T ′
∆ ` C : U ∆; Ξ; Γ; [C/u]T ` E ↘ T ′

∆; Ξ; Γ; Πu:U.T ` C E ↘ T ′

∆; Ξ; Γ;T ` · ↘ T

∆; Ξ; Γ;F(νF) ~C ` E ↘ T

∆; Ξ; Γ; (νF) ~C ` .outν E ↘ T

∆; Ξ; Γ;Ri ` E ↘ T

∆; Ξ; Γ;R ` .outiE ↘ T

Figure 3.1: Typing rules for the target language

types is done in two possible ways. The first one is a simple non recursive projection outµ t

while the second employs a Mendler-style recursor rec f, ι, ρ, ~u, x. t. Similarly, we replace

observations with a single “unfold” .outν . We handle the different observations by simply

projecting the corecursive term afterwards from its product structure using .outi . Introduc-

tion of corecursive types is then done through the injection inν t or via the Mendler-style

corecursor corec f, ι, ρ, ~u, x. t.

Typing rules appear in Figures 3.1 and 3.2. Typing judgments for the target language

use three contexts: the index-context ∆, the type variable context Ξ, and the term context

Γ. For spines, .outν simply unfolds the corecursive type νF ~C into F(νF) ~C while outi

unfolds the record type R into Ri, effectively splitting observations into two parts. Similarly,

inµ folds F(µF) ~C into µF ~C, while ini injects Di into D, again effectively splitting the

work of constructors into two parts.

We introduce function types and Π-types using λ-abstractions λx.t and Λu.t, respectively.

Records are simply lazy products (t1; . . . ; tn). We eliminate variants using case analysis, and

we split (dependent) pairs into their components. Elimination of equalities is done via

eq s with t if the context ∆ makes C1 and C2 equal without the use of a contradiction, and

62 CHAPTER 3. NORMALISATION

∆; Ξ; Γ ` h : T Head h is of type T

∆; Ξ; Γ ` () : 1
x:T ∈ Γ

∆; Ξ; Γ ` x : T

∆; Ξ; Γ, x:S ` t : T

∆; Ξ; Γ ` λx.t : S → T

∆, u : U ; Ξ; Γ ` t : T

∆; Ξ; Γ ` Λu.t : Πu:U.T

∆; Ξ; Γ ` t1 : T1 ∆; Ξ; Γ ` t2 : T2

∆; Ξ; Γ ` (t1, t2) : T1 × T2

∆; Ξ; Γ ` p : T1 × T2 ∆; Ξ; Γ, x1:T1, x2:T2 ` t : T

∆; Ξ; Γ ` split p as (x1, x2) in t : T

∆; Ξ; Γ ` t : Di

∆; Ξ; Γ ` ini t : D

∆; Ξ; Γ ` t : D ∆; Ξ; Γ, xi:Di ` ti : S

∆; Ξ; Γ ` (case t of
−−−−−−−→
ini xi 7→ ti) : S

∆; Ξ; Γ ` ti : Ri

∆; Ξ; Γ ` (t1; . . . ; tn) : R

∆ ` C : U ∆; Ξ; Γ ` t : T [C/u]

∆; Ξ; Γ ` pack 〈C, t〉 : Σu:U. T

∆; Ξ; Γ ` t : Σu:U. T ∆, u:U ; Ξ; Γ, x:T ` s : S

∆; Ξ; Γ ` unpack t as 〈u, x〉 in s : S

∆ ` C1 = C2

∆; Ξ; Γ ` ℘ : C1 = C2

∆; Ξ; Γ ` s : C1 = C2 ∆ ` C1 = C2 ↘ ∆′ # ∈ ∆′

∆; Ξ; Γ ` eq abort s : T

∆; Ξ; Γ ` s : C1 = C2 ∆ ` C1 = C2 ↘ ∆′ ∆′; Ξ; Γ ` t : T

∆; Ξ; Γ ` eq s with t : T

∆; Ξ; Γ ` t : F(µF) ~C

∆; Ξ; Γ ` inµ t : (µF) ~C

∆; Ξ; Γ ` t : (µF) ~C

∆; Ξ; Γ ` outµ t : F(µF) ~C

∆; Ξ; Γ ` t : F(νF) ~C

∆; Ξ; Γ ` inν t : (νF) ~C

Γ′ =
Γ, f :Π

−−→
u:U.X ~C → T, x:F X ~C,

ι:Π
−−→
u:U.X ~u→ F X ~u, ρ:Π~u.X ~u→ (µF) ~u

∆,
−−→
u:U ; Ξ, X:K; Γ′ ` t : T

∆; Ξ; Γ ` rec f, ι, ρ, ~u, x. t : Π
−−→
u:U.(µF) ~C → T

Γ′ =
Γ, f : Π

−−→
u:U.T → X ~C, x : T,

ι : Π
−−→
u:U.F X ~u→ X ~u, ρ : Π~u.(νF) ~u→ X ~u

∆,
−−→
u:U ; Ξ, X:K; Γ′ ` t : F X ~C

∆; Ξ; Γ ` corec f, ι, ρ, ~u, x. t : Π
−−→
u:U.T → (νF) ~C

Figure 3.2: Typing rules for the target language (continued)

3.1. CORE CALCULUS 63

eq abort s otherwise.

We can eliminate constructors using Mendler-style recursion rec f, ι, ρ, ~u, x. t or unfolds

outµ t. Similarly, we can build constant coinductive terms via injections inν t or corecursive

terms via Mendler-style corecursion corec f, ι, ρ, ~u, x. t. Recursors and corecursors take in

index arguments that are bound to ~u, and an input which is bound to x. In the recursive

case, x is the argument over which the recursion is done, and thus has type FX ~C. Here,

the X is the recursive type variable and is being abstracted over. The symbol f stands for

the recursive call and has type Π
−−→
u:U.X ~C → T . This ensures only valid recursive calls can

be made as the only terms with the type X are subterms of the input x. The recursor binds

extra terms: ι and ρ. Each of them allows us to manipulate the input as it maps the abstract

type X into a specific type. ι : Π
−−→
u:U.X ~u→ F X ~u allows us to unfold further the input and

thus perform deep matching. The term ρ : Π
−−→
u:U.X ~u → µF ~u acts as an identity function,

allowing us to output directly the input without having to reconstruct it from the bottom

up. At runtime, it gets replaced by the identity function Λ~u.λx.x.

The terms ι and ρ extend the basic Mendler-style scheme [Mendler, 1991] for convenience,

which will in term simplify the translation by allowing a more direct correspondence. They

are not new ideas either; Mendler [1987] himself described first a version of (co)recursors

featuring an operator similar to our ρ constant, while we defined ι based on the work of Ahn

and Sheard [2011].

Let us have a closer look at what they allow us to do. Using ρ, we can return constants

built directly from the input without having to fully reconstruct them. For example, we can

build the predecessor function on natural numbers Nat = µX.1 +X directly.

pred = rec f, ι, ρ, x.case x of

| inl y1 ⇒ inl ()

| inr y2 ⇒ ρ ? y2

The variable y2 has type X and thus ρ ? y2 has type Nat.

The term ι on the other hand encodes course-of-value (co)recursion which has also been

more commonly described via histomorphisms and futomorphisms [Uustalu and Vene, 1999].

Course-of-value recursion allows us to work with information from the previous cases when

64 CHAPTER 3. NORMALISATION

building the current one and is emulated by allowing a form of deep matching. For example,

we can define a division by two as follows:

div2 = rec f, ι, ρ, x.case x of

| inl y1 ⇒ inl ()

| inr y2 ⇒ case ι ? y2 of

| inl z1 ⇒ inl ()

| inr z2 ⇒ inr (f ? z2)

Terms of coinductive types are built in a very dual way. We can build them corecursively

using the Mendler-style corecursor corec f, ι, ρ, ~u, x. t, or we can define constant terms using

inν t. In the former case, the corecursor binds x, the input of arbitrary type that is used

as a seed to build the corecursive term. The term t is a term of type F X ~C which requires

us to provide a term of abstract type in corecursive positions. f : Π~u.T → X ~C gives us

access to the corecursive call, taking a new seed and producing such term of type X ~C. The

operator ι : Π~u.F X ~u→ X ~u allows us to perform deep observation matching. The operator

ρ : Π~u.νF ~u → X ~u acts as an identity function, allowing us to put a constant in places

expecting a term built via corecursion.

Let us build an example on streams. The type νX:K.Nat×X denotes streams of natural

numbers. We will build a stream cycleNats starting at input value x and going down by

one until it reaches zero. After that, it will go back to five, before continuing down and

repeating. The stream will thus look like cycleNats 2 = 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, . . . The

copattern definition looks like the following:

fun cycleNats.

| x .head ⇒ x

| zero .tail ⇒ cycleNats ? 5

| (suc x) .tail ⇒ cycleNats ? x

The corresponding corecursive definition would thus be:

cycleNats = corec f, ι, ρ, x.

(x; case outµ x of

3.1. CORE CALCULUS 65

| in1 y1 7→ f ? 5

| in2 y2 7→ f ? y2)

In the head case, we simply return x. In the tail case, we perform matching on outµ x.

The unfolding outµ allows us to expose the sum type. If the input is the left injection in1 y1

(that is, the number 0) we make a corecursive call using 5; this is done with the corecursive

function f . In the other case, we need to build our stream with seed y2, which we pass to f .

In both cases, we needed to provide a term of type X, which is obtained via f .

Suppose instead of looping back, we simply want to output zero forever once we reach it,

that is, the sequence 2, 1, 0, 0, 0, The function would become:

countdown = corec f, ι, ρ, x.

(x; case outµ x of

| in1 y1 7→ ρ ? zeroes

| in2 y2 7→ f ? y2)

Here, zeroes is the stream of zeroes that is being inserted as a constant in the case x is

already zero. Now, we can use ι when building a stream enumerating the integers as the

sequence 0, 1,−1, 2,−2, 3,−3, . . . The code building that stream would be as follows:

integersFrom = corec f, ι, ρ, x. (x, ι ? (-x, f ? (suc x)))

integers = inν (0, integersFrom ? 1)

The function integersFrom builds a stream two numbers at a time. First it puts the positive

number x, then its negative equivalent -x and calls itself on suc x. We can build the stream

two steps at a time by wrapping the tail of the main stream using ι. The final function

integers builds the constant stream starting at zero, then invokes integersFrom at 1. This

avoids having 0 and −0 in the stream.

Operational Semantics

Similarly to our copattern language, our core calculus has a small-step operational semantics.

Once again we start with values (Figure 3.3). The main differences between the copattern

language and the core language is the addition of our extra terms. Records, λ-abstractions,

66 CHAPTER 3. NORMALISATION

t value Term t is a value.

v value
v ? · value

v value E value v � E
v ? E value

h value Head h is a value.

() value ℘ value

v1 value v2 value

(v1, v2) value
v value

pack 〈C, v〉 value

Λu.t value
v value

inµ v value
v value

ini v value inν t value (t1; . . . ; tn) value

λx.t value rec f, ι, ρ, ~u, x. t value corec f, ι, ρ, ~u, x. t value

h � E Head h does not match against spine E.

rec f, ι, ρ, ~u, x. t � ~C corec f, ι, ρ, ~u, x. t � ~C corec f, ι, ρ, ~u, x. t � ~C v

E value Spine E is a value.

· value
E value

.outν E value
E value

.outiE value
v value E value

v E value
E value
C E value

Figure 3.3: Definition of values

and (co)recursors are also values. As they form closures, they don’t require their bodies to

be values themselves.

The judgment h � E that ensures the head does not match the spine is reused here.

Instead of referring to matching, we use it to denote values of (co)recursors when they are

not applied to enough arguments. A recursor needs the adequate amount of index-terms,

together with a value that will be passed to x to trigger a reduction, while a corecursor needs

an observation at the end of a spine formed of index-terms, a seed, and an unfolding.

The stepping rules appear in Figure 3.4. There are only congruence rules for spines, while

terms and heads have reduction rules. We recall the notation from Page 36. We denote t ?E

3.1. CORE CALCULUS 67

t −→ t′ Term t steps to term t′

h −→ h′

h ? E −→ h′ ? E
t value E value

(inν t) ? .outν E −→ t ? E
E value

(t1; . . . ; tn) ? .outiE −→ ti ? E

h value E −→ E ′

h ? E −→ h ? E ′
v value E value

(λx.t) ? v E −→ [v/x]t ? E
E value

(Λu.t) ? C E −→ [C/u]t ? E

σX = (Λ~u′.λx.outµ x)/ιX , (Λ~u
′.λx.x)/ρX

v value E value t′ = [
−−→
C/u; (rec f, ιX , ρX , ~u, x. t)/f, σX , v/x]t

(rec f, ιX , ρX , ~u, x. t) ? ~C (inµ v) E −→ t′ ? E

σX = (Λ~u′.λx.inν x)/ιX , (Λ~u
′.λx.x)/ρX

v value E value t′ = [
−−→
C/u; (corec f, ιX , ρX , ~u, x. t)/f, σX , v/x]t

(corec f, ιX , ρX , ~u, x. t) ? ~C v .outν E −→ t′ ? E

h −→ h′ Head h steps to head h′

t1 −→ t′1
(t1, t2) −→ (t′1, t2)

t1 −→ t′1
split t1 as (x1, x2) in t2 −→ split t′1 as (x1, x2) in t2

t2 −→ t′2
(t1, t2) −→ (t1, t

′
2)

v1 value v2 value

split (v1, v2) as (x1, x2) in t −→ [v1/x1, v2/x2]t

t −→ t′

pack 〈C, t〉 −→ pack 〈C, t′〉
t1 −→ t′1

unpack t1 as 〈u, x〉 in t2 −→ unpack t′1 as 〈u, x〉 in t2
t −→ t′

ini t −→ ini t
′

v value
unpack (pack 〈C, v〉) as 〈u, x〉 in t −→ [C/u; v/x]t

t −→ t′

case t of
−−−−−−−→
ini xi 7→ ti −→ case t′ of

−−−−−−−→
ini xi 7→ ti

v value

case (inj v) of
−−−−−−−→
ini xi 7→ ti −→ [v/xj]tj

s −→ s′

eq s with t −→ eq s′ with t eq℘ with t −→ t

t −→ t′

inµ t −→ inµ t
′

t −→ t′

outµ t −→ outµ t
′

v value
outµ (inµ v) −→ v

E −→ E ′ Spine E steps to spine E

t −→ t′

t E −→ t′ E
E −→ E ′

t E −→ t E ′
E −→ E ′

.outiE −→ .outiE
′

E −→ E ′

.outν E −→ .outν E
′

E −→ E ′

C E −→ C E ′

Figure 3.4: Stepping rules

68 CHAPTER 3. NORMALISATION

to mean h0 ?E0 E if t is of the form h0 ?E0. This allows us to directly write the substitutions

[v/x]t ?E without having to extract [v/x]t into a head and a tail. Similarly as we did for our

copattern language, we restrict the usage of some rules when specific subterms are values so

that the semantics is deterministic.

We unfold constant corecursive terms inν t when applied to unfolding .outν . We project

the lazy pair (t1; . . . ; tn) to the i-th term ti when applied to the projection .outi . We

perform the usual β-reduction when applying lambda-abstractions. Recursor reduce when

applied to indices ~C, and a value of the form inµ v. This leads to the substitutions
−−→
C/u

and (rec f, ιX , ρX , ~u, x. t)/f, σX , v/x. The variable f takes in the recursor itself. x is taking

the input stripped of its fold. We also have the substitution σX which gives the standard

instantiations of Λ~u.λx.outµ x for ιX and Λ~u′.λx.x for ρX . Similarly, corecursors reduce

when applied to indices ~C, a value v and an unfolding outν . The substitution is similar

to the one for recursors, although the term used for ιX is Λ~u.λx.inν x. We shall reuse the

notation σX to denote those standard instantiations of ιX and ρX throughout this chapter.

Moreover, for a type variable context Ξ, we shall denote σΞ as the concanetation of all σX

for X ∈ Ξ.

The reductions for heads work as follow: splitting a pair (v1, v2) into (x1, x2) in t yields the

substitution [v1/x1, v2/x2]t. Unpacking a dependent pair works the same way. Performing

a case analysis case inj v of
−−−−−−−→
ini xi 7→ ti with a scrutinee inj v results in the branch [v/xj]tj.

The equality elimination eq℘ with t on reflexivity simply reduces into t. Notably absent is

an evalution rule for eq abort t . This term is used in a branch of a case split or a record

that we know statically to be impossible. Such branches are never reached at run time, so

there is no need for an evaluation rule. For example, consider a type-safe “head” function,

which receives a nonempty vector as input. As we write each branch of a case split explicitly,

the empty list case must use eq abort t , but is never executed.

Type Preservation and Progress

Let us now prove type preservation and progress. We first need to show a substitution

lemma.

3.1. CORE CALCULUS 69

Lemma 3.1 (Substitution lemma). The following hold:

1. If ∆; Ξ; Γ ` t : T and ∆′; [θ]Ξ; Γ′ ` (θ;σ) : (∆; Γ) then ∆′; [θ]Ξ; Γ′ ` [θ;σ]t : [θ]T .

2. If ∆; Ξ; Γ ` h : T and ∆′; [θ]Ξ; Γ′ ` (θ;σ) : (∆; Γ) then ∆′; [θ]Ξ; Γ′ ` [θ;σ]h : [θ]T .

3. If ∆; Ξ; Γ;T ` E ↘ T ′ and ∆′; [θ]Ξ; Γ′ ` (θ;σ) : (∆; Γ) then ∆′; [θ]Ξ; Γ′; [θ]T `
[θ;σ]E ↘ [θ]T ′.

Proof. By mutual induction on the derivations ∆; Ξ; Γ ` t : T , and ∆; Ξ; Γ ` h : T , and

∆; Ξ; Γ;T ` E ↘ T ′, respectively. Cases involving indices use Req. 1. Furthermore, elimi-

nators for equalities make use of Lemma 2.1.

Theorem 3.2 (Type preservation). The following hold:

1. If ` t : T and t −→ t′ then ` t′ : T .

2. If ` h : T and h −→ h′ then ` h′ : T .

3. If T ` E ↘ T ′ and E −→ E ′ then T ` E ′ ↘ T ′.

Proof. By induction on the stepping derivation. We show the cases for equality elimination

and reduction of recursors.

Case: eq℘ with t′ −→ t′

` eq℘ with t′ : T by assumption.

` ℘ : C1 = C2 and ` C1 = C2 ↘ ∆ and ∆; ·; · ` t′ : T by inversion on the typing derivation.

` C1 = C2 by inversion on ` ℘ : C1 = C2.

By Req. 3, choosing the empty context · for ∆0 and the identity substitution · for θ, we have

` · : ∆. By inversion on this judgment, we must have ∆ = ·. Hence, ` t′ : T .

Case:
v value E value t′′ = [

−−→
C/u; (rec f, ι, ρ, ~u, x. t′)/f, σX , v/x]t′

(rec f, ι, ρ, ~u, x. t′) ? ~C (inµ v) E −→ t′′ ? E

` (rec f, ι, ρ, ~u, x. t′) ? ~C (inµ v) E : T by assumption.

` rec f, ι, ρ, ~u, x. t′ : Π
−−→
u:U.µF ~C ′ → T ′ and Π

−−→
u:U.µF ~C ′ → T ′ ` ~C (inµ v) E ↘ T

by inversion on typing derivation.

70 CHAPTER 3. NORMALISATION

Let Γ′ = f :Π
−−→
u:U.X ~C ′ → T ′, ι:Π

−−→
u:U.X ~u→ F X ~u, ρ:Π

−−→
u:U.X ~u→ (µF) ~u, x:F X ~C ′

−−→
u:U ;X:K; Γ′ ` t′ : T ′ by inversion on typing derivation.
−−→
u:U ; ·; [µF/X]Γ′ ` t : [µF/X]T ′ by the substitution property of type variables.

` Ci : Ui and ` inµ v : µF ~C ′ and [
−−→
C/u][µF/X]T ′ ` E ↘ T by inversion on typing on spine.

` [
−−→
C/u; (rec f, ι, ρ, ~u, x. t)/f, σX , v/x]t : [

−−→
C/u][µF/X]T ′ by substitution lemma.

Thus, ` [
−−→
C/u; (rec f, ι, ρ, ~u, x. t)/f, σX , v/x]t ? E : T .

Theorem 3.3 (Progress). The following hold:

1. If ` t : T then either there is a t′ such that t −→ t′ or t is a value.

2. If ` h : T then either there is a h′ such that h −→ h′ or h is a value.

3. If T ′ ` E ↘ T then either there is a E ′ such that E −→ E ′ or E is a value.

Proof. By mutual induction on the derivations of ` t : T , and ` h : T , and T ′ ` E ↘ T .

We discuss the case of ` h ? E : T . By inversion we have ` h : T ′ and T ′ ` E ↘ T . By

Statement 2, either h −→ h′ or `v h : T ′. In the former case, we are done. In the latter case,

we have by Statement 3, either E −→ E ′ or E is a value. In the former case we are also

done. We are also done if the spine is empty. In the latter case, we need to decide whether

both together reduce. We proceed by case analysis on the head, then by inversion on the

spine. Let us show an example. The others are similar. Suppose the head is:

Γ′ =
f :Π
−−→
u:U.X ~C → T, x:F X ~C,

ι:Π
−−→
u:U.X ~u→ F X ~u, ρ:Π~u.X ~u→ (µF) ~u

−−→
u:U ;X:K; Γ′ ` t : T

` rec f, ι, ρ, ~u, x. t : Π
−−→
u:U.(µF) ~C → T

By inversion on the spine, there are 3 possibilities for E. We could have E = · or E = ~C ′.

If so, we have h �E and h ? E is a value. Otherwise we have have E = ~C ′ (inµ v) E ′ and so

rec f, ι, ~ρ, ~u, x. t′ ? ~C ′ (inµ v) E ′ −→ [
−−→
C ′/u; (rec f, ι, ~ρ, ~u, x. t′)/f, v/x]t′ ? E ′.

3.2. NORMALISATION OF CORE LANGUAGE 71

3.2 Normalisation of Core Language

We now describe termination of evaluation of the core calculus. Our proof uses the logical

predicate technique of Tait [1967] and Girard [1972]. We follow loosely the presentations

of Jacob-Rao et al. [2018] and Abel [2004] to build our semantics and proof. We interpret

each language construct (index types, kinds, types, etc.) into a semantic model of sets and

functions.

Interpretation of Index Language

We start with the interpretations for index-types and index-spines. In general, our index

language may be dependently typed, as it is if we choose contextual LF. Hence our interpreta-

tion for index types U must take into account an environment θ containing instantiations for

index variables u. Such an index environment θ is simply a grounding substitution ` θ : ∆.

Definition 3.1 (Interpretation of index-types JUK and index-spines J
−−→
u:UK).

JUK(θ) = {C | · ` C : [θ]U}

J(·)K(θ) = {·}
J(u0:U0,

−−→
u:U)K(θ) = {C0, ~C | C0 ∈ JU0K(θ), ~C ∈ J(

−−→
u:U)K(θ, C0/u0)}

The interpretation of an index type U under environment θ is the set of closed terms

of type [θ]U . The interpretation lifts to index spines (
−−→
u:U). With these definitions, the

following lemma follows from the substitution principles of index terms (Req. 1).

Lemma 3.4 (Interpretation of index substitution). The following hold:

1. If ∆ ` C : U and ` θ : ∆ then [θ]C ∈ JUK(θ).

2. If ∆ ` ~C : (
−−→
u:U) and ` θ : ∆ then

−−→
[θ]C ∈ J(

−−→
u:U)K(θ).

Lattice Interpretation of Kinds

We now describe the lattice structure that underlies the interpretation of kinds in our lan-

guage. The idea is that types are interpreted as sets of strongly normalizing terms and

72 CHAPTER 3. NORMALISATION

type constructors as functions taking indices to sets of those terms. The set of all strongly

normalizing terms will be denoted as Ω and is defined inductively using the following rules:

t −→ t′ t′ ∈ Ω
t ∈ Ω

t 6−→
t ∈ Ω

We note by Theorem 3.3, if t 6−→, then t is a value. We also recall that our operational

semantics is deterministic. Thus, we only need to consider the single step t −→ t′ in our in-

ductive case. We denote the power set of Ω as P(Ω). The interpretation is defined inductively

on the structure of kinds.

Definition 3.2 (Interpretation of kinds JKK).

JtypeK(θ) = P(Ω× Ω)

JΠu:U.KK(θ) = {E | ∀C ∈ JUK(θ). E(C) ∈ JKK(θ, C/u)}

In the base case, JtypeK(θ) = P(Ω × Ω) is a complete lattice under the subset ordering,

with meet and join given by intersection and union respectively. For a kind K = Πu:U.K ′,

we induce a complete lattice structure on JKK(θ) by lifting the lattice operations pointwise.

Precisely, we define

A ≤JKK(θ) B iff ∀C ∈ JUK(θ). A(C) ≤JK′K(θ,C/u) B(C).

The meet and join operations can similarly be lifted pointwise.

We note that sets in JtypeK(θ) contain pairs of normalizing terms. We choose to define

the interpretation as sets of relations as such relations will be needed to prove that our

translation preserves normalisation in Section 3.6. For the purpose of proving normalisation

of our calculus, we simply prove that well-typed terms are related to themselves in the

interpretation. Thus, they are normalizing.

Interpretation of Types

Fixed Points in Semantics

Before we move on to the definition of interpretation, we do need some apparatus for

(co)inductive types. The semantics of type operators F are monotone operators on sets.

3.2. NORMALISATION OF CORE LANGUAGE 73

We make use of Kleene’s fixed point theorem in the style of Mendler [1991] and Abel [2004]

in order to build the fixed points by means of transfinite induction.

Let Φ : L → L and Ψ : L → L be operators on our lattice. For an ordinal α, we define

the α-iterate Φα and Ψα at kind K inductively on K and then by transfinite recursion on α,

as follows:

For K = type, then JtypeK(θ) = P(Ω× Ω).

Φ0 = ∅
Φα+1 = Φ(Φα)

Φλ =
⋃
α<λ Φα for λ limit ordinal

Ψ0 = Ω× Ω

Ψα+1 = Ψ(Ψα)

Ψλ =
⋂
α<λ Ψα for λ limit ordinal

For K = Πu:U.K ′, if C ∈ JUK(θ), then we have:

Φ0(C) = ∅
Φα+1(C) = Φ(Φα)(C)

Φλ(C) =
⋃
α≤λ Φα(C) for λ limit ordinal

Ψ0(C) = Ω× Ω

Ψα+1(C) = Ψ(Ψα)(C)

Ψλ(C) =
⋂
α≤λ Ψα(C) for λ limit ordinal

If Φ and Ψ are monotone, then Kleene’s fixed point theorem ensures they will reach

a fixed point at some ordinal. Given our types, we will only ever need to reach the least

uncountable ordinal ω1. Thus, Φ(Φω1) = Φω1 and Ψ(Ψω1) = Ψω1 . Moreover, since ∅ ⊂ Φ(∅)
and Φ(Ω× Ω) ⊂ Ω× Ω by monotonicity, then Φα ⊂ Φβ and Ψβ ⊂ Ψα for all α < β.

Defining the Interpretation

Following the interpretation of kinds, the interpretation of types is a relation, rather than

a set. For a type T , the interpretation JT K(θ; η) denotes pairs of values of type T behaving

the same with respect to evaluation. We will use the notation v1 ≥ v2 ∈ JT K(θ; η) to denote

pairs (v1, v2) in the interpretation JT K(θ; η). We extend it to arbitrary terms through the

concept of saturation. Given an interpretation E , we define the saturation of E as:

E∗ = {t1 ≥ t2 | ∃v1, v2 such that t1 −→n+k v1 and t2 −→n v2 and v1 ≥ v2 ∈ E}.

The relation imposes that the left-hand term takes at least as many steps as the right-hand

term takes to reach a value, and that both of those values are themselves related. This

74 CHAPTER 3. NORMALISATION

condition allows us to impose an upper bound on the number of steps. This will be needed

later on when we relate the Mendler style system to the copattern one. For the purpose of

this section, it only matters that it contains normalizing terms.

Before we move on to the definition of JT K(θ; η), let us introduce some more notation.

We lift term-level in and out tags to the level of sets and functions in the lattice JKK(θ).
We define the lifted tags in∗ : JKK(θ)→ JKK(θ) inductively on kind K. If E ∈ JtypeK(θ) =

P(Ω × Ω) then in∗ E = in E = {in v1 ≥ in v2 | v1 ≥ v2 ∈ E}. If E ∈ JΠu:U.K ′K(θ) then

(in∗ E)(C) = in∗ (E(C)) for all C ∈ JUK(θ). Essentially, the in∗ function attaches a tag to

every element in the set produced after the index arguments are received. Dually we define

out∗ : JKK(θ) → JKK(θ). If E ∈ JtypeK(θ) = P(Ω × Ω) then out∗ E = out E = {t1 ≥ t2 |
t1 ? .out ≥ t2 ? .out ∈ E∗}. We note that t.out ≥ t.out is defined in the saturation of E
rather than E itself, as the application of an observation will likely trigger a reduction. If

E ∈ JΠu:U.K ′K(θ) then (out∗ E)(C) = out∗ (E(C)) for all C ∈ JUK(θ).
This leads us to the interpretation of types T (Figure 3.5), under environments θ and

η. This is done inductively on the structure of T . Interpretations of unit type 1, products

T1×T2, variants D, and existentials Σu:U.T simply contain their canonical values which are

related pointwise. Interpretations of records R, Π-types Πu:U.T , and function types T1 →
T2 are represented by the application of their elimination forms. Applying an elimination

form might not result in a value and thus we assume the result is in the saturation of

the interpretation. In the particular case of T1 → T2, we pick a value v such that v ≥
v ∈ JT1K(θ; η), following usual definitions about applicative simulations. This definition is

justified by the following lemma:

Lemma 3.5. The following hold:

1. If v1 ≥ v2 ∈ JT K(θ; η), then v1 ≥ v1 ∈ JT K(θ; η);

2. If v1 ≥ v2 ∈ JT K(θ; η), then v2 ≥ v2 ∈ JT K(θ; η).

Proof. By induction on T .

Type level abstractions Λu.T lead to functions from the interpretation of the index do-

main to a set, denoted by C 7→ , while type level applications T C simply correspond to

3.2. NORMALISATION OF CORE LANGUAGE 75

J1K(θ; η) = {() ≥ ()}
JC1 = C2K(θ; η) = {℘ ≥ ℘}
JT1 × T2K(θ; η) = {(t1, t2) ≥ (t′1, t

′
2) | t1 ≥ t′1 ∈ JT1K(θ; η) and t2 ≥ t′2 ∈ JT2K(θ; η)}

JDK(θ; η) =
⋃
i in

∗
i JDiK(θ; η)

JRK(θ; η) =
⋂
i out

∗
i JRiK(θ; η)

JΠu:U.T K(θ; η) = {t1 ≥ t2 | ∀C ∈ JUK(θ), t1 ? C ≥ t2 ? C ∈ JT K∗(θ,
−−→
C/u; η)}

JS → T K(θ; η) = {t1 ≥ t2 | ∀s ≥ s ∈ JSK(θ; η), t1 ? s ≥ t2 ? s ∈ JT K∗(θ; η)}
JΣu:U.T K(θ; η) = {pack 〈C, t1〉 ≥ pack 〈C, t2〉 | C ∈ JUK(θ) and t1 ≥ t2 ∈ JT K(θ, C/u; η)}
JT CK(θ; η) = JT K(θ; η)([θ]C)
JΛu.T K(θ; η) = C 7→ JT K(θ, C/u; η)
JXK(θ; η) = η(X)
JµFK(θ; η) = Φω1

F ,θ,η
JνFK(θ; η) = Ψω1

F ,θ,η

where
ΦF ,θ,η(Q) = in∗µ JFXK(θ; η,Q/X)
ΨF ,θ,η(Q) = out∗ν JFXK(θ; η,Q/X)

Figure 3.5: Interpretation of types

the application of those functions.

Inductive and coinductive types are interpreted as Φω1 and Ψω1 . Those operators compute

the interpretation of the one step unfolding FX lifted respectively with in∗µ and out∗ν . In

order for the fixed points Φω1 and Ψω1 to exist, we need Φ and Ψ to be monotone. Thus

we require FX to only have positive occurrences of X. Moreover, since the operators are

monotone, the iterations are cumulative. In particular, we can prove the following:

Lemma 3.6. If inµ v ∈ Φα(~C) then inµ v ∈ Φβ+1(~C) for some ordinal β < α.

Proof. By transfinite induction on α.

We define the interpretation of contexts JΓK(θ; η) not as a relation but simply as a set.

We only use the interpretation of contexts in order to obtain safe grounding substitutions.

76 CHAPTER 3. NORMALISATION

In Section 3.6, we will define a generalization of open simulation and a subsequently a

corresponding simulation for arbitrary substitutions. The interpretation of empty contexts

contains any well-formed substitution σ as any such substitution maps from an empty context

to any other one. This is because there are no variables in the empty context for σ to replace.

The interpretation of a context Γ, x : T contains substitutions σ that are in the interpretation

of Γ and are such that σ(x) ≥ σ(x) is in the interpretation of T . As such, applying it to x

will result in a safe term.

J·K(θ; η) = {σ | σ is a well-formed substitution}
JΓ, x : T K(θ; η) = {σ | σ ∈ JΓK(θ; η) and σ(x) ≥ σ(x) ∈ JT K(θ; η)

Moreover, it will become useful, in particular in Section 3.6, to lift the interpretation of

types to support spines. We thus define the interpretation JS ↘ T K(θ; η) as

{E1 ≥ E2 | for all v ≥ v ∈ JSK(θ; η), v ? E1 ≥ v ? E2 ∈ JT K∗(θ; η)}.

Proving Normalisation

There are two main statements we need to prove to show well-typed terms are normalizing.

The first is a lemma stating that if a type T is well-kinded against K, then the interpretation

of T is in the interpretation of K. This ensures that terms in the interpretation of T are in

Ω and thus normalizing. Then it suffices to show well-typed terms are in the interpretation

of their corresponding types to complete the picture.

Before we move on to results, we first need some helpful lemmas. The first two lemmas

will help us directly reason about evaluation. We show that the small-step semantics mimicks

a big-step behaviour. The second one shows specific sub-terms of normalizable terms are

normalizing.

Lemma 3.7 (Concatenation of multi-step rules). Suppose t1 −→∗ t2 and t2 −→∗ t3 then

t1 −→∗ t3.

Proof. By induction on t1 −→∗ t2.

3.2. NORMALISATION OF CORE LANGUAGE 77

Lemma 3.8 (Big-step behaviour of stepping rules). Suppose t −→∗ v. Then, the following

hold:

1. If t′ −→∗ v′, then (t, t′) −→∗ (v, v′)

2. pack 〈C, t〉 −→∗ pack 〈C, v〉

3. inµ t −→∗ inµ v

4. ini t −→∗ ini v

5. outµ t −→∗ outµ v

6. t ? E −→∗ v ? E

7. split t as (x1, x2) in t′ −→∗ split v as (x1, x2) in t′

8. unpack t as 〈u, x〉 in t′ −→∗ unpack v as 〈u, x〉 in t′

9. case t of
−−−−−−−→
ini xi 7→ ti −→∗ case v of

−−−−−−−→
ini xi 7→ ti

10. eq t with t′ −→∗ eq v with t′

Proof. By induction on the stepping derivations.

Lemma 3.9 (Normalisation of shortened spines). The following hold:

1. If h ? E t ∈ Ω, then h ? E ∈ Ω;

2. If h ? E C ∈ Ω, then h ? E ∈ Ω;

3. If h ? E .outν ∈ Ω, then h ? E ∈ Ω;

4. If h ? E .outi ∈ Ω, then h ? E ∈ Ω.

Proof. By induction on the derivation h?E α ∈ Ω where α stands for t, C, outν , or outi .

The following two lemmas let us manipulate interpretations of type.

Lemma 3.10 (Type-level substitution associates with interpretation). The following hold:

1. If ∆; Ξ ` T : K and ∆′ ` Θ : ∆ and ` θ : ∆′ and η ∈ J[Θ]ΞK(θ), then J[Θ]ΞK(θ) =

JΞK([θ]Θ) and J[Θ]T K(θ; η) = JT K([θ]Θ; η).

78 CHAPTER 3. NORMALISATION

2. If ∆; Ξ, X:K ′ ` T : K and ∆; Ξ ` S : K ′ and ` θ : ∆ and η ∈ JΞK(θ), then

J[S/X]T K(θ; η) = JT K(θ; η, JSK(θ; η)/X).

Proof. Both statements hold by induction on the structure of T .

Lemma 3.11 (Interpretation preserves (co)recursive unfoldings). Let ∆; Ξ, X:K ` FX : K

and ` θ : ∆ and η ∈ JΞK(θ). The following hold:

1. JF(µF) ~CK(θ; η) = JFX ~CK(θ; η,Φω1/X)

2. JF(νF) ~CK(θ; η) = JFX ~CK(θ; η,Ψω1/X)

where Φ = ΦF ;θ;η and Ψ = ΨF ;θ;η.

Proof. As a reminder, FX = Λ~u.T . Using Lemma 3.10, we can deduce:

JF(µF) ~CK(θ; η) = J[µF/X](Λ~u.T) ~CK(θ; η) = J[µF/X](Λ~u.T)K(θ; η) (
−−→
[θ]C)

= JΛ~u.T K(θ; η, JµFK(θ; η)/X) (
−−→
[θ]C) = JFXK(θ; η, JµFK(θ; η)/X) (

−−→
[θ]C)

= JFXK(θ; η,Φω1/X) (
−−→
[θ]C) = JFX ~CK(θ; η,Φω1/X)

The proof is analogous for νF .

We now prove that the interpretation of types contains normalising terms.

Lemma 3.12 (Interpretation of kinds contains interpretation of types). If ∆; Ξ ` T : K

and ` θ : ∆ and η ∈ JΞK(θ), then JT K(θ; η) ∈ JKK(θ).

Proof. By induction on ∆; Ξ ` T : K.

This leads us to the main result: well-typed terms are contained the interpretation of

their type.

Theorem 3.13 (Normalisation). Let ` θ : ∆ and η ∈ JΞK(θ) and σ ∈ JΓK(θ; η). The

following hold:

1. If ∆; Ξ; Γ ` t : T then [θ;σ]t ≥ [θ;σ]t ∈ JT K∗(θ; η).

2. If ∆; Ξ; Γ ` h : T then [θ;σ]h ≥ [θ;σ]h ∈ JT K∗(θ; η).

3.2. NORMALISATION OF CORE LANGUAGE 79

3. If ∆; Ξ; Γ;S ` E ↘ T , then [θ;σ]E ≥ [θ;σ]E ∈ JS ↘ T K∗(θ; η).

Proof. All statements are proved by mutual induction on typing derivations.

Case:
∆; Ξ; Γ ` h : T ′ ∆; Ξ; Γ;T ′ ` E ↘ T

∆; Ξ; Γ ` h ? E : T

[θ;σ]h −→∗ v and v ≥ v ∈ JT ′K(θ; η) by induction hypothesis

[θ;σ]E −→∗ Ev and v ? Ev ≥ v ? Ev ∈ JT K∗(θ; η) by induction hypothesis

[θ;σ](h ? E) ≥ [θ;σ](h ? E) ∈ JT K∗(θ; η) by Lemma 3.8

Case:
∆; Ξ; Γ ` t1 : T1 ∆; Ξ; Γ ` t2 : T2

∆; Ξ; Γ ` (t1, t2) : T1 × T2

[θ;σ]t1 ≥ [θ;σ]t1 ∈ JT1K∗(θ; η) by induction hypothesis on ∆; Ξ; Γ ` t1 : T1

[θ;σ]t2 ≥ [θ;σ]t2 ∈ JT2K∗(θ; η) by induction hypothesis on ∆; Ξ; Γ ` t2 : T2

[θ;σ](t1, t2) ≥ [θ;σ](t1, t2) ∈ JT1 × T2K∗(θ; η) by Lemma 3.8

Case:
∆; Ξ; Γ, x:S ` t : T

∆; Ξ; Γ ` λx.t : S → T

We want to show [θ;σ](λx.t) ≥ [θ;σ](λx.t) ∈ JS → T K∗(θ; η). By JS → T K∗(θ; η), it is equiv-

alent to [θ;σ](λx.t) ? v ≥ [θ;σ](λx.t) ? v ∈ JT K∗(θ; η) for all v ≥ v ∈ JSK(θ; η).

(λx.[θ;σ]t) ? v −→ [θ;σ, v/x]t by stepping rules

σ, v/x ≥ σ, v/x ∈ JΓ, x:SK(θ; η) since σ ≥ σ ∈ JΓK(θ; η) and v ≥ v ∈ JSK(θ; η)

[θ;σ, v/x]t ≥ [θ;σ, v/x]t ∈ JT K∗(θ; η) by induction hypothesis

Case:
∆; Ξ; Γ ` s : T1 × T2 ∆; Ξ; Γ, x1:T1, x2:T2 ` t : T

∆; Ξ; Γ ` split s as (x1, x2) in t : T

[θ;σ]s ≥ [θ;σ]s ∈ JT1 × T2K∗(θ; η) by induction hypothesis

[θ;σ]s −→∗ v and v ≥ v ∈ JT1 × T2K(θ; η) by definition of JT1 × T2K∗(θ; η)

v = (v1, v2) by definition of JT1 × T2K(θ; η)

[θ;σ](split s as (x1, x2) in t) −→∗ split (v1, v2) as (x1, x2) in [θ;σ]t by Lemma 3.8

(split (v1, v2) as (x1, x2) in [θ;σ]t) −→ [θ;σ, v1/x1, v2/x2]t by stepping rule

σ, v1/x1, v2/x2 ≥ σ, v1/x1, v2/x2 ∈ JΓ, x1:T1, x2:T2K by assumptions

80 CHAPTER 3. NORMALISATION

[θ;σ, v1/x1, v2/x2]t ≥ [θ;σ, v1/x1, v2/x2]t ∈ JT K∗(θ; η) by induction hypothesis

[θ;σ, v1/x1, v2/x2]t −→∗ v1 and v1 ≥ v1 ∈ JT K(θ; η) by definition of JT K∗(θ; η)

[θ;σ](split s as (x1, x2) in t) −→∗ v1 by Lemma 3.7

[θ;σ](split s as (x1, x2) in t) ≥ [θ;σ](split s as (x1, x2) in t) ∈ JT K∗(θ; η) by JT K∗(θ; η)

Case:
∆; Ξ; Γ ` t : F(µF) ~C

∆; Ξ; Γ ` inµ t : (µF) ~C

[θ;σ]t ≥ [θ;σ]t ∈ JF(µF) ~CK∗(θ; η) by induction hypothesis

[θ;σ]t −→∗ v and v ≥ v ∈ JF(µF) ~CK(θ; η) by definition of saturation

JF(µF) ~CK(θ; η) = JFX ~CK(θ; η,Φω1/X) by Lemma 3.11

[θ;σ](inν t) −→∗ inν v by Lemma 3.8

inν v ≥ inν v ∈ in∗µ JFX ~CK(θ; η,Φω1/X) by definition of in∗µ

J(µF) ~CK(θ; η) = Φω1(~C) = Φ(Φω1)(~C) as Φω1 is a fixed point of Φ

= in∗µ JFX ~CK(θ; η,Φω1/X)

Case:
∆; Ξ; Γ ` t : F(νF) ~C

∆; Ξ; Γ ` inν t : (νF) ~C

J(νF) ~CK(θ; η) = Ψω1 (
−−→
[θ]C) = Ψ(Ψω1) (

−−→
[θ]C) since Ψω1 is a fixed point of Ψ

= out∗ν JFX ~CK(θ; η,Ψω1/X) = out∗ν JF(νF) ~CK(θ; η) by Lemma 3.11

[θ;σ](inν t) ? .outν −→ [θ; η]t by stepping rule

[θ;σ]t ≥ [θ;σ]t ∈ JF(νF) ~CK∗(θ; η) by induction hypothesis

Case:
∆,
−−→
u:U ; Ξ, X; Γ′ ` t : T

∆; Ξ; Γ ` rec f, ι, ρ, ~u, x. t : Π
−−→
u:U.(µF) ~u→ T

where Γ′ = Γ, f : Π
−−→
u:U.X ~u→ T, ι : Π

−−→
u:U.X ~u→ FX ~u, ρ : Π

−−→
u:U.X ~u→ (µF) ~u, x : FX ~u

Let g = [θ;σ](rec f, ι, ρ, ~u, x. t). We want to show g ≥ g ∈ JΠ
−−→
u:U.(µF) ~u→ T K∗. Since g is

a value, it suffices to show g ≥ g ∈ JΠ
−−→
u:U.(µF) ~u→ T K. We have that

JΠ
−−→
u:U.(µF) ~u→ T K(θ; η) = {v ≥ v′ | ∀~C ∈ J~UK(θ), v ~C ≥ v′ ~C ∈ J(µF) ~u→ T K∗(θ,

−−→
C/u; η)}

Let ~C ∈ J~UK(θ). Since g ? ~C is a value, it suffices to show g ? ~C ≥ g ? ~C ∈ J(µF) ~u →

3.2. NORMALISATION OF CORE LANGUAGE 81

T K(θ,
−−→
C/u; η). By definition of interpretation of our types, we have

J(µF) ~u→ T K(θ,
−−→
C/u; η) = {v ≥ v′ | ∀w ≥ w ∈ J(µF) ~uK(θ,

−−→
C/u; η), v?w ≥ v′?w ∈ JT K∗(θ,

−−→
C/u; η)}

Moreover, since µF does not depend on ~u,

J(µF) ~uK(θ,
−−→
C/u; η) = JµFK(θ,

−−→
C/u; η) (~C) = JµFK(θ; η) (~C)

= Φω1 (~C) =
⋃
α<ω1

Φα (~C)

We proceed by side induction on α. In the case where α = 0, then there is nothing to

prove as there are no v ∈ ∅. Now assume α > 0 and that for all β < α we have

g ? ~C ≥ g ? ~C ∈ JX → T K(θ,
−−→
C/u; η,Φβ/X).

Let v ∈ Φα (~C). We now want to show g ? ~C v ≥ g ? ~C v ∈ JT K∗(θ,
−−→
C/u; η). By definition

of Φα (~C), we have v = inµw with inµw ≥ inµw ∈ Φα (~C). Moreover, we have that

inµw ≥ inµw ∈ Φβ+1 (~C) by Lemma 3.6. Thus, w ≥ w ∈ JF XK(θ; η,Φβ/X)(~C).

The stepping rules give use that

g ? ~C (inµw) −→ [θ,
−−→
C/u;σ, g/f, (Λ~u.λx.outµ x)/ι, (Λ~u.λx.x)/ρ, w/x]t

At this point we can appeal to the induction hypothesis to obtain the desired result. We

only need to show

σ, g/f, (Λ~u.λx.outµ x)/ι, (Λ~u.λx.x)/ρ, w/x ≥ σ, g/f, (Λ~u.λx.outµ x)/ι, (Λ~u.λx.x)/ρ, w/x

∈ JΓ′K(θ,
−−→
C/u; η,Φβ/X)

By assumption, and since Γ does not depend on ~u or X, we trivially have

σ ≥ σ ∈ JΓK(θ; η) = JΓK(θ,
−−→
C/u; η,Φβ/X)

Using the side induction as β < α, and since there are no free occurrences of ~u in

Π
−−→
u:U.X ~u→ T , we have

g ≥ g ∈ JΠ
−−→
u:U.X ~u→ T K(θ,

−−→
C/u; η,Φβ/X) = JΠ

−−→
u:U.X ~u→ T K(θ; η,Φβ/X)

82 CHAPTER 3. NORMALISATION

Now we want to show

Λ~u.λx.outµ x ≥ Λ~u.λx.outµ x ∈ JΠ
−−→
u:U.X~u→ FX ~uK(θ,

−−→
C/u; η,Φβ/X).

Since there are no free occurrences of ~u in Π
−−→
u:U.X~u→ FX ~u, we have

JΠ
−−→
u:U.X~u→ FX ~uK(θ,

−−→
C/u; η,Φβ/X) = JΠ

−−→
u:U.X~u→ FX ~uK(θ; η,Φβ/X)

Let ~C ∈ J~UK(θ). Then Λ~u.λx.outµ x ? ~C −→ λx.outµ x. Let v1 ≥ v1 ∈ Φβ (~C). Then,

by definition of Φβ we have v1 = inµw1. Since FY does not depend on X, and since Φ is

cumulative, we have

w1 ≥ w1 ∈ JFY K(θ; η, (Φβ (~C))/X, (Φβ−1 (~C))/Y) (~C) = JFY K(θ; η, (Φβ−1 (~C))/Y) (~C)

= JFY K(θ; η, (Φβ (~C))/Y) (~C) = JFXK(θ; η, (Φβ (~C))/X) (~C)

Now, (λx.outµ x) ? inµw1 −→ outµ (inµw1) −→ w1 which is what we needed.

Now we want to show Λ~u.λx.x ≥ Λ~u.λx.x ∈ JΠ
−−→
u:U.X~u → (µF) ~uK(θ,

−−→
C/u; η,Φβ/X).

Since there are no free occurrences of ~u in Π
−−→
u:U.X~u→ (µF) ~u, we have

JΠ
−−→
u:U.X~u→ (µF) ~uK(θ,

−−→
C/u; η,Φβ/X) = JΠ

−−→
u:U.X~u→ (µF) ~uK(θ; η,Φβ/X)

Let ~C ∈ J~UK(θ). Then Λ~u.λx.x ? ~C −→ λx.x. Now we choose v1 such that

v1 ≥ v1 ∈ Φβ (~C) ⊂
⋃
α<ω1

Φα (~C) = JµF ~uK(θ,
−−→
C/u; η) = JµF ~uK(θ,

−−→
C/u; η,Φβ/X)

Then λx.x ? v1 −→ v1 as we wanted.

This concludes the case for recursors.

Case:
∆,
−−→
u:U ; Ξ, X; Γ′ ` t : FX~u

∆; Ξ; Γ ` corec f, ι, ρ, ~u, x. t : Π
−−→
u:U.T → (νF) ~u

where Γ′ = Γ, f : Π
−−→
u:U.T → X ~u, ι : Π

−−→
u:U.FX ~u→ X ~u, ρ : Π

−−→
u:U.(νF) ~u→ X ~u, x : T

Let g = [θ;σ](corec f, ι, ρ, ~u, x. t). We want to show g ≥ g ∈ JΠ
−−→
u:U.T → (νF) ~uK∗. Since g

is a value, it suffices to show g ≥ g ∈ JΠ
−−→
u:U.T → (µF) ~uK. We have that

JΠ
−−→
u:U.T → (νF) ~uK(θ; η) = {v ≥ v′ | ∀~C ∈ J~UK(θ), v? ~C ≥ v′?~C ∈ JT → (νF) ~uK∗(θ,

−−→
C/u; η)}

3.2. NORMALISATION OF CORE LANGUAGE 83

Let ~C ∈ J~UK(θ). Since g ? ~C is a value, it suffices to show v ? ~C ≥ v ? ~C ∈ JT →
(νF) ~uK(θ,

−−→
C/u; η) By definition of interpretation of our types, we have

JT → (νF) ~uK(θ,
−−→
C/u; η) = {v ≥ v′ | ∀w ≥ w ∈ JT K(θ,

−−→
C/u; η), v?w ≥ v′?w ∈ J(νF) ~uK∗(θ,

−−→
C/u; η)}

Moreover, since νF does not depend on ~u,

J(νF) ~uK∗(θ,
−−→
C/u; η) = JνFK(θ,

−−→
C/u; η) (~C) = JνFK(θ; η) (~C)

= Ψω1 (~C) =
⋂
α<ω1

Ψα (~C)

We proceed by side induction on α. In the case where α = 0, then there is nothing to

prove as v′ ∈ Ω for any v′. Now assume α > 0 and that for all β < α we have

g ? ~C ≥ g ? ~C ∈ JT → XK(θ,
−−→
C/u; η,Ψβ/X).

Let v ≥ v ∈ JT K(θ,
−−→
C/u; η). We now want to show g ? ~C v ≥ g ? ~C v ∈ Ψα (~C). By definition

of Ψα (~C) = Ψ(Ψα−1) (~C), we want to show

g ? ~C v .outν ≥ g ? ~C v .outν ∈ JFX ~CK∗(θ; η,Ψα−1/X)

The stepping rules give use that

g ? ~C v .outν −→ [θ,
−−→
C/u;σ, g/f, (Λ~u.λx.inν x)/ι, (Λ~u.λx.x)/ρ, v/x]t

At this point we can appeal to the induction hypothesis to obtain the desired result. We

only need to show

σ, g/f, (Λ~u.λx.inν x)/ι, (Λ~u.λx.x)/ρ, v/x ≥ σ, g/f, (Λ~u.λx.inν x)/ι, (Λ~u.λx.x)/ρ, v/x

∈ JΓ′K(θ,
−−→
C/u; η,Ψα−1/X)

By assumption, and since Γ does not depend on ~u or X, we trivially have

σ ≥ σ ∈ JΓK(θ; η) = JΓK(θ,
−−→
C/u; η,Ψα−1/X)

Using the side induction as α − 1 < α, and since there are no free occurrences of ~u in

Π
−−→
u:U.T → X ~u, we have

g ≥ g ∈ JΠ
−−→
u:U.T → X ~uK(θ,

−−→
C/u; η,Ψα−1/X) = JΠ

−−→
u:U.T → X ~uK(θ; η,Ψα−1/X)

84 CHAPTER 3. NORMALISATION

Now we want to show Λ~u.λx.inν x ≥ Λ~u.λx.inν x ∈ JΠ
−−→
u:U.FX~u→ X ~uK(θ,

−−→
C/u; η,Ψα−1/X).

Since there are no free occurrences of ~u in Π
−−→
u:U.FX~u→ X ~u, we have

JΠ
−−→
u:U.FX~u→ X ~uK(θ,

−−→
C/u; η,Ψα−1/X) = JΠ

−−→
u:U.FX~u→ X ~uK(θ; η,Ψα−1/X)

Let ~C ∈ J~UK(θ). Then (Λ~u.λx.inν x)? ~C −→ λx.inν x. Let v1 ≥ v1 ∈ JFX ~CK(θ; η,Ψα−1/X).

We need to show (λx.inν x) ? v1 −→ inν v1 ∈ Ψα−1(~C). It suffices to show inν v1 ≥ inν v1 ∈
Ψα(~C) as Ψα (~C) ⊂ Ψα−1(~C) by cumulativity. Hence, we want to show

inν v1 ? .outν ≥ inν v1 ? .outν ∈ JFX ~CK∗(θ; η,Ψα−1/X)

But inν v1 ? .outν −→ v1 and so we are done.

Now we want to show Λ~u.λx.x ≥ Λ~u.λx.x ∈ JΠ
−−→
u:U.(νF) ~u → X~uK(θ,

−−→
C/u; η,Ψα−1/X).

Since there are no free occurrences of ~u in Π
−−→
u:U.(νF) ~u→ X~u, we have

JΠ
−−→
u:U.(νF) ~u→ X~uK(θ,

−−→
C/u; η,Ψα−1/X) = JΠ

−−→
u:U.(νF) ~u→ X~uK(θ; η,Ψα−1/X)

Let ~C ∈ J~UK(θ). Then Λ~u.λx.x ? ~C −→ λx.x. Now we choose v1 such that

v1 ≥ v1 ∈ JνF ~uK(θ,
−−→
C/u; η,Φβ/X) = JνF ~CK(θ; η,) = Ψω1 (~C) =

⋂
α<ω1

Ψα (~C) ⊂ Ψα−1 (~C)

Then λx.x ? v1 −→ v1 as we wanted.

Case:
∆; Ξ; Γ ` t : (µF) ~C

∆; Ξ; Γ ` outµ t : F(µF) ~C

[θ;σ]t −→∗ v and v ≥ v ∈ J(µF) ~CK(θ; η) by induction hypothesis

J(µF) ~CK(θ; η) = Φω1(
−−→
[θ]C) = Φ(Φω1)(

−−→
[θ]C) as Φω1 is a fixed point of Φ

= in∗µ JFX ~CK(θ; η,Φω1/X)

v = inµw where w ≥ w ∈ JFX ~CK(θ; η,Φω1/X) = JF(µF) ~CK(θ; η) by Lemma 3.11

[θ;σ](outµ t) −→∗ outµ (inµw) −→ w by Lemma 3.8

Case:
∆; Ξ; Γ;F(νF) ~C ` E ↘ T

∆; Ξ; Γ; (νF) ~C ` .outν E ↘ T

3.3. FUNCTION CRITERIA 85

Let v ≥ v ∈ J(νF) ~CK(θ; η) = Ψω1 (
−−→
[θ]C) = Ψ(Ψω1) (

−−→
[θ]C) since Ψω1 is a fixed point of Ψ

= out∗ν JFX ~CK(θ; η,Ψω1/X) = out∗ν JF(νF) ~CK(θ; η) by Lemma 3.11

v ? .outν −→∗ w and w ≥ w ∈ JF(νF) ~CK∗(θ; η) by definition of out∗ν

w [θ;σ]E ≥ w [θ;σ]E ∈ JT K∗(θ; η) by induction hypothesis

3.3 Function Criteria

The overall goal of this chapter is to define criteria on which we can rely to assess that a

program defined in copatterns is normalising. The first two parts of the criteria are pretty

straightforward. We only care about the behaviour of well-typed terms so our first criterion

is for the terms to be well-typed. The second criterion is for functions to be covering as per

Definition 2.1 as it was already required for progress and we desire to assert our programs

as valid proofs.

The last criterion is that functions must either not be recursive or to be structurally

(co)recursive. This criterion is based on the structural recursion criterion defined by Coquand

[1992] and Goguen et al. [2006a]. We first start with the conditions for a function to be

considered not recursive. The main requirement is for the body of the function to not

depend on its function symbol. We also add the extra requirement that it cannot have an

empty copattern in any of its branches in order to simplify the proofs later. This gives us

the following definition:

Definition 3.3 (Not recursive). A function fun f.
−−−→
q 7→ t is not recursive if there are no qi

such that qi = · and there are no free occurrences of f in any of the terms ti.

Structural Recursiveness

In order for a function to be structurally recursive, we need to ensure recursive calls are safe.

This is described through the concept of inductive guardedness which is denoted by t ≺ind h

86 CHAPTER 3. NORMALISATION

and means that the term t is inductively guarded by the head h. The rules are the following:

t ≺ind c t t ≺ind pack 〈C, t〉 t1 ≺ind (t1, t2) t2 ≺ind (t1, t2)

E 6= · x ≺ind h

x ? E ≺ind h
t ≺ind h

′ h′ ≺ind h
t ≺ind h

Intuitively, inductive guardedness holds if one of the following holds:

• h is a constructor or a (dependent) pair and t is a direct subterm of h,

• the head of t is guarded by h,

• there is a head h′ such that t is guarded by h′ and h′ is guarded by h.

The transitivity rule ensures we can go arbitrarily deep in a subterm. The rule x ? E ≺ind h

if x ≺ind h follows the tradition of Coquand [1992] and Goguen et al. [2006a] and signifies

that applications of subterms to arbitrary terms are still subterms. Such applications are

safe as we have the positivity restriction for (co)recursive types. We note that terms are

guarded by heads instead of terms. This is because we want to guard terms using patterns

and patterns are a subset of heads. In the remainder of this thesis, we will often say t ≺ind p

to mean t ≺ind h where h is the lifting of p as a head.

Using guardedness we can define what it means to be structurally recursive:

Definition 3.4 (Structurally recursive). A function ∆; Γ ` fun f.−−−→q 7→ t : Π
−−→
u:U.(µF) ~C → T

is structurally recursive if for all branches qi 7→ ti, the copattern qi is of the form ~u (ci pi) q
′
i

and for all recursive calls f ? ~C t E in the right-hand side ti, we have that t ≺ind pi, where

the pattern pi is lifted as a term.

We note that we do not only require the arguments to be inductively guarded but we also

ask for both a specific type signature and a specific shape for the copattern of all branches,

even if a branch does not have any recursive call. The type forces the recursive argument to

be the first non-index argument passed to the function. The shape of copatterns allows us

to expose the patterns pi against which the recursive calls are guarded. Those patterns pi

are called pattern guards. We require every branch to expose a constructor as an artifact of

3.3. FUNCTION CRITERIA 87

the translation. We shall go over the details of this restriction in Section 3.4 when we will

be discussing the translation itself.

Those requirement do impose a somewhat stringent restriction on the functions that are

admitted. For example, take the following function that computes the maximum of two

inputs:

fun max : Nat → Nat → Nat

| n zero = n

| zero (suc m) = suc m

| (suc n) (suc m) = suc (max ? n m)

Both of its arguments are inductively guarded in the single recursive call max ? n m. How-

ever, the function is not deemed structurally recursive since it does not expose a constructor

on its first argument in its branch. Moreover, we only ever consider the first argument

and so we cannot use that the second argument does expose a constructor in every branch.

Swapping the order of patterns in each branch would solve the problem. Similarly, we could

duplicate the first branch and split on n resulting in a function:

fun max : Nat → Nat → Nat

| zero zero = zero

| (suc n) zero = suc n

| zero (suc m) = suc m

| (suc n) (suc m) = suc (max ? n m)

One could even imagine a preprocessing step during which reordering and/or branch

duplication is done to relax our definition of structural recursiveness and still follow the

translation presented in Section 3.4. While we believe such preprocessing should be possible

to automate and integrate as part of termination checking of copatterns, we will not develop

this idea further and focus instead on the translation based on the definition based above.

88 CHAPTER 3. NORMALISATION

Structural Corecursiveness

Once again, we need to make sure corecursive calls are guarded in some way. The guardedness

condition, however, is different; it does not matter what arguments the function is applied

to. What matters is where the recursive call is made. In particular, we do not want to unfold

corecursive calls in an unsafe way. We recall the function eager from the beginning of the

chapter.

fun eager : Stream

| .head = 0

| .tail = eager.tail

Note that there could be instances where the function is guarded by multiple observations

and we safely strip away some of them. One such example is the definition of fib at Page 12.

Our setting will reject such definition for simplicity. In the case of fib, there exist rewritings

of such function that would pass our criteria. However, the transformations leading to such

valid functions often require creativity and thus cannot easily be converted automatically.

This is outside the scope of this thesis. In addition, passing the corecursive call to a function

is not safe as we do not have guarantees this function will not try to expand the corecursive

call we are passing to it.

s ≺coind t Term s is coinductively guarded by term t.

t ≺coind c t t ≺coind pack 〈C, t〉 t1 ≺coind (t1, t2) t2 ≺coind (t1, t2)
r ≺coind s s ≺coind t

r ≺coind t

Figure 3.6: Coinductive guardedness

The guardedness condition s ≺coind t indicates s is guarded by t. It allows corecursive

calls to be under constructors, (dependent) pairs, or at the head of applications. Just like

for the inductive guardedness, we have a transitivity rule. We note that the definition also

restricts nesting a corecursive call inside another function. This is because corecursive calls

3.3. FUNCTION CRITERIA 89

have abstract types X in the target language and nesting corecursive calls create situations

where we would have functions that expect terms of abstract types X.

Definition 3.5 (Structurally corecursive). A function ∆; Γ ` fun f.
−−−→
q 7→ t : Πu:U.T →

(νF) ~C is structurally corecursive if, all for all branches qi 7→ ti, the copattern qi is of the

form pi .di q
′
i and all corecursive calls f ? ~C t′ in the term ti satisfy f ? ~C t′ ≺coind ti.

In addition to guardedness, we force corecursive functions to have a single argument and

for copattern splits to have an observation in each branch. Once again, those conditions are

imposed by our translations and could be alleviated by source level translations uncurrying

arguments or duplicating non recursive branches.

Navigating Structural (Co)Recursiveness

We note that it is possible for a function to satisfy more than one of these definitions. For

example, the following function produces always a constant stream of the predecessor of the

input.

fun f : Nat → Stream =

| zero .head ⇒ zero

| (suc n) .head ⇒ n

| zero .tail ⇒ zeroes

| (suc n) .tail ⇒ const ? n

There are no occurrences of f and no empty copatterns so it is not recursive. It is also

structurally recursive because all copatterns split on the first non-index argument exposing

a constructor, and all recursive calls satisfy trivially inductive guardedness as there are no

recursive calls. It is also structurally corecursive as there is a single argument and all copat-

terns have an observation and there are no corecursive calls so the coinductive guardedness

is trivially satisfied.

There are functions that satisfy both inductively and coinductively guarded in a non

trivial way. Recall the function ev-to-coev from Section 2.1.

90 CHAPTER 3. NORMALISATION

fun ev-to-coev : Πn:Nat. Even n → Coeven n =

| zero (ev-z ℘ ()) .cev-sz ℘

| zero (ev-z ℘ ()) .cev-ss m ℘

| (suc n) (ev-ss <m, (℘, e)>) .cev-sz ℘

| (suc n) (ev-ss <m, (℘, e)>) .cev-ss k ℘ ⇒ ev-to-coev? e

This function is both structurally recursive and corecursive as the only recursive call ev-to-coev

e is coinductively guarded while its argument e is inductively guarded.

For the purpose of our translation, as structural (co)recursiveness guides how the trans-

lation proceeds, we will simply assume there is a consistent ordering in case of overlap. It

does not matter what is this ordering as long as it is followed. Prioritizing non recursive

functions will likely result in simpler translations as it will not generate (co)recursors when

it is not needed. However, we will not worry about it.

Summarizing the Function Criteria

This leads us to the final representation of our criteria:

Definition 3.6 (Function criteria). We say that a term t satisfies the function criteria if

∆; Γ ` t : T and for all functions g that are subterms of t, the following hold:

• If Q is the copattern set for g then · ↘ ∆; Γ;T =⇒ Q;

• one of the following holds:

1. g is not recursive,

2. g is structurally recursive,

3. g is structurally (co)recursive.

Before, we move on to the translation itself, we wish to prove that evaluation does not

invalidate the function criteria. This will be needed to show the function criteria are sufficient

conditions for termination checking.

3.4. TRANSLATION 91

Lemma 3.14 (Evaluation preserves the function criteria). If t satisfies the function criteria

and t −→ t′, then t′ satisfies the function criteria.

Proof. By Theorem 2.10, typing is preserved by evaluation. The operational semantics does

not modify copattern sets of functions and we do not evaluate under functions. Thus, we

can prove by a simple induction that any function g that is a subterm of t′ is also a subterm

of t and so both coverage and structural (co)recursiveness are preserved.

3.4 Translation

We have defined a core calculus and proved normalisation for it, and we defined criteria

for termination. What remains to be done is to define a translation and prove it preserves

normalisation. This section describes the translation.

Challenges

Before we dive into the details of the translation, we first go over some examples in order to

discuss specific challenges we face when designing it. Those challenges dictate choices not

only in the translation itself, but also in its underlying proofs of metatheory.

Example 4 (Translation not uniquely determined). Suppose we wish to translate the copat-

tern set in the non recursive function which produces a constant stream of the predecessor

of the input.

fun f : Nat → Stream =

| zero .head ⇒ zero

| (suc n) .head ⇒ n

| zero .tail ⇒ zeroes

| (suc n) .tail ⇒ const ? n

Now, our target language splits on sums and record terms one at the time using case splits

and observations. In the source language, we can use our coverage derivations to decompose

92 CHAPTER 3. NORMALISATION

the source program one at the time. For our example program, we could derive the following

coverage derivation:

· =⇒ {n ·} =⇒

{
zero ·

(sucn) ·

}
=⇒

zero .head ·
zero .tail ·

(sucn) .head ·
(sucn) .tail ·

Alternatively, we could derive the following coverage derivation:

· =⇒ {n ·} =⇒

{
n .head ·
n .tail ·

}
=⇒

zero .head ·

(sucn) .head ·
zero .tail ·

(sucn) .tail ·

Thus, we could build a translation of our copattern set as the following target-level term:

λn.case outµ n of

| in1 n’ ⇒ inν (zero; zeroes)

| in2 n’ ⇒ inν (n’; const ? n’)

We can also translate it into the following program:

λn.inν (case outµ n of

| in1 n’ ⇒ zero

| in2 n’ ⇒ n’ ;

case outµ n of

| in1 n’ ⇒ zeroes

| in2 n’ ⇒ const ? n’)

As we can see the shape of the translated programs follow closely possible coverage deriva-

tions for our original program. In fact, we use coverage as a guide to translate copatterns.

When multiple possible derivations exist for a given problem, we simply choose one.

Example 5 (Deep patterns translation). As another example, suppose we have the following

function we wish to translate:

3.4. TRANSLATION 93

fun f : Nat → Nat

| zero ⇒ zero

| suc zero ⇒ zero

| suc (suc n) ⇒ f ? (suc n)

Now the translation would look like the following:

rec f, ι, ρ, ρ, x. case x of

| in1 x’ ⇒ zero

| in2 x’ ⇒ case ι ? x’ of

| in1 y ⇒ zero

| in2 y ⇒ ?

The main question is what term would we put in place of the hole. Looking at the source

code, we would be tempted to write something like f ? (inµ (in2 y)). However, y has type

X and so inµ (in2 y) is ill-typed. Instead, the right answer is f ? x’ where x’ has type X

and so the recursive call is well-typed. We thus need a way to keep track of what variable

denotes specific subterms of the pattern. This is done through the mapping ϕ which, when

supplied a term that is a subterm of the pattern guard, yields the variable corresponding to it

in the target language. This mapping thus accumulates the needed information to translate

adequately recursive calls.

Example 6 (Translations for functions that are both recursive and corecursive). We men-

tioned in the last section that the function ev-to-coev is both structurally recursive and

corecursive.

fun ev-to-coev : Πn:Nat. Even n → Coeven n =

| n (ev-z (℘, x)) .cev-sz ℘

| n (ev-z (℘, x)) .cev-ss k ℘

| n (ev-ss <m, (℘, e)>) .cev-sz ℘

| n (ev-ss <m, (℘, e)>) .cev-ss k ℘ ⇒ ev-to-coev ? m e

This leads us to two different possible translations. If we consider the function recursively,

we would generate the term

94 CHAPTER 3. NORMALISATION

rec ev-to-coev, ι,ρ,n,x0.case x of

| in1 x’ ⇒ split x’ as (p, x) in

eq p with

inν (λq.eq_abort q; Λk.λq.eq_abort q)

| in2 x’ ⇒ unpack x’ as <m, x’’> in

split x’’ as (p,e) in

eq p with

inν (λq.eq_abort q; Λk.λq.eq q with ev-to-coev ? m e)

This is obtained by using the coverage derivation

n x0 · =⇒

{
n (ev-z x′) ·
n (ev-ss x′) ·

}
=⇒∗

{
n (ev-z (℘, x)) ·
n (ev-ss 〈m, (℘, e)〉) ·

}

=⇒

n (ev-z (℘, x)) .cev-sz ·
n (ev-z (℘, x)) .cev-ss ·
n (ev-ss 〈m, (℘, e)〉) .cev-sz ·
n (ev-ss 〈m, (℘, e)〉) .cev-ss ·

 =⇒∗

n (ev-z (℘, x)) .cev-sz ℘ ·
n (ev-z (℘, x)) .cev-ss k ℘ ·
n (ev-ss 〈m, (℘, e)〉) .cev-sz ℘ ·
n (ev-ss 〈m, (℘, e)〉) .cev-ss k ℘ ·

For readability, we skip over some of the steps of the coverage derivation that would simply

refine variables. Alternatively, we can build a corecursive translation for ev-to-coev as

follows

corec ev-to-coev, ι,ρ,n,x0.

(λp.eq p with

case outµ x0 with

| in1 x’ ⇒ split x’ as (q, x) in

eq_abort q

| in2 x’ ⇒ unpack x’ as <m, x’’> in

split x’’ as (q,e) in

eq_abort q;

Λk.λp.eq p with

case outµ x0 with

3.4. TRANSLATION 95

| in1 x’ ⇒ split x’ as (q, x) in

eq_abort q

| in2 x’ ⇒ unpack x’ as <m, x’’> in

split x’’ as (q,e) in

eq q with

ev-to-coev ? m e)

This function is generated using the following coverage derivation:

n x0 · =⇒

{
n x0 .cev-sz ·
n x0 .cev-ss ·

}
=⇒∗

{
n x0 .cev-sz ℘ ·
n x0 .cev-ss k ℘ ·

}

=⇒

n (ev-sz x′) .cev-sz ℘ ·
n (ev-ss x′) .cev-sz ℘ ·
n (ev-sz x′) .cev-ss k ℘ ·
n (ev-ss x′) .cev-ss k ℘ ·

 =⇒∗

n (ev-sz (℘, x)) .cev-sz ℘ ·
n (ev-ss 〈m, (℘, e)〉) .cev-sz ℘ ·
n (ev-sz (℘, x)) .cev-ss k ℘ ·
n (ev-ss 〈m, (℘, e)〉) .cev-ss k ℘ ·

Both coverage derivations are pretty similar, with a particular choice made at a different

moment. Obviously, there could be other variations of those derivations alternating when to

refine variables and introduce new variables after the observations. The specific details do

not matter much for our purposes. It is however important for the translation that, in the

recursive case, we match on x0 first, while in the corecursive case, we split on the observations

first. The function criteria guarantee such derivations exist. We prove such properties in

Lemmas 3.16 to 3.19.

Example 7 (Evaluation does not preserve translation). Our last example considers how eval-

uation affects the translation. For this, we take a look at the following nested functions:

fun f.

| zero ⇒ fun g. y ⇒ y

| suc x ⇒ fun g. y ⇒ add * x (f * x y)

96 CHAPTER 3. NORMALISATION

This function when applied to x and y computes the sum y+
x−1∑
n=0

n. If we are to apply it the

number 2, it will reduce to the function fun g. y ⇒ add * 2 (f * 2 y) where f stands

for the original function. If we translate both programs we get respectively:

rec f, ι, ρ, x0. case x0 of

| in1 x ⇒ λy.y

| in2 x ⇒ λy.add * (ρ * x) (f * x y)

and λy.add * 2 (f * 2 y). Applying the former to 2 and evaluating it gives the function

λy.add * ((λz.z) * 2) (f * 2 y). Here, we have the extra ρ that was instantiated to

λz.z. The programs are thus not equal anymore.

Thus, we cannot commute evaluation and translation directly, but they nevertheless

behave the same. This complicates our argument to bind the number of steps in the source

language. We thus need to come up with a more sophisticated metric. This will be the

relation in our interpretation of types (Figure 3.5), which we will use as a simulation.

Translation of Copatterns

The translation is split into two main components: on the one hand we have the translation

of terms, which covers also translation of heads and spines. This is based on both the

structure of terms, typing informations, and structural (co)recursiveness. On the other hand

we translate copatterns into terms of our core calculus following derivation of coverage.

We first discuss translation of copatterns. The two main judgments for it are

(q ↘ ∆; Γ;T ;ϕ) =⇒∗~b Q t[·1 | · · · | ·n] and (q ↘ ∆; Γ;T ;ϕ) =⇒~b Q t[·1 | · · · | ·n].

Both judgments mimic the coverage derivation judgments. One can look at them as taking

as input a coverage judgment (q ↘ ∆; Γ;T) =⇒∗ Q and outputting a term t[·1 | · · · | ·n] that

has n holes where n is the size of the copattern set Q. For example, given a coverage step

{n ·} =⇒

{
zero ·

(sucm) ·

}

3.4. TRANSLATION 97

we generate the term casen of in1m 7→ ·1 | in2m 7→ ·2. Then, when we do the steps

{
zero ·

(sucn) ·

}
=⇒

zero .head ·
zero .tail ·

(sucn) .head ·
(sucn) .tail ·

we obtain terms inν (·11; ·12) and inν (·21; ·22) that we plug in for ·1 and ·2, respectively.

This gives us the term casen of in1m 7→ inν (·11; ·12) | in2m 7→ inν (·21; ·22). Once we have

a complete term for the copattern, we fill the remaining holes with the translation of the

corresponding right-hand sides.

In addition to a coverage derivation, we carry around the branches ~b, and a mapping ϕ

that we use to accumulate valid recursive calls. The contexts ∆ and Γ, and type T serve to

type the generated term t as opposed to the copattern itself. As such, types in Γ or the type

T itself might contain type variables X inherited from the translation of the term containing

the copattern set being translated.

Both the initial copattern declaration and the ones in Q carry around the mapping ϕ we

mentioned above. This mapping contains pairs x := t connecting the source level expression t

with the intermediate variable x. As such, we require to be able to lookup a term and obtain

its corresponding variable. The operation ϕ(t) = x yields the variable x when looking up to

term t. While ϕ accumulates the recursive calls of multiple functions at once, we assume we

can always disambiguate them by (silently) associating the type variable corresponding to

the recursive call. Thus, the mapping ϕ can be seen as a list of mappings ϕX iterating over

X. We note that it is only needed for structurally recursive functions as corecursive calls

accept any arguments and only require to be at the right position in the terms.

The multi-refinements judgment is defined in Figure 3.7. The base case occurs if the

copattern we are trying to split on is one of the copatterns in our final copattern set ~q. In

this case we return a single hole ·. In the inductive case we appeal to the single refinement

judgment to obtain a term t with n holes and for each copattern generated, we produce a

new term to fill one of the holes. We note that each new term will itself have holes. For

readability, we chose to omit writing them explicitly in the rule.

98 CHAPTER 3. NORMALISATION

q ↘ ∆; Γ;T ;ϕ =⇒∗B Q t[·1 | · · · | ·n]
Refining copattern q into copattern set Q gen-
erates term t using mapping ϕ.

q ↘ ∆; Γ;T ;ϕ =⇒∗{q 7→t} {q ↘ ∆; Γ;T ;ϕ} ·

q ↘ ∆; Γ;T ;ϕ =⇒B Q
′ t[·1 | · · · | ·n] Bi = {(q 7→ t) ∈ B | q ∈ Qi}

for all (qi ↘ ∆i; Γi;Ti;ϕi) ∈ Q′, (qi ↘ ∆i; Γi;Ti;ϕi) =⇒∗Bi
Qi ti

q ↘ ∆; Γ;T ;ϕ =⇒∗B
⋃
iQi t[t1 | · · · | tn]

Figure 3.7: Translation of Copatterns

Just as with coverage, the crux of the work is done through the single refinement rules.

They are shown in Figure 3.8. They are once again split between copattern introductions

and pattern refinements. Introducing a variable in the copattern leads us to introduce a λ-

abstraction in the generated term. Introducing an observation means we need to introduce a

coinductive record. How we build the coinductive record depends on the expected type. Two

choices are possible depending on whether the function whose copattern set we are refining

is structurally corecursive or not. This is reflected in the expected type. Either we expect

νF ~C which tells us we expect a constant of coinductive type at this particular position,

or we expect X ~C which indicates the function is coinductively building this term. In the

former case, we generate the term inν (·1; . . . ; ·n) while in the latter we have ιX? ~C (·1; . . . ; ·n).

We will always have the variables ιX and ρX in the context Γ if we ever encounter a type

variable X as they all are introduced simultaneously by (co)recursors.

Pattern refinement rules introduce a term that takes care of the variable x being refined.

Those rules are then subdivided into three main categories. First, we have the rules dealing

with variables of equality types. If we do not have a contradiction, we simply provide an

equality eliminator. Otherwise, we check if the corresponding branch has a right-hand side. If

it does, we provide again an equality eliminator. This eliminator will have a contradiction in

its context allowing it to discharge equalities trivially. We introduce an equality eliminator

instead of an abort here because some branches can become impossible with evaluation.

3.4. TRANSLATION 99

q ↘ ∆; Γ;T ;ϕ =⇒B Q t
Copattern refinement q ↘ ∆; Γ;T =⇒ Q generate term t
using mapping ϕ.

(Co)Pattern Introduction

(q ↘ ∆; Γ; Πu:U.T ;ϕ) =⇒B {q u↘ ∆, u:U ; Γ;T ;ϕ} Λu.·

(q ↘ ∆; Γ;S → T ;ϕ) =⇒B {q x↘ ∆; Γ, x:S;T ;ϕ} λx.·

(q ↘ ∆; Γ; νF ~C;ϕ) =⇒B {q .di ↘ ∆; Γ;Fi(νF) ~C;ϕ}i inν (·1; . . . ; ·n)

ιX ∈ Γ

(q ↘ ∆; Γ;X ~C;ϕ) =⇒B {q .di ↘ ∆; Γ;FiX ~C;ϕ}i ιX ? ~C (·1; . . . ; ·n)

Pattern Refinement

∆ ` C1 = C2 ↘ ∆′ # 6∈ ∆′

(q[x]↘ ∆; Γ, x : C1=C2;T ;ϕ) =⇒B {q[℘]↘ ∆′; Γ; [℘/x]ϕ} eqx with ·

∆ ` C1 = C2 ↘ ∆′ # ∈ ∆′ some b ∈ B has a right-hand side

(q[x]↘ ∆; Γ, x : C1=C2;T ;ϕ) =⇒B {q[℘]↘ ∆′; Γ; [℘/x]ϕ} eqx with ·

∆ ` C1 = C2 ↘ ∆′ # ∈ ∆′ b has no right-hand side

(q[x]↘ ∆; Γ, x : C1=C2;T ;ϕ) =⇒{b} {q[℘]↘ ∆′; Γ;T ; [℘/x]ϕ} eq abortx

x 6∈ ϕ
(q[x]↘ ∆; Γ, x : T1×T2;T ;ϕ) =⇒B {q[(x1, x2)]↘ ∆; Γ, x1:T1, x2:T2;T ;ϕ}

 splitx as (x1, x2) in ·
x 6∈ ϕ

(q[x]↘ ∆; Γ, x : Σu:U.T ′;T ;ϕ) =⇒B {q[pack 〈u, x′〉]↘ ∆, u:U ; Γ, x′:T ′;T ;ϕ}
 unpackx as 〈u, x′〉 in ·
x 6∈ ϕ

(q[x]↘ ∆; Γ, x : µF ~C;T ;ϕ) =⇒B {q[ci xi]↘ ∆; Γ, xi:Fi(µF) ~C;T ;ϕ}i
 case outµ x of

−−−−−−−→
ini xi 7→ ·i

x 6∈ ϕ ιX ∈ Γ

(q[x]↘ ∆; Γ, x : X ~C;T ;ϕ) =⇒B {q[ci xi]↘ ∆; Γ, xi:FiX ~C;T ;ϕ}i
 case ιX ? ~C x of

−−−−−−−→
ini xi 7→ ·i

The rules for this judgment are continued on the next page.

Figure 3.8: Translation of copatterns using refinements

100 CHAPTER 3. NORMALISATION

Pattern Refinement (continued)

ϕ(x) = x ϕ′ = [(x1, x2)/x]ϕ, x1:=x1, x2:=x2

(q[x]↘ ∆; Γ, x : T1×T2;T ;ϕ) =⇒B {q[(x1, x2)]↘ ∆; Γ, x : T1×T2, x1:T1, x2:T2;T ;ϕ′}
 splitx as (x1, x2) in ·

ϕ(x) = x ϕ′ = [(pack 〈u, x′〉)/x]ϕ, x′:=x′

(q[x]↘ ∆; Γ, x : Σu:U.T ′;T ;ϕ) =⇒B {q[pack 〈u, x′〉]↘ ∆, u:U ; Γ, x : Σu:U.T ′, x′:T ′;T ;ϕ′}
 unpackx as 〈u, x′〉 in ·

ϕ(x) = x ϕi = [(ci xi)/x]ϕ, xi:=xi

(q[x]↘ ∆; Γ, x : µF ~C;T ;ϕ) =⇒B {q[ci xi]↘ ∆; Γ, x : µF ~C, xi:Fi(µF) ~C;T ;ϕi}i
 case outµ x of

−−−−−−−→
ini xi 7→ ·i

ϕ(x) = x ϕi = [(ci xi)/x]ϕ, xi:=xi ιX ∈ Γ

(q[x]↘ ∆; Γ, x : X ~C;T ;ϕ) =⇒B {q[ci xi]↘ ∆; Γ, x : X ~C, xi:FiX ~C;T ;ϕi}i
 case ιX ? ~C x of

−−−−−−−→
ini xi 7→ ·i

Figure 3.9: Translation of copatterns using refinements (continued)

Thus, if we aborted on all contradictory branches, we would slowly replace branches with

aborts during evaluation. This would make relating terms with evaluation more difficult.

In all equality cases, we purge the mapping ϕ of constant terms after substituting ℘ for x

in it. This is needed to prevent constant terms from being mapped to variables as we cannot

then uniquely determine which variable to use.

The other two categories separate the rules between the ones refining a recursion variable

that could be used as argument for recursive calls and refinement of other variables. Prior to

being refined, recursion variables are added to ϕ and are mapped to themselves. Mappings

are changed during refinement so if a variable being refined was mapped in ϕ, it can only

be mapped to itself prior to it. If we refine x into p, then we simply substitute p for x in ϕ

and add to ϕ new associations x′:=x′ for each variable in p. This methodology is common

to every pattern refinement on a recursion variable. We note that recursion is only done on

terms of type µF ~C, but we also add to ϕ associations for variables of incompatible types.

3.4. TRANSLATION 101

This is an overhead we accept to keep track of possible new recursion variables without using

an additional mechanism.

Let us now have a look at the term we build for specific refinements. The term remains

the same whether it is a recursion variable or not. If the variable is of product type, or of

existential type, we simply split, or unpack, it accordingly. When dealing with variables of

recursive types µF ~C, we proceed by case analysis on the sum structure Fi(µF) ~C. We do

need to unfold first the variable using outµ x in order to expose the sum structure. We could

alternatively have a variable x of type X ~C if the variable is the result of refinements of the

pattern over which we do the recursion. In this case, we also perform a case analysis, but we

unfold X ~C into FX ~C using ιX ? ~C x instead of outµ x. Operationally, they are equivalent

as the former will be replaced by the latter during evaluation.

Type-Directed Translation of Terms

Let us move on to the translation of terms. We split it between translation of terms and

spines. Heads are handled by the judgment on terms. Let us start with the translation of

spines. It is represented with the judgment ∆; Ξ; Γ;T ` E ϕ Ê ↘ T ′. This judgment

states that the spine E translates to Ê and also that Ê is a well-typed spine satisfying

∆; Ξ; Γ;T ` Ê ↘ T ′. Its rules appear in Figure 3.10. For the most part, the translation of

spines simply propagates pointwise the translation of terms. It also splits observations .di

as .outν .outi . The mapping ϕ is not directly used by the translation of spines and simply

carried around.

Let us move on to the translation of terms (Figure 3.11). The judgment is ∆; Ξ; Γ `
t ϕ t̂ : T and means that the term t translates to a term t̂ and the latter is well-typed

with the judgment ∆; Ξ; Γ ` t̂ : T . Constructors, unit, ℘, and (dependent) pairs all have an

empty spine. Unit and ℘ are translated to themselves, while (dependent) pairs are simply

translated pointwise into pairs. Constructors are expanded from ci t to inµ (ini t̂) where t̂

is the translation of t.

Function bodies are translated through the judgment ∆; Ξ; Γ `f ~b ϕ t̂ : S. We note

that functions applied to their spines might appear at positions where a corecursive type

102 CHAPTER 3. NORMALISATION

∆; Ξ; Γ;T ` E ϕ Ê ↘ T ′ Spine E translates to Ê using contexts ∆; Ξ; Γ and types
T and T ′, yielding ∆; Ξ; Γ;T ` Ê ↘ T ′.

∆; Ξ; Γ;T ` · ϕ · ↘ T

∆; Ξ; Γ ` t ϕ t̂ : S ∆; Ξ; Γ;T ` E ϕ Ê ↘ T ′

∆; Ξ; Γ;S → T ` t E ϕ t̂ Ê ↘ T ′

∆; Ξ; Γ; [C/u]T ` E ϕ Ê ↘ T ′

∆; Ξ; Γ; Πu:U.T ` C E ϕ C Ê ↘ T ′
∆; Ξ; Γ;Fi(νF) ~C ` E ϕ Ê ↘ T

∆; Ξ; Γ; νF ~C ` .di E ϕ outν outi Ê ↘ T

Figure 3.10: Translation of spines

is expected. That is, the expected type is X ~C, or the type depends on some corecursive

variable X. Since corecursive calls cannot be nested, the inner function cannot be anything

else but a constant function that does not depend on corecursive types. As such, we safely

eliminate it with liftΞ(T) : [η]T → T which is the lifting of the corecursive operator ρ to

arbitrary types. Here η is the canonical instantiation for variables in Ξ.

The definition of liftΞ(T) appears in Figure 3.12. This lifting builds a deep copy of

the input by recursively using ρ’s. If we deal with a base type such as 1 or C1 = C2, we

simply have the identity function λx.x. In most other cases, we simply deconstruct the term,

then rebuild it up. For example, in case of pairs, we split on the input and remake a pair

where each side is applied liftΞ(Ti). In the record case, we build a lazy tuple where each

component is the i-th projection of the input under liftΞ(Ri). We note that to maintain

well-foundedness of recursive and corecursive cases, we introduce a new type variable X for

the recursive occurrence liftΞ(F X ~C). This is where keeping around the context of variables

being replaced makes sense. When we come to a type variable case, that is liftΞ(X ~C), we

only replace it by ρX ? ~C when X ∈ Ξ. Otherwise, we simply use an identity function. Unless

we need to clarify what the context Ξ for liftΞ(T) is, we will often simply write lift(T). We

recall that the recursive ρX have type Π
−−→
u:U.X ~u→ µF ~u while the corecursive ρX have type

Π
−−→
u:U.νF ~u→ X ~u. We can thus derive the following general type for liftΞ(T):

3.4. TRANSLATION 103

∆; Ξ; Γ ` t t̂ : T Source term t translates to target term t̂ using contexts ∆; Ξ; Γ and

type T , yielding typing ∆; Ξ; Γ ` t̂ : T

∆; Ξ; Γ ` t ϕ t̂ : Fi(µF)

∆; Ξ; Γ ` ci t ϕ inµ (ini t̂) : µF
∆; Ξ; Γ ` t1 ϕ t̂1 : T1 ∆; Ξ; Γ ` t2 ϕ t̂2 : T2

∆; Ξ; Γ ` (t1, t2) ϕ (t̂1, t̂2) : T1 × T2

∆; Ξ; Γ ` ℘ ϕ ℘ : C1 = C2

∆ ` C : U ∆; Ξ; Γ ` t ϕ t̂ : [C/u]T

∆; Ξ; Γ ` pack 〈C, t〉 ϕ pack
〈
C, t̂
〉

: Σu:U.T

∆; Ξ; Γ ` () ϕ () : 1

∆; Ξ; Γ `f ~b ϕ t̂ : S ∆; Ξ; Γ;S ` E ϕ Ê : [η]T

∆; Ξ; Γ ` fun f.~b ? E ϕ liftΞ(T) ? (t̂ ? Ê) : T

Γ(fX) = Π
−−→
u:U.S → X ~C ′ ∆ ` Ci : Ui ∆; Ξ; Γ ` t ϕ t̂ : [

−−→
C/u]S

∆; Ξ; Γ ` fX ? ~C t ϕ fX ? ~C t̂ : X [
−−→
C/u]~C ′

Γ(fX) = Π
−−→
u:U.X ~C ′ → S ϕ(h) = x Γ(x) = S ′ ∆ ` Ci : Ui

∆; Ξ; Γ;S ′ ` E ′ ϕ Ê
′ ↘ X ~C ∆; Ξ; Γ; [

−−→
C/u]S ` E ϕ Ê ↘ [η]T

∆; Ξ; Γ ` fX ? ~C (h E ′) E ϕ liftΞ(T) ? (fX ? ~C (x ? Ê ′) Ê) : T

Γ(x) = S ∆; Ξ; Γ; [η]S ` E ϕ Ê : [η]T

∆; Ξ; Γ ` x ? E ϕ liftΞ(T) ? (liftΞ(S) ? x Ê) : T

Figure 3.11: Translation of terms

Lemma 3.15. We recall that ηΞ is the set of canonical instantiations of type variables in

Ξ. Suppose T does not contain free variables with respect to Ξ. Then, liftΞ(T) has type

[ηΞc]T → [ηΞi
]T where Ξc and Ξi partition Ξ into contexts containing the corecursive and the

recursive variables, respectively.

Proof. By induction on the type T .

Our translation is very aggressive in applying those lift operators to functions and vari-

ables. In most cases, those will simply be identity functions that could very well be omit-

104 CHAPTER 3. NORMALISATION

We lift ρX by induction on the type S.

liftΞ(X ~C) =

{
ρX ? ~C if X ∈ Ξ
λx.x otherwise

liftΞ(1) = λx.x

liftΞ(C1 = C2) = λx.x

liftΞ(Πu:U.T) = λf.Λu.liftΞ(T) ? (f ? u)

liftΞ(T1 → T2) = λf.λx.liftΞ(T2) ? (f ? x)

liftΞ(µF ~C) = λx.inµ (liftΞ(F X ~C) ? outµ x)

liftΞ(νF ~C) = λx.inν (liftΞ(F X ~C) ? (x ? .outν))

liftΞ(T1 × T2) = λx.splitx as (x1, x2) in (liftΞ(T1) ? x1, liftΞ(T2) ? x2)

liftΞ(D) = λx.casex of
−−−−−−−−−−−−−−−−−−−→
ini xi 7→ ini (liftΞ(Di) ? xi)

liftΞ(R) = λx.(liftΞ(R1) (x.out1); . . . ; liftΞ(Rn) ? (x ? .outn))

liftΞ(Σu:U.T) = λx.unpackx as 〈u, x′〉 in pack 〈u, liftΞ(T) ? x′〉

Figure 3.12: Lifting ρ to arbritary types

ted. We chose this approach to simplify the presentation of the translation and thus of the

metatheory behind it at the expense of the actual translated code. We justify this design

choice as our goal is to justify our function criteria rather than to actually compile code into

a core. In practice, one could easily optimize this process by limiting lift operators liftΞ(T)

to instances of T for which it has a free variable from Ξ. For the purpose of readability, we

will omit such lift operators when showing translated code.

The last set of cases operate on terms that have a variable as their head. There are 3

cases for it.

1. The variable could be the corecursive call. In this case, the variable fX will have a

specific signature Π
−−→
u:U.S → X ~C and it suffices to translate the seed t that fX is

applied to.

2. It could also be a recursive call. In this case, it is applied to the term we recurse over

and is expected to have type X ~C in the target language. We recall that there is a

challenge to this part of the translation due to deep pattern matching in the source

language, exhibited through the following example:

3.4. TRANSLATION 105

fun f : Nat → Nat

| zero ⇒ zero

| suc zero ⇒ zero

| suc (suc n) ⇒ f ? suc n

As we mentioned before, we cannot simply translate the right-hand side of the last

branch into f ? inµ (in2 n) because inµ takes a term of time 1 +µF and turns it into

µF while in2 n has type 1 +X, and f expects a term of type X. Instead, we use ϕ to

look up the term suc n to identify the proper intermediate variable. The end result

would look like this:

rec f, ι, ρ, x.case x of

| in1 y ⇒ inµ (in1 ())

| in2 y ⇒ case ι ? y of

| in1 z ⇒ inµ (in1 ())

| in2 z ⇒ f ? y

Going back to the rule for translation, we only actually care about the head of the

term to which the function f is applied to; so only the head is looked up in ϕ. This is

because the term we recurse over can be applied to an arbitrary spine without breaking

inductive guardedness. In addition, the result of the recursive call could give rise to a

term at a position in the program that expected a corecursive call. Since we make a

choice for a function to be handled either recursively or corecursively but not both, this

recursive call will not be depending on corecursive variables that could be expected at

that position. Hence, we use liftΞ(T) : T → [η]T to align the types.

3. If the variable x is neither, then it could be a recursion variable whose type depends on

type variables X that is not used in a recursive call. In addition, it could be a constant

that is used in a place where a corecursive call is expect. For this reason, we use two

different liftings of ρ’s. The first one, liftΞ(S) : S → [η]S, allows us to mediate between

the type it has in the context and the type Ê is expected to be applied to. The second

one, liftΞ(T) : [η]T → T , allows us to mediate between the type the expression has and

the expected type at the place the variable is used.

106 CHAPTER 3. NORMALISATION

∆; Ξ; Γ `f ~b ϕ t̂ : T Function f with body ~b translates to term t̂ at type T under
environments ∆; Ξ; Γ and recursion context ϕ.

f is non rec. Ξ ` (· ↘ ∆; (Γ, f :T);T ;ϕ) =⇒∗
{−−→q 7→t}

{qj ↘ ∆j; Γj;Tj;ϕj}j t̂

∆; Ξ; Γ `f
−−−→
q 7→ t ϕ t̂ : T

f is struct. rec.
⋃
iQi = {qj ↘ ∆j; Γj;Tj;ϕj}j Bi = {q 7→ t | q ∈ Qi}

ΓX = fX : Π
−−→
u:U.X ~C → T, ιX : Π

−−→
u:U.X ~u→ F X ~u, ρX : Π~u.X ~u→ (µF) ~u

for all i, Ξ, X ` ((~u (ci xi))↘ ∆,
−−→
u:U ; (Γ,ΓX , xi:FiX ~C);T ; (ϕ, xi:=xi)) =⇒∗Bi

Qi t̂i

∆; Ξ; Γ `f
−−−→
q 7→ t ϕ rec fX , ιX , ρX , ~u, x. casex of

−−−−−−−→
ini xi 7→ t̂i : Π

−−→
u:U.µF ~C → T

f is struct. corec.
⋃
iQi = {qj ↘ ∆j; Γj;Tj;ϕj}j Bi = {q 7→ t | q ∈ Qi}

ΓX = fX : Π
−−→
u:U.T → X ~C, ιX : Π

−−→
u:U.F X ~u→ X ~u, ρX : Π~u.(νF) ~u→ X ~u

for all i, Ξ, X ` ((~u x .di)↘ ∆,
−−→
u:U ; (Γ,ΓX , x:T);FiX ~C;ϕ) =⇒∗Bi

Qi t̂i

∆; Ξ; Γ `f
−−−→
q 7→ t ϕ corec fX , ιX , ρX , ~u, x. (t̂1; . . . ; t̂n) : Π

−−→
u:U.T → νF ~C

Ξ ` q ↘ ∆; Γ;T ;ϕ =⇒∗B Q t
Refinement of copattern q ↘ ∆; Γ;T under mapping ϕ
into the copattern set Q generates the term t such that
∆; Ξ; Γ ` t : T .

(q ↘ ∆; Γ;T ;ϕ) =⇒∗B Q t[·1 | · · · | ·n]

for all (qi ↘ ∆i; Γi;Ti;ϕi) ∈ Q, ∆i; Ξ; Γi ` ti ϕi
t̂i : Ti

Ξ ` (q ↘ ∆; Γ;T ;ϕ) =⇒∗B Q t[t̂1 | · · · | t̂n]

Figure 3.13: Function translation

The last part of the translation we need to address is the translation of function bod-

ies. It is represented by the judgment ∆; Ξ; Γ `f ~b ϕ t̂ : T and the rules are shown in

Figure 3.13. We have three different cases for functions depending on whether the function

is non-recursive, structurally recursive, or structurally corecursive. If the function is non-

recursive, we simply appeal to the translation of copatterns. The judgment we appeal to for

3.5. FUNCTION CRITERIA ARE SUFFICIENT FOR THE TRANSLATION 107

translation of copatterns is not the one we discussed above, but Ξ ` q ↘ ∆; Γ;ϕ =⇒∗~b Q t̂.

This judgment has a single rule shown in Figure 3.13. This rule simply generates a term

with n holes from the copattern q, and fills out all the holes with the translations of the

right-hand sides.

If the function is structurally recursive, we generate a recursor and perform a case analysis

on the input x, as the function criteria guarantee that all copatterns match on this argument.

Then, we partition the final copattern set into a series of sets Qi based on the constructor

for x. In addition, we partition the branches ~b into sets Bi so that the branches in Bi are the

ones whose copatterns are in Qi. We appeal to the translation of copatterns starting with

the copattern ~u (ci xi) to the copattern set Qi, since we already exposed the constructor

using our case analysis. Each resulting term is then placed in the corresponding branch of

the case statement. The translation of copattern is called with the extended index-context

∆,
−−−→
u : U of variable bound by the recursor, and the context Γ to which we add ΓX which

contains typing for fX , ιX , and ρX , and xi of type FiX ~u. Moreover, we add to ϕ, the

association xi := xi as each xi is a valid recursive call.

For structurally corecursive functions, we generate a corecursor, together with a lazy

record corresponding to each branch of the observations of the coinductive term we are

building. We perform the same partition ofQi’s and for each of them appeal to the translation

of copatterns starting at the copattern ~u x .di. We add the corecursor operators to the

context. This time around, the expected type is Fi X ~u, and we do not add an association

to ϕ as it is only used for structurally recursive functions.

3.5 Function Criteria Are Sufficient for the

Translation

We first prove that we can derive a translation for a term as long as this term satisfies the

function criteria. This establishes that our criteria are suitable to assert normalisation, as

long as the translation is normalisation preserving. This proof has a few pieces. The first

one is a set of invariants the translation preserves. Those invariants will allow us to restrict

108 CHAPTER 3. NORMALISATION

the cases of our proof.

Definition 3.7 (Translation invariants). We say the pair target language pair Γ ` T of a

context Γ and a type T satisfies the translation invariants for Ξ and ϕ if the following hold:

1. For all X ∈ Ξ, if X is a recursive type variable, then X does not occur free in T .

2. For all X ∈ Ξ, if X is a corecursive type variable, then the only free occurrence of X

in Γ is fX : Πu:U.T → X ~C.

3. For all X ∈ Ξ, if X is a recursive type variable and p is the pattern guard for X and

h ? E ≺ind p and ∆; Γ ` h : T ′, then h ∈ ϕ and ∆; Ξ; Γ ` ϕ(h) : T ′.

Moreover, we say that the judgments ∆; [η]Γ ` t : [η]T and ∆; [η]Γ; [η]S ` E ↘ [η]T , where

η is the standard instantiation for type variables in Ξ, satisfy the translation invariants if

the pairs Γ ` S and Γ ` T satisfy it.

The translation invariants is thus defined on contexts Ξ and Γ, the type T , and the

mapping ϕ. The judgment ∆; [η]Γ ` t : [η]T thus is valid for the copattern language. The

two first invariants restrict when we can see type-level variables in T and Γ. In addition, the

third invariant guarantees that all valid inductively guarded subterms of the pattern guard

are part of the mapping ϕ. All of those invariants are justified by the way our translation

works and we shall prove they are preserved when invoking induction hypotheses.

Commuting Refinements

As we alluded to in Section 3.4, our function criteria ensure we can derive specifically shaped

coverage derivations for structurally (co)recursive functions. Those specific shapes allow us

to generate the final copattern sets from the initially split copatterns. The following lemmas

show we can commute certain refinements in order to derive the specific derivations we need.

The first two lemmas indicate that if we have a split on a copattern q, and a (possibly

parallel) split on x, then we can split on x first, then split on q, and yield the same end

result. We show it holds both for single step refinements and multi step refinements.

3.5. FUNCTION CRITERIA ARE SUFFICIENT FOR THE TRANSLATION 109

Lemma 3.16 (Single step commuting of constructor split). If ~u x q =⇒ {~u x qi} and if for

all i we have ~u x qi =⇒ {~u (cj xj) qi}j, then ~u x q =⇒ {~u (cj xj) q}j and for all j, we have

~u (cj xj) q =⇒ {~u (cj xj) qi}i.

Proof. By case analysis on the judgment ~u x q =⇒ {~u x q′i}.

Lemma 3.17 (Multi step commuting of constructor split). If ~u x q =⇒∗ {~u (cj pi) qi}i,
then ~u x q =⇒ {~u (cj xj) q}j and for all j we have ~u (cj xj) q =⇒∗ Qj where

⋃
j Qj =

{~u (cj pi) qi}i.

Proof. By induction on the derivation of ~u x q =⇒∗ {~u (cj pi) qi}i.

Case:
~u x q =⇒ {~u (cj xj) q}j for all j ~u (cj xj) q =⇒∗ {~u (cj xj) q}

~u x q =⇒∗
⋃
j{~u (cj xj) q}

The conclusion holds directly.

Case:
~u x q =⇒ Q′ for all qi ∈ Q′ qi =⇒∗ Q′i

~u x q =⇒∗
⋃
iQ
′
i

If Q′ = {~u (cj xj) q}j, then we are done. Otherwise, by induction hypothesis:

~u x qi =⇒ {~u (cj xj) qi}j for all ~u x qi ∈ Q′.
~u (cj xj) qi =⇒∗ Qij where Q =

⋃
ij Qij for all j.

By Lemma 3.16, we have the desired result.

The second set of commuting refinements lemmas show that if we split a pattern p into

a set of patterns pi, and then introduce (possibly in parallel) observations .dj, then we can

also introduce those observations first and split on p afterwards.

Lemma 3.18 (Single step commuting of observation introduction). If ~u p · =⇒ {~u pi ·}i
and for all i we have ~u pi · =⇒ {~u pi .dj ·}j, then ~u p · =⇒ {~u p .dj ·}j and for all j, we

have ~u p .dj · =⇒ {~u pi .dj ·}i.

Proof. By case analysis on the judgment ~u p · =⇒ {~u pi ·}i.

110 CHAPTER 3. NORMALISATION

Lemma 3.19 (Multi step commuting of observation introduction). If ~u p · =⇒∗ {~u pi .di q′i}i,
then ~u p · =⇒ {~u p .dj·}j and for all j we have ~u p .dj· =⇒∗ Qj where

⋃
j Qj = {~u pi .di q′i}i.

Proof. By induction on the derivation of ~u x q =⇒∗ {~u pi .di q′i}i.

Case:
~u p · =⇒ {~u p .dj ·}j for all j ~u p .dj · =⇒∗ {~u p .dj ·}

~u p · =⇒∗
⋃
j{~u p .dj ·}

The conclusion holds directly.

Case:
~u p · =⇒ Q′ for all qi ∈ Q′ qi =⇒∗ Q′i

~u p · =⇒∗
⋃
iQ
′
i

If Q′ = {~u p .dj ·}j, then we are done. Otherwise, the induction hypothesis gives us:

~u pi · =⇒ {~u pi .dj ·}j for all ~u pi · ∈ Q′.
~u pij .dj qj =⇒ Qij where Q =

⋃
ij Qij for all j.

By Lemma 3.18, we have the desired result.

Coverage Implies Copattern Translation

Now, we show that if we have a coverage derivation and the initial type and context satisfy

the translation invariants, then we can build a translation for this copattern set and the

resulting context and type also satisfy the translation invariants. We first start by lemmas

that allows us to maintain our third invariant preserving completeness of the mapping ϕ

under coverage refinements.

Lemma 3.20. If x is a variable that appears free in h and h?E ≺ind h
′, then x appears free

in h′.

Proof. By induction on h ? E ≺ind h
′.

Lemma 3.21. Suppose for all h and E, we have that h ?E ≺ind h0[x] implies h ∈ ϕ. Then,

for all h′ and E ′, the following hold:

1. if h′ ? E ′ ≺ind h0[c x′], then h′ ∈ ϕ′ where ϕ′ = [(c x′)/x]ϕ, x′:=x′;

2. if h′ ? E ′ ≺ind h0[(x1, x2)], then h′ ∈ ϕ′ where ϕ′ = [(x1, x2)/x]ϕ, x1:=x1, x2:=x2;

3.5. FUNCTION CRITERIA ARE SUFFICIENT FOR THE TRANSLATION 111

3. if h′ ? E ′ ≺ind h0[pack 〈C, x′〉], then h′ ∈ ϕ′ where ϕ′ = [(pack 〈C, x′〉)/x]ϕ, x′:=x′.

Proof. All statement are proved by induction on h′ ? E ′ ≺ind h0[−]. The transitivity case

makes use of Lemma 3.20.

We note that coverage derivations allow us to ensure that copattern translation exists.

We first prove it for the single step refinement judgment, then the multi step refinement

judgment. We recall that ΓX was defined as the context containing fX , ιX , ρX . We define

ΓΞ recursively on Ξ. If Ξ = ·, then Γ· = ·. If Ξ = Ξ′, X, then ΓΞ′,X = ΓΞ′ ,ΓX .

Lemma 3.22 (Single step copattern translation is complete with respect to coverage). If

q ↘ ∆; [η]Γ; [η]T =⇒ {qi ↘ ∆i; [η]Γi; [η]Ti}i and Γ ` T and ϕ satisfy the translation

invariants for Ξ, then

q ↘ ∆; Γ,ΓΞ;T ;ϕ =⇒ {qi ↘ ∆i; Γ′i,ΓΞ;Ti;ϕi}i t[·1 | · · · | ·n]

for some Γ′i that extends Γi and Γ′i;Ti;ϕi satisfy the translation invariants for Ξ.

Proof. By case analysis on q ↘ ∆; [η]Γ; [η]T =⇒ {qi ↘ ∆i; [η]Γi; [η]Ti}. We only show the

case for introduction of observation and refinements of recursive types. The other cases are

similar.

Case: q ↘ ∆; [η]Γ; [η]T =⇒ {q@.di ↘ ∆i; [η]Γi; [η]Ti}i

where [η]T = νF ~C and [η]Ti = Fi(νF) ~C.

Subcase: T = νF ~C

Then, q ↘ ∆; Γ,ΓΞ; νF ~C;ϕ =⇒ {q@.di ↘ ∆; Γ,ΓΞ;Fi(νF) ~C;ϕ}i inν (·1; . . . ; ·n)

Γ ` Fi(νF) ~C and ϕ satisfy the translation invariants since Γ ` νF ~C and ϕ also satisfy

them and Fi(νF) ~C does not introduce any recursive type variable.

Subcase: T = X ~C

Then, q ↘ ∆; Γ,ΓΞ;X ~C;ϕ =⇒ {q@.di ↘ ∆; Γ,ΓΞ;FiX ~C;ϕ}i ιX ? ~C (·1; . . . ; ·n)

112 CHAPTER 3. NORMALISATION

Γ ` FiX ~C and ϕ satisfy the translation invariants since Γ ` X ~C and ϕ also satisfy them

and and FiX ~C does not introduce any recursive type variable.

Case: q[x]↘ ∆; [η]Γ; [η]T =⇒ {q[ci xi]↘ ∆i; [η]Γi; [η]Ti}i

where [η]Γ = Γ′, x : µF ~C and [η]Γi = Γ′, xi : Fi(µF) ~C

Subcase: ϕ(x) = x

ϕi = [(ci xi)/x]ϕ, xi := xi and we are refining a pattern guard for X ∈ Ξ. Thus, q is of the

form ~u (c p[x]) q′ and p[x] is the pattern guard being refined. By Lemma 3.21, ϕi satisfies

the translation invariants for Ξ against the pattern guard p[ci xi]. Depending on whether

x ∈ ϕ and what the type of x is in Γ, we build refinements directly.

Subsubcase: Γ = Γ′, x : µF ~C

q[x]↘ ∆; Γ′,ΓΞ, x : µF ~C;T ;ϕ =⇒ {q[ci xi]↘ ∆; Γ′, x : µF ~C, xi : Fi(µF) ~C,ΓΞ;T ;ϕi}i
 case outµ x of

−−−−−−−→
ini xi 7→ ·i

where Γi = Γ′, xi : Fi(µF) ~C and Γ′i = Γ′, x : µF ~C, xi : Fi(µF) ~C.

Subsubcase: Γ = Γ′, x : X ~C

q[x]↘ ∆; Γ′,ΓΞ, x : X ~C;T ;ϕ =⇒ {q[ci xi]↘ ∆; Γ′, x : µF ~C, xi : FiX ~C,ΓΞ;T ;ϕi}i
 case ιX ? ~C x of

−−−−−−−→
ini xi 7→ ·i

where Γi = Γ′, xi : Fi(µF) ~C and Γ′i = Γ′, x : µF ~C, xi : Fi(µF) ~C.

Γ′i satisfies the translation invariants as they don’t introduce corecursive type variables to Γ.

Subcase: x 6∈ ϕ

Subsubcase: Γ = Γ′, x : µF ~C

q[x]↘ ∆; Γ′,ΓΞ, x : µF ~C;T ;ϕ =⇒ {q[ci xi]↘ ∆; Γ′, xi : Fi(µF) ~C,ΓΞ;T ;ϕi}i
 case outµ x of

−−−−−−−→
ini xi 7→ ·i

Γi = Γ′i and they both satisfy the translation invariants.

3.5. FUNCTION CRITERIA ARE SUFFICIENT FOR THE TRANSLATION 113

Subsubcase: Γ = Γ′, x : X ~C

q[x]↘ ∆; Γ′,ΓΞ, x : X ~C;T ;ϕ =⇒ {q[ci xi]↘ ∆; Γ′, xi : FiX ~C,ΓΞ;T ;ϕi}i
 case ιX ? ~C x of

−−−−−−−→
ini xi 7→ ·i

and Γi = Γ′i and they both satisfy the translation invariants.

Lemma 3.23 (Multi step copattern translation is complete with respect to coverage). If

(q ↘ ∆; [η]Γ; [η]T) =⇒∗ {qi ↘ ∆i; [η]Γi; [η]Ti}i and Γ `ϕ T satisfy the translation invariants

for Ξ, then

(q ↘ ∆; Γ,ΓΞ;T ;ϕ) =⇒∗ {qi ↘ ∆i; Γ′i,ΓΞ;Ti;ϕi}i t[·1 | · · · | ·n]

for some Γ′i that extends Γi and Γ′i;Ti;ϕi satisfy the translation invariants for Ξ.

Proof. By induction on q ↘ ∆; [η]Γ; [η]T =⇒∗ {qi ↘ ∆i; [η]Γi; [η]Ti}. The inductive case

follows from Lemma 3.22.

Translating Terms using Function Criteria

This leads us to our main theorem which shows we can generate a translation.

Theorem 3.24. The following hold:

1. If ∆; [η]Γ ` t : [η]T satisfies the function criteria and the translation invariants, then

there exists a t̂ such that ∆; Ξ; Γ,ΓΞ ` t ϕ t̂ : T .

2. If ∆; [η]Γ;T ′ ` E ↘ [η]T satisfies the function criteria and the transition invariants,

then there exists an Ê such that ∆; Ξ; Γ,ΓΞ;T ′ ` E ϕ Ê ↘ T .

Proof. By mutual induction on ∆; [η]Γ ` t : [η]T and ∆; [η]Γ; [η]T ′ ` E ↘ [η]T . We provide

the important cases of Statement 1.

Statement 1

By inversion on ∆; [η]Γ ` t : [η]T , we have

∆; [η]Γ ` h : T ′ ∆; [η]Γ;T ′ ` E ↘ T ′′

∆; [η]Γ ` h ? E : [η]T

114 CHAPTER 3. NORMALISATION

where [η]T = T ′′. We proceed by case analysis on the head h.

Case:
∆; [η]Γ ` t : Fc(µF) ~C

∆; [η]Γ ` c t : µF ~C

E = · and T ′ = T ′′ by inversion on ∆; [η]Γ;T ′ ` E ↘ T ′′.

T 6= X ~C for an inductive X by the translation invariants.

Thus T = T ′′ = µF ~C

∆; Ξ; Γ,ΓΞ ` t ϕ t̂ : Fc(µF) ~C by induction hypothesis.

∆; Ξ; Γ,ΓΞ ` c t ϕ inµ (inc t̂) : µF ~C by rules of translation.

Case:
[η]Γ(x) = T ′

∆; [η]Γ ` x : T ′

Let Γ(x) = T1 where [η]T1 = T ′. We proceed by subcase analysis on the variable x.

Subcase: T1 = Π
−−→
u:U.S → X ~C and x is the corecursive call fX

E = ~C ′ t′ where ∆ ` Ci : Ui and ∆; [η]Γ ` t′ : [η]S by function criteria.

∆; Ξ; Γ,ΓΞ ` t′ ϕ t̂
′ : S by induction hypothesis

Thus, ∆; Ξ; Γ,ΓΞ ` x ~C ′ t′ ϕ x ~C ′ t̂′ : X ~C ′.

Subcase: T1 = Π
−−→
u:U.X ~C → S and x is the recursive call fX .

E = ~C ′ t′ E ′ where ∆; [η]Γ ` t′ : [
−−→
C ′/u]([η]X ~C)

and ∆; [η]Γ; [
−−→
C ′/u]S ′ ` E ′ ↘ T ′′ where S ′ = [η]S by the function criteria.

t′ ≺ind p for the pattern guard p by the function criteria.

t′ = h′ ? E ′′ and ∆; [η]Γ ` h′ ? E ′′ : [η]X [
−−→
C ′/u]~C and ∆; [η]Γ ` h′ : S0

and ∆; [η]Γ;S0 ` E ′′ ↘ [η]X [
−−→
C ′/u]~C by inversion on ∆; [η]Γ ` t′ : [

−−→
C ′/u]([η]X ~C).

h′ ∈ ϕ and ϕ(h′) = x where [η]Γ(x) = S0 by the translation invariants.

Note: S ′, S0, and T ′′ do not depend on variables in Ξ.

Thus, ∆; [η]Γ; [ηΞ][
−−→
C ′/u]S ′ ` E ′ ↘ [η]T ′′ and ∆; [η]Γ; [η]S0 ` E ′′ ↘ [η](X [

−−→
C ′/u]~C).

∆; Ξ; Γ,ΓΞ; [
−−→
C ′/u]S ` E ′ ϕ Ê

′ ↘ T ′′

3.5. FUNCTION CRITERIA ARE SUFFICIENT FOR THE TRANSLATION 115

and ∆; Ξ; Γ,ΓΞ;S0 ` E ′′ ϕ Ê
′′ ↘ X [

−−→
C ′/u]~C ′ by induction hypothesis (Statement 2)

liftΞ(T) : T ′′ → T by Lemma 3.15, as T only depends on corecursive variables.

Thus, ∆; Ξ; Γ,ΓΞ ` f ? ~C ′ (h′ E ′′) E ′ ϕ liftΞ(T) ? (f ? ~C (x ? Ê ′′) Ê ′) : T

Subcase: x is neither a recursive nor corecursive variable

∆; Ξ; Γ,ΓΞ;T ′ ` E ϕ Ê ↘ T ′′ by induction hypothesis (Statement 2).

liftΞ(T1) : T1 → [η]T1 by Lemma 3.15 as T1 only depends on recursive variables.

Thus, ∆; Ξ; Γ,ΓΞ ` x ? E ϕ liftΞ(T) ? (liftΞ(T1) ? x Ê) : T .

Case:
for each i ∆; [η]Γ, f :T ′ ` (qi 7→ ti) : T ′

∆; [η]Γ ` fun f.−−−→q 7→ t : T ′

∆; [η]Γ, f :[η]T ′; [η]T ′ ` qi ↘ ∆i; [η]Γi; [η]Ti and ∆i; [η]Γi ` ti : [η]Ti

by inversion on ∆; [η]Γ, f :T ′ ` (qi 7→ ti) : T ′.

We shall obtain translation of copattern judgment by subcase analysis on the structural

(co)recursiveness status of f .

Subcase: f is non-recursive

(· ↘ ∆; [η]Γ, f :[η]T ′; [η]T ′) =⇒∗ {qi ↘ ∆i; [η]Γi; [η]Ti}i by the function criteria.

(· ↘ ∆; Γ, f :T ′,ΓΞ;T ′;ϕ) =⇒∗−−→
q 7→t
{qi ↘ ∆i; Γ′i,ΓΞ;Ti;ϕi}i ŝ[·1 | · · · | ·n] by Lemma 3.23.

where Γ′i extends Γi and both Γ′i and Ti satisfy the translation invariants for Ξ and ϕi.

∆i; Ξ; Γ′i,ΓΞ ` ti ϕi
t̂i : Ti by induction hypothesis.

Thus, Ξ ` (· ↘ ∆; Γ, f :T ′,ΓΞ;T ′;ϕ) =⇒∗−−→
q 7→t
{qi ↘ ∆i; Γ′i,ΓΞ;Ti;ϕi}i ŝ[t̂1 | · · · | t̂n]

and so, ∆; Ξ; Γ,ΓΞ `f
−−−→
q 7→ t ϕ ŝ[t̂1 | · · · | t̂n] : T ′.

∆; Ξ; Γ,ΓΞ;T ′ ` Ê ↘ T ′′ by induction hypothesis (Statement 2).

Thus, ∆; Ξ; Γ ` (fun f.
−−−→
q 7→ t) ? E ϕ liftΞ(T) ? (ŝ[t̂1 | · · · | t̂n] ? Ê) : T .

Subcase: f is structurally recursive

(~u x · ↘ ∆,
−−→
u:U ; [ηΞ]Γ, f :[ηX]T ′0, x:[ηX]X ~C;S) =⇒∗ {qi ↘ ∆i; [ηΞ,X]Γi;Ti}i

and (· ↘ ∆; [ηΞ]Γ, f :T ′;T ′) =⇒∗ {~u x · ↘ ∆,
−−→
u:U ; [ηΞ]Γ, f :[ηX]T ′0, x:[ηX]X ~C;S}

116 CHAPTER 3. NORMALISATION

and T ′ = Π
−−→
u:U.µF ~C → S, where qi = ~u (ci pi) q

′
i and T ′0 = Π

−−→
u:U.X ~C → S

by the function criteria.

(~u x · ↘ ∆,
−−→
u:U ; [ηΞ,X]Γ, f :[ηΞ,X]T ′0, x:[ηΞ,X]X ~C; [ηΞ,X]S) =⇒∗ {qi ↘ ∆i; [ηΞ,X]Γi; [ηΞ,X]Ti}i

by weakening.

(~u x · ↘ ∆,
−−→
u:U ; [ηΞ,X](Γ, f :T ′0, x:X ~C); [ηΞ,X]S) =⇒

{~u (cj xj) · ↘ ∆,
−−→
u:U ; [ηΞ,X](Γ, f :T ′0, xj:Fj X ~C); [ηΞ,X]S}j

and for all j, (~u (cj xj) · ↘ ∆,
−−→
u:U ; [ηΞ,X](Γ, f :T ′0, xj:Fj X ~C); [ηΞ,X]S) =⇒∗ Qj

where
⋃
j Qj = {qi ↘ ∆i; [ηΞ,X]Γi; [ηΞ,X]Ti}i by Lemma 3.17.

for each j,

(~u (cj xj) · ↘ ∆,
−−→
u:U ; Γ, f :T ′0, xj:Fj X ~C,ΓΞ,X ;S;ϕ)

=⇒∗−−→
q 7→t
{qi ↘ ∆i; Γi,ΓΞ,X ;Ti;ϕi}i ŝj[·1 | · · · | ·n] where Γ′i extends Γi

and Γ′i ` Ti satisfy the translation invariants for Ξ, X and ϕi by Lemma 3.23.

∆i; Ξ; Γi,ΓΞ,X ` ti ϕi
t̂i : Ti by induction hypothesis.

Thus, Ξ, X ` (~u (cj xj) · ↘ ∆,
−−→
u:U ; Γ, f :T ′0, xj:Fj X ~C,ΓΞ,X ;S;ϕ)

=⇒∗−−→
q 7→t
{qi ↘ ∆i; Γi,ΓΞ,X ;Ti;ϕi}i t̂[·1 | · · · | ·n]

and so, ∆; Ξ; Γ,ΓΞ `f
−−−→
q 7→ t ϕ rec f, ι, ρ, ~u, x. casex of

−−−−−−−−−−−−−−−−→
inj xj 7→ ŝj[t̂1 | · · · | t̂n] : T ′.

∆; Ξ; Γ,ΓΞ;T ′ ` Ê ↘ T ′′ by induction hypothesis (Statement 2).

Thus, ∆; Ξ; Γ ` (fun f.
−−−→
q 7→ t) ? E ϕ

liftΞ(T) ? ((rec f, ι, ρ, ~u, x. casex of
−−−−−−−−−−−−−−−−→
inj xj 7→ ŝj[t̂1 | · · · | t̂n]) ? Ê) : T .

Subcase: f is structurally corecursive

(· ↘ ∆; [ηΞ]Γ, f :T ′;T ′) =⇒∗ {~u x · ↘ ∆,
−−→
u:U ; [ηΞ]Γ, f :[ηX]T ′0, x:S; [ηX]X ~C}

and (~u x · ↘ ∆,
−−→
u:U ; [ηΞ]Γ, f :[ηX]T ′0, x:S; [ηX]X ~C) =⇒∗ {qi ↘ ∆i; [ηΞ]Γi; [ηX]Ti}i

and T ′ = Π
−−→
u:U.S → νF ~C, where qi = ~u pi .di q

′
i and T ′0 = Π

−−→
u:U.S → X ~C

by the function criteria.

(~u x · ↘ ∆,
−−→
u:U ; [ηΞ,X]Γ, f :[ηΞ,X]T ′0, x:S; [ηΞ,X]X ~C) =⇒∗ {qi ↘ ∆i; [ηΞ,X]Γi; [ηΞ,X]Ti}i

by weakening.

(~u x · ↘ ∆,
−−→
u:U ; [ηΞ,X](Γ, f :T ′0, x:S); [ηΞ,X](X ~C)) =⇒

{~u x .dj ↘ ∆,
−−→
u:U ; [ηΞ,X](Γ, f :T ′0, x:S); [ηΞ,X](Fj X ~C)}j

3.6. COMMUTING TRANSLATION AND EVALUATION 117

and for all j, we have ~u x .dj ↘ ∆,
−−→
u:U ; [ηΞ,X](Γ, f :T ′0, x:S); [ηΞ,X](Fj X ~C) =⇒∗ Qj

where
⋃
j Qj = {qi ↘ ∆i; [ηΞ,X]Γi; [ηΞ,X]Ti}i by Lemma 3.19.

for each j,

(~u x .dj ↘ ∆,
−−→
u:U ; Γ, f :T ′0, x:S,ΓΞ,X ; (Fj X ~C);ϕ) =⇒∗−−→

q 7→t
{qi ↘ ∆i; Γ′i,ΓΞ,X ;Ti}i ŝj[·1 | · · · | ·n] where Γ′i extends Γi

and Γ′i ` Ti satisfy the translation invariants for Ξ, X and ϕi by Lemma 3.23.

∆i; Ξ; Γ′i,ΓΞ,X ` ti ϕi
t̂i : Ti by induction hypothesis.

Thus, Ξ, X ` (~u x .dj ↘ ∆,
−−→
u:U ; Γ, f :T ′0, x:S,ΓΞ,X ; (Fj X ~C);ϕ) =⇒∗−−→

q 7→t
{qi ↘ ∆i; Γ′i,ΓΞ,X ;Ti}i ŝj[t̂

′
1 | · · · | t̂′n]

and so, ∆; Ξ; Γ,ΓΞ `f
−−−→
q 7→ t ϕ corec f, ι, ρ, ~u, x. (ŝ1; . . . ; ŝn) : T ′.

∆; Ξ; Γ,ΓΞ;T ′ ` Ê ↘ T ′′ by induction hypothesis (Statement 2).

Thus, ∆; Ξ; Γ ` (fun f.
−−−→
q 7→ t) ?E ϕ liftΞ(T) ? ((corec f, ι, ρ, ~u, x. (ŝ1; . . . ; ŝn)) ? Ê) : T .

3.6 Commuting Translation and Evaluation

The last part of our setup requires us to show the translation is normalisation preserving.

To do so, we bind the number of steps a term can take in the source language with the

number of steps its translation can take. Since the latter will be finite, so will be the former.

However, as our translation introduces operators ρ and lift(T) which are instantiated with

closures, it is not the case in general that translation will commute with evaluation. That

is, if s −→ t and ` s ŝ : T and ` t t̂ : T , then it is not necessarily true that ŝ −→+ t̂.

We discussed that problem in Example 7: we define nested functions:

fun f.

| zero ⇒ fun g. y ⇒ y

| suc x ⇒ fun g. y ⇒ add * x (f * x y)

They would translate into the program:

rec f, ι, ρ, x0. case x0 of

| in1 x ⇒ λy.y

| in2 x ⇒ λy.add * (ρ * x) (f * x y)

118 CHAPTER 3. NORMALISATION

But if we were to apply the original program to the number 2, it would reduce to fun g.

y ⇒ add * 2 (f * 2 y), yielding a translation λy.add * 2 (f * 2 y). However, if we

apply the number 2 to the first translated program, we instead get λy.add * ((λz.z) *

2) (f * 2 y). The two translations are thus different.

We can however see that both programs will still behave the same. When applied to

the same value, they will still yield the same result. As such, we can establish a simulation

between the two. The simulation we use is the relation we defined for our logical relation

JT K∗(θ; η) from Section 3.2. The saturation was defined as follows:

{t1 ≥ t2 | ∃v1, v2 such that t1 −→n+k v1 and t2 −→n v2 and v1 ≥ v2 ∈ JT K(θ; η)}

This relation establishes computational equivalence and binds the number of steps the left-

hand side takes with the number of steps the right-hand side takes. A key property we need

for this relation is precongruence.

Precongruence ensures that the relation behaves well with respect to the structure of

the language. For each term construct C(·1, . . . , ·n), if we have ti ≥ t′i ∈ JTiK(θi; ηi) for

i = 1, . . . , n, then we must have C(t1, . . . , tn) ≥ C(t′1, . . . , t
′
n) ∈ JT K(θ; η). For example, if

t1 ≥ t2 ∈ JSK(θ; η) and E1 ≥ E2 ∈ JS ↘ T K(θ; η), then t1 ? E1 ≥ t2 ? E2 ∈ JT K(θ; η). Now,

if we want to the same for λ-abstractions, we need need terms a relation over open terms as

the body of λ-abstractions λx. depend on a variable x.

Let us generalize our simulation to open terms. We obtain the generalization by simply

abstracting over all closing substitutions.

Definition 3.8 (Open simulation). We define the open simulation between terms t1 and t2

using the judgment ∆; Ξ; Γ ` t1 ≥ t2 : T . This judgment states that for all substitutions

` θ : ∆ and η ∈ JΞK and σ ∈ JΓK(θ; η) we have [θ;σ]t1 ≥ [θ;σ]t2 ∈ JT K∗(θ; η).

Similarly define the open simulation of spines E1 and E2 as the judgment ∆; Ξ; Γ;S `
E1 ≥ E2 ↘ T . This judgment states that for all substitutions ` θ : ∆ and η ∈ JΞK and

σ ≥ σ ∈ JΓK(θ; η), we have [θ;σ]E1 ≥ [θ;σ]E2 ∈ JS ↘ T K∗(θ; η).

We note that our main statement for normalisation (Theorem 3.13) is exactly reflexivity

of open simulation.

3.6. COMMUTING TRANSLATION AND EVALUATION 119

Now, we can properly define precongruence. A proof of precongruence for simulation is

usually pretty involved, especially given the size of our language. One of the main proof

techniques to achieve that is Howe’s method which builds an auxiliary relation from the

simulation in such a way that it is easily proven to be precongruent. Then, it requires to

show that the two relations are equivalent. We provide a more in depth description of the

method in our case study in Chapter 4. For the purpose of this chapter, we omit such proof

and instead conjecture precongruence. We specifically state two cases:

Conjecture 3.25 (Precongruence case for application). If ∆; Ξ; Γ ` t1 ≥ t2 : S and

∆; Ξ; Γ;S ` E1 ≥ E2 ↘ T then ∆; Ξ; Γ ` t1 ? E1 ≥ t2 ? E2 : T .

Conjecture 3.26 (Precongruence case for λ-abstraction). If ∆; Ξ; Γ, x:S ` t1 ≥ t2 : T , then

∆; Ξ; Γ ` λx.t1 ≥ λx.t2 : S → T .

Conjecture 3.27 (Precongruence). The simulation ≥ is a precongruence.

Translation Preserves Evaluation

Now that we have a simulation to properly bind our evaluation, we shall move on to prove

that terms related by evaluation are, when translated, related by simulation. This is done

by establishing several lemmas about matching, evaluation, simulation and their relation to

the translation.

We first recall that ϕ associates patterns from the source languages that are valid terms

for recursive calls to the variable in the target language they correspond to. Thus, recursive

calls in the target language will not be applied to a translation of their original terms but to

those variables instead. If we look at the resulting substitution of a matching in the target

language, it needs to have instantiations for those variables as well as the original pattern

variables as those can occur in the right-hand side.

We thus define a version of (co)pattern matching that takes the mapping ϕ into account

to adequately output a target level substitution. The enhanced pattern matching is denoted

by the judgment v =ϕ [θ;σ]p. The inference rules for it appear in Figure 3.14. It works

very much like our original matching that was define in Figure 2.12. We simply make

120 CHAPTER 3. NORMALISATION

v =ϕ [θ;σ]p

v =ϕ [·; v/x]x

v =ϕ [θ;σ]p c p 6∈ ϕ
c v =ϕ [θ;σ](c p)

v1 =ϕ [θ1;σ1]p1 v1 =ϕ [θ1;σ1]p1 (p1, p2) 6∈ ϕ
(v1, v2) =ϕ [θ1, θ2;σ1, σ2](p1, p2)

℘ =ϕ [·; ·]℘
v =ϕ [θ;σ]p ϕ(c p) = x

c v =ϕ [θ;σ, (c v)/x](c p)

v1 =ϕ [θ1;σ1]p1 v1 =ϕ [θ1;σ1]p1 ϕ(p1, p2) = x

(v1, v2) =ϕ [θ1, θ2;σ1, σ2, (v1, v2)/x](p1, p2)

v =ϕ [θ;σ]p pack 〈u, p〉 6∈ ϕ
pack 〈C, v〉 =ϕ [θ, C/u;σ](pack 〈u, p〉)

v =ϕ [θ;σ]p ϕ(pack 〈u, p〉) = x

pack 〈C, v〉 =ϕ [θ, C/u;σ, pack 〈C, v〉 /x](pack 〈u, p〉)

Figure 3.14: Enhanced (co)pattern matching

an additional check in our inductive cases. If the pattern occurs in ϕ, then we add an

additional substitution for its variable. As such, the substitution will provide instantiations

for all variables in ϕ. The judgment for enhanced copattern matching E =ϕ [θ;σ]q@E ′ works

the same way our original one does, but simply appeals to the enhanced pattern matching

judgment instead of the original one.

Before we move on to proving the translation is normalisation preserving, we need to prove

some lemmas about (co)pattern matching. The following statements involve the original

source language matching E = [θ;σ]q@E and v = [θ;σ]p without any ϕ, but they hold

equivalently for our enhanced matching judgments.

Lemma 3.28 (Uniqueness of matching). If E = [θ1;σ1]q@E1 and E = [θ2;σ2]q@E2, then

θ1 = θ2 and σ1 = σ2 and E1 = E2.

Proof. By induction on E = [θ1;σ1]q@E1 and inversion on E = [θ2;σ2]q@E2.

Lemma 3.29 (Inversion of pattern matching). The following hold:

1. If v = [θ;σ](p[℘]), then v = [θ;σ, ℘/x](p[x]).

2. If v = [θ;σ](p[(x1, x2)]), then v = [θ;σ′](p[x]) where σ = σ′′, v1/x1, v2/x2 and σ′ =

σ′′, (v1, v2)/x for some σ′′.

3.6. COMMUTING TRANSLATION AND EVALUATION 121

3. If v = [θ;σ](q[pack 〈u, x′〉]), then v = [θ′;σ′](q[x]) where σ = σ′′, v/x′ and σ′ =

σ′′, (pack 〈C, v〉)/x for some σ′′ and θ = θ′, C/u.

4. If v = [θ;σ](q[c x′]), then v = [θ;σ′](q[x]) where σ = σ′′, v/x′ and σ′ = σ′′, (c v)/x for

some σ′′.

Proof. All statements are proven by induction on the matching judgments using linearity of

copatterns.

Lemma 3.30 (Inversion of copattern matching). The following hold:

1. If E = [θ;σ](q x)@E ′, then E = [θ;σ′]q@(v E ′) where σ = σ′, v/x.

2. If E = [θ;σ](q u)@E ′, then E = [θ′;σ]q@(C E ′) where θ = θ′, C/u.

3. If E = [θ;σ](q .d)@E ′, then E = [θ;σ]q@(.d E ′).

4. If E = [θ;σ](q[℘])@E ′, then E = [θ;σ, ℘/x](q[x])@E ′.

5. If E = [θ;σ](q[(x1, x2)])@E ′, then E = [θ;σ′](q[x])@E ′ where σ = σ′′, v1/x1, v2/x2 and

σ′ = σ′′, (v1, v2)/x for some σ′′.

6. If E = [θ;σ](q[pack 〈u, x′〉])@E ′, then E = [θ′;σ′](q[x])@E ′ where σ = σ′′, v/x′ and

σ′ = σ′′, (pack 〈C, v〉)/x for some σ′′ and θ = θ′, C/u.

7. If E = [θ;σ](q[c x′])@E ′, then E = [θ;σ′](q[x])@E ′ where σ = σ′′, v/x′ and σ′ =

σ′′, (c v)/x for some σ′′.

Proof. Statements 1 to 3 are proven by case analysis on q and induction on the matching

judgments. The other statements are proven by induction on the matching judgments,

linearity of copatterns, and Lemma 3.29.

Lemma 3.31 (Coverage splits preserve matching). If (q ↘ ∆; Γ;T) =⇒∗ Q and for some

(q′ ↘ ∆′; Γ′;T ′) ∈ Q we have E = [θ;σ]q′@E ′, then E = [θ′;σ′]q@E ′′ for some θ′ and σ′ and

E ′′.

Proof. By induction on (q ↘ ∆; Γ;T) =⇒∗ Q. The inductive case is proved by case analysis

on the single step refinement (q ↘ ∆; Γ;T) =⇒ Q′ using Lemma 3.30.

122 CHAPTER 3. NORMALISATION

Lemma 3.32 (Equivalence of (co)pattern matching judgments). The following hold:

1. v = [θ;σ]p if and only if for all ϕ there is a σ′ such that v =ϕ [θ;σ′]p.

2. If E = [θ;σ]q@E ′ if and only if for all ϕ there is a σ′ such that E =ϕ [θ;σ′]q@E ′.

Proof. Each statement is proved by induction on the matching judgment.

We now can move on to prove that translation preserves normalisation. We first start

with translation of copatterns. The following lemma states that matching on a copattern

refinement is the same has stepping to translation of the right-hand sides of branches in

the translation of the copattern. That is, that translation of copattern is well-behaved with

respect to operational semantics.

Lemma 3.33 (Copattern translation preserves matching). Suppose q ↘ ∆; Γ;T ;ϕ =⇒∗B
Q t̂[·1 | · · · | ·n] and T0 `v E0 ↘ T ′ and E0 =ϕ [θ;σ]q@E ′ and for all (qi 7→ ti) ∈ B

we have ∆i; Ξ; Γi ` ti t̂i : Ti. If there is some (qi ↘ ∆i; Γi;Ti;ϕi) ∈ Q such that

E0 =ϕi
[θi;σi]qi@E

′
i, then

[θ; σ̂, σΞ]t̂[t̂1 | · · · | t̂n] ? [σΞ]Ê ′ −→∗ [θi; σ̂i, σΞ]t̂i ? [σΞ]Ê ′i

where ` σ σ̂ : ∆ and ` σi σ̂i : ∆ and Ξ; ΓΞ;T ` E ′ Ê ′ ↘ T ′ and Ξ; ΓΞ;Ti ` E ′i
Ê ′i ↘ T ′.

Proof. By induction on (q ↘ ∆; Γ;T ;ϕ) =⇒∗Ξ;B Q t̂.

Case:
(q 7→ t) ∈ B ∆; Ξ; Γ ` t : T t̂

q ↘ ∆; Γ;T ;ϕ =⇒∗Ξ;B {q ↘ ∆; Γ;T ;ϕ} t̂

θ = θi and σ = σi and E ′ = Ei by determinacy of matching.

[θ; σ̂, σΞ]t̂ ? [σΞ]Ê ′ −→∗ [θ; σ̂, σΞ]t̂ ? [σΞ]Ê ′ by reflexive rule of −→∗

Case:
q ↘ ∆; Γ;T =⇒ Q′ s[·1 | · · · | ·n] for all qi ∈ Q′, qi =⇒∗

Ξ;~b
Qi t̄i

q ↘ ∆; Γ;T =⇒∗
Ξ;~b

⋃
iQi s[t̄1 | · · · | t̄n]

We proceed by case analysis on q ↘ ∆; Γ;T =⇒ Q′ s[·1 | · · · | ·n]. We showcase some of

3.6. COMMUTING TRANSLATION AND EVALUATION 123

the interesting subcases.

Subcase: q ↘ ∆; Γ; Πu:U.T =⇒ {q u↘ ∆, u:U ; Γ;T} Λu.·

E0 =ϕ [θ′;σ′](q u)@E ′′ as coverage splits preserve matching (Lemma 3.31)

E ′ = C E ′′ and θ′ = θ, C/u and σ′ = σ by inversion of copat. (Lemmas 3.28 and 3.30)

[θ; σ̂, σΞ](Λu.t̄1) ? C [σΞ]Ê ′′

−→ [θ, C/u; σ̂, σΞ]t̄1 ? [σΞ]Ê ′′ by stepping rule

−→∗ [θi; σ̂i, σΞ]t̂i ? [σΞ]Ê ′i) by induction hypothesis

Subcase: q ↘ ∆; Γ;X ~C =⇒ {q .dj ↘ ∆; Γ;FjX ~C}j ιX ? ~C (·1; . . . ; ·n)

E0 =ϕ [θ′;σ′](q .dj)@E
′′ as coverage splits preserve matching (Lemma 3.31)

E ′ = .di E
′′ and θ′ = θ and σ′ = σ by inversion of copat. (Lemmas 3.28 and 3.30)

[θ; σ̂, σΞ]ιX ? [θ]~C [θ; σ̂, σΞ](t̄1; . . . ; t̄n) .outν .outj [σΞ]Ê ′′

= Λ~u.λx.inν x ? [θ]~C [θ; σ̂, σΞ](t̄1; . . . ; t̄n) .outν .outj [σΞ]Ê ′′ by definition of σΞ

−→ inν [θ; σ̂, σΞ](t̄1; . . . ; t̄n) ? .outν .outj [σΞ]Ê ′′

−→ [θ; σ̂, σΞ](t̄1; . . . ; t̄n) ? .outj [σΞ]Ê ′′

−→ [θ; σ̂, σΞ]t̄j ? [σΞ]Ê ′′ by stepping rules

−→∗ [θi; σ̂i, σΞ]t̂i ? [σΞ]Ê ′i by induction hypothesis

Subcase:
∆ ` C1 = C2 ↘ ∆′ # 6∈ ∆′

q[x]↘ ∆; Γ, x : C1=C2;T =⇒ {q[℘]↘ ∆′; Γ;T} eqx with ·

E =ϕ [θ′;σ′](q[℘])@E ′′ as coverage splits preserve matching (Lemma 3.31)

E ′ = E ′′ and θ′ = θ and σ′ = σ, ℘/x by inversion of copat. (Lemmas 3.28 and 3.30)

[θ; σ̂, ℘/x, σΞ](eqx with h̄1 Ē1) ? [σΞ]Ê ′′

= eq℘ with [θ; σ̂, ℘/x, σΞ](h̄1 Ē1) ? [σΞ]Ê ′′

−→ [θ; σ̂, ℘/x, σΞ]t̄1 ? [σΞ]Ê ′′ by stepping rules

= [θ; σ̂, σΞ]t̄1 ? [σΞ]Ê ′′ as t̄1 does not depend on x

−→∗ [θi; σ̂i, σΞ]t̂i ? [σΞ]Ê ′i by induction hypothesis

124 CHAPTER 3. NORMALISATION

Subcase:
∆ ` C1 = C2 ↘ ∆′ # ∈ ∆′

q[x]↘ ∆; Γ, x : C1=C2;T =⇒ {q[℘]↘ ∆′; Γ;T} eq abortx

Thus, E0 =ϕ [θ;σ](q[x])@E ′ and E0 =ϕ [θ′;σ′](q[℘])@E ′′.

θ′ = θ and σ = σ′, ℘/x and E ′ = E ′′ by inversion of copat. (Lemma 3.30).

` ℘ : [θ]C1 = [θ]C2 by typing.

` [θ]C1 = [θ]C2 by inversion on typing.

` θ : ∆ implies ` θ : ∆′ by Req 3.

∈ · since # ∈ ∆′ by typing of substitutions.

This is a contradiction. Thus, this case is impossible.

Subcase:
q[x]↘ ∆; Γ, x : Σu:U.T ′;T =⇒ {q[pack 〈u, x′〉]↘ ∆, u:U ; Γ, x′:T ′;T}

 unpackx as 〈u, x′〉 in ·

E =ϕ [θ′;σ′](q[pack 〈u, x′〉])@E ′′ as coverage splits preserve matching (Lemma 3.31)

E ′ = E ′′ and θ′ = θ and σ′ = σ, (pack 〈C, v〉)/x by inversion of copat. (Lemmas 3.28

and 3.30)

Ξ; ΓΞ ` v : S v̂ by inversion on Ξ; ΓΞ ` σ′ σ̂′ : Γ, x′:T ′

For convenience, let σ̂′ = σ̂, pack 〈C, [σΞ]v̂〉 /x, [σΞ]v̂/x′, σΞ and σ̂′′ = σ̂, [σΞ]v̂/x′, σΞ

[θ; σ̂, (pack 〈C, [σΞ]v̂〉)/x, σΞ](unpackx as 〈u, x′〉 in t̄1) ? [σΞ]Ê ′′

= unpack (pack 〈C, [σΞ]v̂〉) as 〈u, x′〉 in [θ; σ̂, (pack 〈C, [σΞ]v̂〉)/x, σΞ]t̄1 ? [σΞ]Ê ′′

−→ [θ, C/u; σ̂′]t̄1 ? [σΞ]Ê ′′

= [θ, C/u; σ̂′′]t̄1 ? [σΞ]Ê ′′ as t̄1 does not depend on x

−→∗ [θi; σ̂i, σΞ]ti ? [σΞ]Ê ′i by induction hypothesis

Subcase:
q[x]↘ ∆; Γ, x : X ~C;T =⇒ {q[cj x′]↘ ∆; Γ, xj:FjX ~C;T}j

 case ιX ? ~C x of
−−−−−−−→
ini xi 7→ ·i

E =ϕ [θ′;σ′](q[cj xj])@E
′′ as coverage splits preserve matching (Lemma 3.31)

E ′ = E ′ and θ′ = θ and σ′ = σ, (cj vj)/x by inversion of copat. (Lemmas 3.28 and 3.30)

Ξ; ΓΞ ` vj v̂j : S by inversion on Ξ; ΓΞ ` σ′ σ̂′ : Γ, xj:FjX ~C

For convenience, let σ̂′ = σ̂, (inµ (inj [σΞ]vj))/x, σΞ and σ̂′′ = σ̂, [σΞ]vj/xj, σΞ

3.6. COMMUTING TRANSLATION AND EVALUATION 125

[θ; σ̂′](case ιX ? ~C x of
−−−−−−−→
ini xi 7→ t̄i) [σΞ]Ê ′′

= case ((Λ~u.λx.outµ x) ? ~C (inµ (inj [σΞ]vj))) of
−−−−−−−−−−−→
inj xj 7→ [θ; σ̂′]t̄j ? [σΞ]Ê ′′

−→∗ case outµ (inµ (inj [σΞ]vj)) of
−−−−−−−−−−−→
ini xi 7→ [θ; σ̂′]t̄i ? [σΞ]Ê ′′

−→ case inj [σΞ]vj of
−−−−−−−−−−−→
ini xi 7→ [θ; σ̂′]t̄i ? [σΞ]Ê ′′

−→ [θ; σ̂′, vi/xi]t̄j ? [σΞ]Ê ′′

= [θ; σ̂′′]t̄j ? [σΞ]Ê ′′ as t̄j does not depend on x

−→∗ [θi; σ̂i, σΞ]t̂i ? Ê
′
i by induction hypothesis

Lemma 3.34. If ` t : T , then ` lift·(T) t ≥ t : T .

Proof. By induction on T .

Lemma 3.35 (Precongruence of ≥ on terms with holes). If ∆i; Ξi; Γi ` ti ≥ t′i : Ti and

∆; Ξ; Γ ` t[·1 | · · · | ·n] : T , then we have ∆; Ξ; Γ ` t[t1 | · · · | tn] ≥ t[t′1 | · · · | t′n] : T .

Proof. By induction on ∆; Ξ; Γ ` t[·1 | · · · | ·n] : T and by appeal to precongruence for ≥
(Conjecture 3.27).

The next lemma shows that commuting translation and substitutions results in similar

terms. In order for this statement to hold, we need to limit ourselves to substitutions σ that

agree with ϕ. By agreeing, we mean that if ϕ(v) = x, then σ(x) = v. We note that by

the very definition of enhanced matching E =ϕ [θ;σ]q@E ′, the resulting substitution σ will

agree with ϕ.

Lemma 3.36 (Commuting substitutions with translation). Suppose ∆′ ` θ : ∆ and ∆′; [θ]Ξ; Γ′ `
σ σ̂ : [θ]Γ, where σ agrees with ϕ. The following hold:

1. If ∆; Ξ; Γ,ΓΞ ` t ϕ t̂ : T and ∆′; [θ]Ξ; Γ′,Γ[θ]Ξ ` [θ;σ]t t̂′ : [θ]T , then we have

∆′; [θ]Ξ; Γ′,Γ[θ]Ξ ` [θ; σ̂]t̂ ≥ t̂′ : [θ]T .

2. If ∆; Ξ; Γ,ΓΞ;S ` E ϕ Ê : T and ∆′; [θ]Ξ; Γ′,Γ[θ]Ξ; [θ]S ` [θ;σ]E Ê ′ : [θ]T , then

we have ∆′; [θ]Ξ; Γ′,Γ[θ]Ξ; [θ]S ` [θ; σ̂]Ê ≥ Ê ′ : [θ]T .

126 CHAPTER 3. NORMALISATION

Proof. By induction on the derivations ∆; Ξ; Γ ` t t̂ : T and ∆; Ξ; Γ,ΓΞ;S ` E Ê ↘ T .

Case:
∆; Ξ; Γ `f

−−−→
q 7→ t ϕ t̂ : S ∆; Ξ; Γ;S ` E ϕ Ê : [η]T

∆; Ξ; Γ ` (fun f.
−−−→
q 7→ t) ? E ϕ liftΞ(T) ? (t̂ ? Ê) : T

By definition of substitution, and inversion on ` [θ;σ]t t̂′ : [θ; η]T , we have

∆′; Ξ; Γ′ `f
−−−−−−−→
q 7→ [θ;σ]t t̂′ : [θ]S ∆′; Ξ; Γ′; [θ]S ` [θ;σ]E Ê ′ : [θ; η]T

∆′; Ξ; Γ′ ` (fun f.
−−−−−−−→
q 7→ [θ;σ]t) ? [θ;σ]E lift·([θ]T) ? (t̂′ ? Ê ′) : [θ]T

∆′; Ξ; Γ′;S ` [θ]S ` [θ; σ̂]Ê ≥ Ê ′ : [θ; η]T by induction hypothesis (Statement 2).

We now proceed by subcase analysis on ∆; Ξ; Γ `f
−−−→
q 7→ t ϕ t̂ : S. The methodology of the

proof remains the same across subcases, so we only show a single one.

Subcase:

f is struct. rec.
⋃
iQi = {qj ↘ ∆j; Γj;Tj;ϕj}j Bi = {q 7→ t | q ∈ Qi}

for all i, Ξ, X ` (~u (ci xi))↘ ∆,
−−→
u:U ; Γ,ΓX , xi:FiX ~C;T ;ϕ, xi:=xi =⇒∗Bi

Qi t̂i

∆; Ξ; Γ `f
−−−→
q 7→ t ϕ rec fX , ιX , ρX , ~u, x. casex of

−−−−−−−→
ini xi 7→ t̂i : Π

−−→
u:U.µF ~C → T

By inversion on copattern translation, we have

q ↘ ∆,

−−→
u:U ; Γ,ΓX , xi:Fi X ~C;T ;ϕ, xi:=xi =⇒∗Bi

Qi t̂i[·1 | · · · | ·n]

for all (qj ↘ ∆j; Γj;Tj;ϕj) ∈ Qi, ∆j; Ξ; Γj ` tj ϕj
t̂′j : Tj

Ξ, X ` q ↘ ∆,
−−→
u:U ; Γ,ΓX , xi:Fi X ~C;T ;ϕ, xi:=xi =⇒∗Bi

Qi t̂i[t̂
′
1 | · · · | t̂′n]

∆′j ` θ : ∆j and ∆′j; Γ′j ` σ : [θ]Γj for some ∆′j and Γ′j as copat. are stable under subst.

(Lemma 2.5).

Thus, ∆′j; Ξ, X; Γ′j ` [θ;σ]t′j t̂′′j : [θ]Tj for some t̂′′j .

∆′j; Ξ, X; Γ′j ` [θ;σ]t̂′j ≥ t̂′′j : [θ]Tj by induction hypothesis.

Thus, t̂ is rec fX , ιX , ρX , ~u, x. casex of
−−−−−−−−−−−−−−−−→
ini xi 7→ t̂i[t̂

′
1 | · · · | t̂′n].

while t̂′ is rec fX , ιX , ρX , ~u, x. casex of
−−−−−−−−−−−−−−−−→
ini xi 7→ t̂i[t̂

′′
1 | · · · | t̂′′n].

∆′; Ξ; Γ′ ` t̂ ≥ t̂′ : [θ]S by precongruence (Lemma 3.35).

∆′; Ξ; Γ′ ` lift([θ]T) ? (t̂ ? [θ; σ̂]Ê) ≥ lift([θ]T) ? (t̂′ ? Ê ′) : [θ]T by precongruence (Conj. 3.27).

3.6. COMMUTING TRANSLATION AND EVALUATION 127

Main Result

This leads us to our main result. That is, if a term satisfies the function criteria, then it

is terminating. Our main theorem simply states that if a term s steps to t in the source

language and both s and t have translations to our core calculus, then the number of steps

the translation of s takes to reach a value is strictly higher than the number of steps the

translation of t. Then, each step taken from s has a translation taking an ever smaller

number of steps before reaching a value. Since each of those numbers are finite, it will hold

that s has a finite number of step before reaching a value.

Theorem 3.37. If s −→ t and ` s ŝ : T and ` t t̂ : T , then there are values v and w

such that ŝ −→n v and t̂ −→m w and n > m.

Proof. We know by Theorem 3.13 that there are values v and w such that ŝ −→∗ v and

t̂ −→∗ w. It suffices to establish the bounds. We proceed by induction on the derivation

s −→ t. The only case that cannot be handled by a simple appeal to the induction hypothesis

is the function case that we showcase here.

Case:
E value E = [θ;σ]qi@E

′ σ′ = σ, (fun f.
−−−→
q 7→ t)/f

(fun f.
−−−→
q 7→ t) ? E −→ [θ;σ′]ti ? E

′

By inversion on the translation of the left-hand side, we have

∆; Ξ; Γ `f ~b ϕ t̂ : S ∆; Ξ; Γ;S ` E ϕ Ê : [ηΞ]T

∆; Ξ; Γ ` (fun f.~b) ? E ϕ liftΞ(T) ? (t̂ ? Ê) : T

while the translation judgment for the right-hand side is ` [θ;σ′]ti t̂′ : T Inversion on the

judgment ∆; Ξ; Γ `f ~b ϕ t̂ : S leads to three possible subcases:

Subcase:
f is non rec. Ξ ` · ↘ ∆; Γ, f :T ;T ;ϕ =⇒∗−−→

q 7→t
{qj ↘ ∆j; Γj;Tj;ϕj}j t̂

∆; Ξ; Γ `f
−−−→
q 7→ t ϕ t̂ : T

128 CHAPTER 3. NORMALISATION

By inversion on Ξ ` · ↘ ∆; Γ, f :T ;T ;ϕ =⇒∗−−→
q 7→t
{qj ↘ ∆j; Γj;Tj;ϕj}j t̂, we have

q ↘ ∆; Γ;T ;ϕ =⇒∗−−→
q 7→t

Q t̂[·1 | · · · | ·n]

for all (qi ↘ ∆i; Γi;Ti;ϕi) ∈ Q, ∆i; Ξ; Γi ` ti ϕi
t̂i : Ti

Ξ ` q ↘ ∆; Γ;T ;ϕ =⇒∗−−→
q 7→t

Q t̂[t̂1 | · · · | t̂n]

t̂ ? Ê −→∗ [θ; σ̂]t̂i ? Ê
′ as copattern translation preserves matching (Lemma 3.33).

` [θ; σ̂]t̂i ? Ê
′ ≥ t̂′ : T by commuting of substitution with translation (Lemma 3.36).

` lift(T) ? ([θ; σ̂]t̂i ? Ê
′) ≥ t̂′ : T as terms are related to their lifting (Lemma 3.34).

The final result is obtained by unfolding the definition of ≥.

Subcase:

f is struct. rec.
⋃
iQi = {qj ↘ ∆j; Γj;Tj;ϕj}j

for all i, Ξ, X ` (~u (ci xi))↘ ∆,
−−→
u:U ; Γ,ΓX , xi:FiX ~C;T ;ϕ, xi:=xi =⇒∗−−−→

qi 7→ti
Qi t̂i

∆; Ξ; Γ `f
−−−→
q 7→ t ϕ rec fX , ιX , ρX , ~u, x. casex of

−−−−−−−→
ini xi 7→ t̂i : Π

−−→
u:U.µF ~C → T

Let g = rec fX , ιX , ρX , ~u, x. casex of
−−−−−−−→
ini xi 7→ t̂i.

E = ~C (cj v
′) E ′′ by inversion on E =ϕ [θ;σ]qi@E

′.

~C (inµ (inj v̂
′)) Ê ′′ by inversion on the translation for E.

Thus, g ? Ê −→∗ [
−−→
C/u; g/fX , σX , (inj v̂

′)/x, v̂′/xj]t̂j ? Ê
′′.

[
−−→
C/u; g/fX , σX , (inj v̂

′)/x, v̂′/xj]t̂j Ê
′′ −→∗ [θ; g/fX , σ̂, σX]t̄i ? Ê

′ by Lemma 3.33.

` [θ; g/fX , σ̂, σX]t̄i ? Ê
′ ≥ t̂′ : T by Lemma 3.36.

` lift(T) ? ([θ; g/fX , σ̂, σX]t̄i ? Ê
′) ≥ t̂′ : T by Lemma 3.34.

The proof for the corecursive case is very similar and thus is omitted.

Corollary 3.38. If ` t : T satisfies the function criteria, then there is a `v v : T such that

t −→∗ v.

Proof. ` t t̂ : T for some t̂ as function criteria imply translation (Theorem 3.24).

By the progress theorem (2.19), either there is a value v such that t −→∗ v or there exists

an infinite sequence such that t −→ t1 −→ t2 −→ . . . −→ ti −→ . . .

3.7. RELATED WORK 129

Case: t −→ t1 −→ t2 −→ . . . −→ ti −→ . . .

` ti t̂i : T for each ti as evaluation preserves function criteria

(Lemma 3.14 and Theorem 3.24).

t̂ −→n0 v0 and t̂i −→ni vi such that n0 > n1 > n2 > · · · > ni > . . . by Theorem 3.37.

As each ni is a non-negative integer, this sequence cannot be infinite. This is a contradiction.

Case: t −→∗ v

Trivially, we are done.

3.7 Related Work

The earliest work on termination criteria for copattern languages has been done by Abel and

Pientka [2013, 2016]. They enhanced the type system for copatterns from simple types to

allow size annotations and quantification over them. This is a powerful extension that can

be leveraged to build sophisticated termination metrics. It comes at the cost of a significant

overhead in complexity of the type system. In addition, without the existence of inference

mechanisms for sizes, a lot of overhead is put on the user to correctly annotate datatypes and

proofs with the appropriate sizes. In contrast, our approach offers more limited termination

criteria that will accept a more limited set of programs (which we still deem acceptable)

while being mostly transparent for the user.

The design behind our dependent copattern matching expands on the work of Coquand

[1992] and Goguen et al. [2006a], via the extension to copatterns. The methodology of

Goguen et al. [2006a] in particular inspired our development. They build splitting trees

which bear close resemblance with our coverage derivations. They translate those trees into

a core calculus extending UTT [Luo, 1994] which has primitive elimination operators for

inductive types. This calculus is assumed to be terminating and they prove the translation

to be normalisation preserving. The translation relies crucially on dependent types to build

course-of-values recursors to translate pattern matching functions into. The power of the

type system of their target language allows them a more direct translation that directly

130 CHAPTER 3. NORMALISATION

commutes with evaluation.

The approach of proving termination of copattern languages using splitting trees has also

been used by Cockx and Abel [2018, 2020] for the Agda language. Motivated by specific

implementation concerns, they focus strictly on the elaboration to valid splitting trees, but do

not translate their proof trees into a normalizing calculus. This results in a robust elaboration

procedure and answers some bugs in the prior Agda implementation. Our approach does not

focus on implementation concerns and instead focuses on a theoretical proof of the validity

of our criteria.

Our copattern language is designed to be as close as possible to a surface language a

user would program in. By contrast, Basold and Geuvers [2016] built a minimal language

for dependent (co)inductive types based on dialgebras. Constructs such as products, sums,

Π-types, and Σ-types are shown to be derivable from the (co)inductive types. The language

is also shown to be normalizing. While the focus of the two approaches seems to be opposite,

we believe the expressivity between dependent copatterns and their type theory to be similar.

Their language could potentially serve as a suitable core calculus for dependent copatterns

to translate into.

Our core calculus implements coinductive types via a corecursion scheme first designed

by Mendler [1987, 1991]. Mendler-style recursion schemes for term-indexed languages have

been investigated by Ahn [2014]. Ahn describes an extension of System Fω with erasable

term indices, called Fi. He combines this with fixed points of type operators, as in the Fixω

language by Abel and Matthes [2004], to produce the core language Fixi. In Fixi, one can

embed Mendler-style recursion over term-indexed data types by Church-style encodings.

Normalisation of a calculus with Mendler-style recursors has also been done by Abel

[2004]. Abel uses subtyping ordering to define programs with course-of-value recursion in-

stead of using explicit term-level operators like we do. This simplifies the writing of terms

at the cost of a more sophisticated type system. We took inspiration from his normalisation

proof, in particular in the representation of a semantics for (co)inductive types.

3.8. CONCLUSION 131

3.8 Conclusion

This chapter described a terminating subset of our copattern language by the identifica-

tion of a set of statically checked criteria: type checking, coverage checking, and structural

(co)recursiveness checking. We designed a core calculus with Mendler-style corecursors and

proved it to be normalizing using a logical relation argument. We defined a (partial) trans-

lation from our copattern language into this core calculus. We showed that the criteria we

chose were sufficient for the translation to succeed. We also showed that the translation is

normalisation preserving. We did that by binding the number of steps a program takes in

the source language by the number of steps its translation takes. We established such bound

using a simulation relation on terms.

In the following chapter we present a case study of coinductive proofs in our prototype

implementation of indexed copatterns: Beluga. The case study goes over Howe’s method

that is used to show that a simulation is a precongruence. We leverage Beluga’s advanced

support for open terms and substitutions to carry out such proof.

Chapter 4

Case Study: Howe’s Method

Logical frameworks such as LF [Harper et al., 1993] and λProlog [Miller and Nadathur,

2012] provide a meta-language for representing formal systems given via axioms and infer-

ence rules, factoring out common and recurring issues such as modelling variable bindings.

They exploit an idea, dating back to Church, where we use a lambda calculus as the meta-

language to uniformly encode variable binding in our formal system. This technique is now

commonly known as higher-order abstract syntax (HOAS) or (in a slightly weaker setting)

λ-tree syntax [Miller and Palamidessi, 1999]. In particular, we can encode uniformly variable

binding operators by mapping them to the lambda binder of the meta-language. As a con-

sequence variables in the object language are represented by variables in the meta-language

and inherit thereby α-renaming and substitution from it. Moreover, this encoding technique

scales to representing formal systems that use hypothetical and parametric reasoning by pro-

viding generic support for managing hypotheses and the corresponding substitution lemmas.

As users do not need to build up all this basic mathematical infrastructure, it is easier to

prototype proof environments and mechanize formal systems. It can also have substantial

benefits for proof checking and proof search.

While representing formal systems is a first step, the interesting question is how we

can reason about HOAS representations (co)inductively. Meta-languages such as LF or λ-

Prolog that are used for representing object language are weak calculi and do not include

132

133

case analysis, recursion or (co)inductive definitions. This is in fact essential to achieve an

adequate representation of the object language where each object language term uniquely

corresponds to a given representation in the meta-language. So, how can we still reason

about such representations?

One solution to this conundrum is the so-called “two-level” approach, as advocated

by McDowell and Miller [1997], where we distinguish between a specification language and

a reasoning logic above it, which supports at least some form of induction. The cited paper

presented FOLDN , which is basically a first order logic with definitions (fixed points) and

natural number induction. Object logics are encoded in a specification language, which may

vary and often is based on (possibly sub-structural) fragments of hereditary Harrop formulas.

The method was tested on classical benchmarks such as subject reduction for PCF and its

imperative variants.

Notably, one of Dale Miller’s motivating examples has been the (meta)theory of process

calculi, in particular the π-calculus. This brought to the forefront the issue of representing

and reasoning about infinite behaviour. In fact, McDowell et al. [1996] were concerned with

the representation of transition systems and their bisimulation: in agreement with Milner’s

original presentation in A Calculus of Communicating Systems, bisimulation was captured

inductively by computing the greatest fixed point starting from the universal relation and

closing downwards by intersection. This is doable, but notoriously awkward to work with

and in fact Milner swiftly adopted coinduction in his subsequent Communication and Con-

currency.

In the late 1990, several reasonably large case studies involving coinduction were carried

out in Isabelle/HOL and Coq, not without some difficulties [Ambler and Crole, 1999, Honsell

et al., 2001, Hirschkoff, 1997]. These case studies further demonstrated the challenges in

modelling variable bindings and building up such an infrastructure, as lambda-tree syntax is

fundamentally incompatible with the foundations of these proof systems. It turns out instead

that it is quite natural to step from FOLDN to support (co)inductive reasoning; Momigliano

and Tiu [2003] adopted the view of definitions as least and greatest fixed points adding rules

for fixed point induction. This was later shown to be consistent in [Tiu and Momigliano,

134 CHAPTER 4. CASE STUDY: HOWE’S METHOD

2012]. With the orthogonal ingredient of ∇-quantifier to abstract over variable names [Miller

and Tiu, 2005], this line of research culminated in the Abella proof assistant [Baelde et al.,

2014a], which until recently was, in fact, the only proof assistant supporting natively both

HOAS and coinduction, as exemplified in some non-insignificant case studies [Tiu and Miller,

2010, Momigliano, 2012].

The other main player in HOAS logical frameworks is LF [Harper et al., 1993]: Pfenning

advocated using it as a meta-logical framework by representing inductive proofs as relations.

To ensure that a relation describes a valid inductive proof, external checks guarantee that the

implemented relation constitutes a total function, i.e. covers all cases and all appeals to the

induction hypothesis are well-founded. This lead to the proof environment Twelf [Pfenning

and Schürmann, 1999], which has been used widely, see for a major case study [Lee et al.,

2007]. However, Twelf did not seem to lend itself to coinductive reasoning.

To address these and other shortcomings, Pientka [2008] designed a reasoning logic on

top of LF that allows us to directly analyze and manipulate LF objects. Beluga [Pientka and

Dunfield, 2010] implements this idea. To model derivation trees that depend on assumptions,

LF objects are paired with their surrounding context [Nanevski et al., 2008, Pientka, 2008,

Pientka and Dunfield, 2008]. Inductive proofs are then implemented as recursive functions

that directly pattern match on contextual LF objects. Beluga provides a proof language

that makes explicit context reasoning via built-in contexts and simultaneous substitutions

together with their equational theory. Moreover, it supports (co)inductive and stratified

definitions in addition to higher-order functions [Cave and Pientka, 2012, Pientka and Cave,

2015, Thibodeau et al., 2016, Jacob-Rao et al., 2018], thereby going substantially beyond

the expressive power of Twelf.

One might say that the proof and the type-theoretic approaches are converging towards

a core reasoning logic that supports least and greatest fixed points and equality within first-

order logic. (Co)pattern matching in a program is interpreted as case analysis in a proof and

recursive calls on structurally smaller objects or guarded by observations correspond valid

appeals to the induction or coinduction hypothesis, respectively.

As a contribution to a better understanding of the relationship between the logical and

4.1. A SUMMARY OF HOWE’S METHOD 135

computational interpretation of coinductive proofs, this chapter reappraises the proof that

similarity in the call-by-name lambda calculus with lists is a pre-congruence using Howe’s

method [Howe, 1996]. This is a challenging proof since it requires a combination of inductive

and coinductive reasoning on open terms. We mechanize this proof in Beluga which was

extended to serve as a prototype for the theory of Chapter 2 where the index domain is

instantiated by contextual LF. This mechanization relies on three key ingredients:

1. we give a HOAS encoding of lambda-terms together with their operational semantics

as intrinsically typed terms, thereby avoiding not only the need to deal with binders,

renaming and substitutions, but keeping all typing invariants implicit;

2. we take advantage of Beluga’s support for representing open terms using built-in con-

texts and simultaneous substitutions: this allows us to directly state a notion such

as open simulation without resorting to the usual inductive closure operation and to

encode neatly notoriously painful proofs such as the substitutivity of the Howe relation;

3. we exploit the possibility of reasoning by coinduction in Beluga’s reasoning logic.

The end result is, in our opinion, succinct and elegant, thanks to the high-level abstrac-

tions and primitives Beluga provides.

The paper starts in Section 4.1 with a summary description of Howe’s method and dis-

cusses the challenges that it poses to its mechanization. The latter is detailed in Section 4.2,

together with a discussion on coinductive Beluga, a proof of adequacy of our encoding of

similarity, and a example derivation of two terms being similar. We review related work in

Section 4.3 and conclude in Section 4.4.

The entire formal development can be retrieved from https://github.com/

Beluga-lang/Beluga/tree/master/examples/codatatypes/howes-method.

4.1 A summary of Howe’s method

First let us fix our programming languages as the simply-typed λ-calculus with recursion

over (lazy) lists, which we call PCFL following Pitts [1997]. Its types consist of the unit type

136 CHAPTER 4. CASE STUDY: HOWE’S METHOD

(written as >), function types, and lists (written as list(τ)).

Types τ ::= > | τ → τ | list(τ)

Terms m,n, p, q ::= x | lamx. p | m1 m2 | fix x. m | 〈〉
| nil | cons mh mt | lcase m of {nil⇒ n | cons hd tl ⇒ p}

Values v ::= 〈〉 | lamx. p | nil | cons mh mt

The typing rules for PCFL and the big step lazy operational semantics denoted by m ⇓ v
are standard and we omit them here. In particular, lists are only evaluated lazily, as the

definition of values shows. The interested reader can skip ahead to their encoding in LF in

the Section 4.2 or consult Pitts [1997].

Proving bisimilarity a congruence using Howe’s method

Suppose we want to say when two programs (two closed terms) have the same behavior. A

well known characterization is Morris-style contextual equivalence: occurrences of the first

expression in any program can be replaced by the second without affecting the observable

results of executing the program

While this notion of program equivalence is intuitive, it is indeed difficult to reason about

it, mainly due to the quantification on every possible context.1 Many techniques have been

proposed through the years, ranging from domain theory [Abramsky, 1991], game seman-

tics [Ghica and McCusker, 2000] to logical relations [Ahmed, 2006]. The idea of bisimilarity

has usefully been adapted from concurrency theory to provide yet another characterization

of contextual equivalence. Bisimilarity is, similarly to contextual equivalence, parametrized

by the notion of observable we select: roughly, m and n are bisimilar if whenever m evaluates

to an observable so does n, and all the subprograms of those are also bisimilar. In the case

of applicative bisimilarity, evaluation at function type is pushed until values are reached.

1This notion can and has been simplified, starting from Milner’s context lemma [Milner, 1977] and going
through the CIU theorem [Mason and Talcott, 1991]. Some mechanizitions are also available [Ambler and
Crole, 1999, Ford and Mason, 2003, McLaughlin et al., 2018], as we discuss further in Section 4.3.

4.1. A SUMMARY OF HOWE’S METHOD 137

To simplify the presentation, we will concentrate on the notion of similarity, from which

bisimilarity can be obtained by symmetry, that is taking the conjunction of similarity and

its inverse; this is possible thanks to determinism of evaluation.

Definition 1 (Applicative simulation). An applicative simulation is a family of typed rela-

tions Rτ on closed terms satisfying the following conditions:

• if m R> n then m ⇓ 〈〉 entails n ⇓ 〈〉.

• if m Rlist(τ) n then m ⇓ nil entails n ⇓ nil.

• if m Rlist(τ) n then m ⇓ cons mh mt entails that there are terms nh and nt such that

n ⇓ cons nh nt for which mh Rτ nh and mt Rlist(τ) nt.

• if m Rτ→τ ′ n then m ⇓ lamx.m′ entails that there is a term n′ such that n ⇓ lam y. n′

for which m′[r/x] Rτ ′ n
′[r/y] for every term r of type τ .

We can make sense of the non-well-founded nature of the last two conditions by noting

that there are non-empty simulations, e.g. the identity relation and that the union of two

applicative simulations is still a simulation. Hence there exists the largest one, which we

call applicative similarity. This relation can also be characterized using the Knaster-Tarski

fixed point theorem, as the greatest fixed point of an appropriate endofunction Φ on families

of typed relations. For a detailed explanation we refer again to Pitts [1997], and we just

mention that the definition of the function follows the simulation relation, and has, for

example at τ → τ ′, m Φ(Rτ→τ ′) n just in case whenever m ⇓ lamx.m′ for any m′, there

exists a term n′ such that n ⇓ lam y. n′ and for every r of type τ , m′[r/x] is Rτ ′-related to

n′[r/y]; hence, similarity is the set coinductively defined by Φ, a relation we write as m 4τ n.

This yields a co-induction principle that we describe first in its generality and below we show

it instantiated to applicative similarity.

∃S s.t. a ∈ S S ⊆ Φ(S)
CI

a ∈ gfp(Φ)

∃Sτ s.t. m Sτ n Sτ is an applicative simulation
CI− �

m 4τ n

138 CHAPTER 4. CASE STUDY: HOWE’S METHOD

It is not difficult to show that similarity is a pre-order and we detail the proof of reflexivity

using rule CI− � to highlight the similarities with the type-theoretic definition based instead

on the notion of observation, on which our mechanization relies.

Theorem 4.1 (Reflexivity of applicative similarity). ∀m τ,m 4τ m.

Proof. To show the result we need to provide an appropriate simulation S and check the

simulation conditions. Just choose Sτ to be the family {(m,m) | · ` m : τ} where we use

the judgment m : τ to say that term m has type σ.

We then consider each case in the applicative simulation definition.

• if m S> m, then m ⇓ 〈〉 entails m ⇓ 〈〉: immediate;

• if m Slist(τ) m, then m ⇓ nil entails m ⇓ nil: immediate;

• assume m Slist(τ) m and m ⇓ cons mh mt; pick nh,mt to be mh,mt and by the definition

of the simulation, it holds that mh Sτ nh and mt Slist(τ) nt;

• assume m Sτ→τ ′ m and m ⇓ lamx.m′; again by picking m′ for n′ and by the definition

of the simulation it is obvious that for every r:τ , [r/x]m′ Sτ ′ [r/x]m′.

In many cases, we do not have to look much further beyond the statement of the theorem

to come up with an appropriate simulation, i.e. we can read off the definition of simulation

from it — and this is indeed the case for all the coinductive proofs in the following devel-

opment. However, to show the equivalence of specific programs we may have to come up

with a complex bisimulation, possibly defined inductively and/or “up to”. This phenomenon

is well-known in inductive theorem proving, where sometimes the induction hypothesis co-

incides with the statement of the theorem, but in other cases it needs to be generalized

in an appropriate lemma. The fixed point rules conflate those two aspects, generalization

and lemma application, in one go. With an abuse of language, we will say that we prove a

statement by coinduction and say that we appeal to the use of the “coinductive hypothesis”

when the simulation corresponds to the statement of the theorem.

4.1. A SUMMARY OF HOWE’S METHOD 139

When dealing with program equivalence, equational (in addition to coinductive) reasoning

would be helpful and this is why it is crucial to establish bisimilarity to be a congruence, i.e.

a relation respecting the way terms are constructed. Since in this paper we restrict ourselves

to similarity, we target pre-congruence. Given the presence of variable-binding operators, we

need to consider relations over open terms, that is families of relations over terms indexed

by a typing context Γ in addition to a type τ , which we write as Γ ` m Rτ n.

Definition 2 (Compatible relation). A relation Γ ` m Rτ n is compatible when:

(C0) Γ ` 〈〉 R> 〈〉;

(C1) Γ, x:τ ` x Rτ x;

(C2) Γ, x:τ ` m Rτ ′ n entails Γ ` (lamx.m) Rτ→τ ′ (lamx. n);

(C3) Γ ` m1 Rτ→τ ′ n1 and Γ ` m2 Rτ n2 entail Γ ` (m1 m2) Rτ ′ (n1 n2);

(C4) Γ, x:τ ` m Rτ n entails Γ ` (fix x. m) Rτ (fix x. n);

(C5a) Γ ` mh Rτ nh and Γ ` mt Rlist(τ) nt entail Γ ` (cons mh mt) Rlist(τ) (cons nh nt);

(C5b) Γ ` nil Rlist(τ) nil;

(C6) Γ ` m1 Rlist(τ) m2, Γ ` n1 Rτ ′ n2 and Γ, hd:τ, tl:list(τ) ` p1 Rτ ′ p2 entail Γ `
(lcase m1 of {nil⇒ n1 | cons hd tl ⇒ p1})Rτ ′ (lcase m2 of {nil⇒ n2 | cons hd tl ⇒ p2}).

Definition 3 (Pre-congruence). A pre-congruence is a compatible transitive relation.

By the very definition of simulation at arrow type it is clear that a key property for our

development is for a relation to be preserved by pairwise substitution:

Γ, y:τ ` m1 Rτ ′ m2 and Γ ` n1 Rτ n2 entails Γ ` [n1/y]m1 Rτ ′ [n2/y]m2.

We generalize this property here using simultaneous substitutions, streamlining our for-

mal development, see Section 4.2. Figure 4.1 gives rules for well-typed simultaneous substi-

tutions Ψ ` σ : Γ, where σ replaces variables in Γ with terms typable in Ψ; then, we state

when two such substitutions are R-related:

140 CHAPTER 4. CASE STUDY: HOWE’S METHOD

Well-Typed Simultaneous Substitutions: Ψ ` σ : Γ

Ψ ` · : ·
Ψ ` σ : Γ Ψ ` m : τ

Ψ ` σ,m/x : Γ, x : τ

Related Simultaneous Substitutions: Ψ ` σ1 RΓ σ2

Ψ ` · R· ·
Ψ ` σ1 RΓ σ2 Ψ ` m Rτ n

Ψ ` (σ1,m/x) RΓ,x:τ (σ2, n/x)

Figure 4.1: (Related) simultaneous substitutions

Definition 4 (Substitutive relation). A relation is substitutive (Sub) iff Γ ` m1 Rτ m2 and

Ψ ` σ1 RΓ σ2 entails Ψ ` [σ1]m1 Rτ [σ2]m2.

Some other properties are admissible:

Lemma 4.2 (Elementary admissible properties). (Ref) If a relation is compatible, then it

is reflexive; further, if Γ ` m Rτ m, then Ψ ` σ RΓ σ.

(Cus) If Rτ is substitutive and reflexive, then it is also closed under substitution:

Γ ` m1 Rτ m2 and Ψ ` σ : Γ entails Ψ ` [σ]m1 Rτ [σ]m2.

Weakening (Wkn), that is Γ ` m Rτ n and Γ ⊆ Γ′ entailing Γ′ ` m Rτ n, follows from

(Cus) taking σ to be the identity substitution for Γ.

The definition of similarity applies only to closed terms. It is therefore customary to

extend similarity to open terms via substitution. We do this using grounding substitutions:

Definition 5 (Open similarity). Γ ` m 4◦τm′ iff [σ]m 4τ [σ]m′ for any · ` σ : Γ.

Now, it is immediate that open similarity is a pre-order and hence (C1) and transitivity

hold. Further, (C2) also holds, since similarity satisfies

lamx.m 4τ→τ ′ lamx. n iff for all p:τ, [p/x]m 4τ ′ [p/x]n

4.1. A SUMMARY OF HOWE’S METHOD 141

Γ ` 〈〉 4◦>n
hu

Γ ` 〈〉 4H> n

Γ ` nil 4◦list(τ)n
hnil

Γ ` nil 4Hlist(τ) n

Γ, x:τ ` x 4◦τ n
hvar

Γ, x:τ ` x 4Hτ n

Γ, x:τ ` m 4Hτ ′ m′ Γ ` lamx.m′ 4◦τ→τ ′ n
hlam

Γ ` lamx.m 4Hτ→τ ′ n

Γ, x:τ ` m 4Hτ m′ Γ ` fix x. m′ 4◦τ n
hfix

Γ ` fix x. m 4Hτ n

Γ ` m1 4
H
τ→τ ′ m

′
1 Γ ` m2 4

H
τ m′2 Γ ` m′1 m′2 4◦τ ′ n

happ
Γ ` m1 m2 4

H
τ ′ n

Γ ` mh 4
H
τ m′h Γ ` mt 4

H
list(τ) m

′
t Γ ` cons m′h m

′
t 4
◦
list(τ)n

hcons
Γ ` cons mh mt 4

H
list(τ) n

Γ ` m 4Hlist(τ) m
′ Γ ` m1 4Hτ ′ m

′
1 Γ, hd:τ, tl:list(τ) ` m2 4Hτ ′ m

′
2

Γ ` lcase m′ of {nil⇒ m′1 | cons hd tl ⇒ m′2} 4◦τ ′ n
hlcase

Γ ` lcase m of {nil⇒ m1 | cons hd tl ⇒ m2} 4Hτ ′ n

Figure 4.2: Definition of the Howe relation

However, a direct attempt to prove pre-congruence of open similarity breaks down when

dealing with (C3) and (C6). Moreover, while it follows simply by construction that open

similarity is closed under substitution, it is not obvious that it is substitutive.

Howe’s idea [Howe, 1996] was to introduce a candidate relation 4Hτ (see Figure 4.2), which

contains (open) similarity and can be shown to be almost a substitutive pre-congruence, and

then to prove that it does coincide with similarity.

The informal proof consists of several lemmata:

(1) Semi-transitivity: the composition of the Howe relation with open similarity is con-

tained in the former. The proof goes by case analysis on the derivation of the Howe

relation using transitivity of open similarity.

142 CHAPTER 4. CASE STUDY: HOWE’S METHOD

(2) The Howe relation is reflexive. Induction on typing, using reflexivity of open similarity.

(3) Compatibility: (C0)—(C6) hold, an easy consequence of (2).

(4) Open similarity is contained in Howe, which follows immediately from (1) and (2).

(5) The Howe relation is substitutive, see Lemma 4.7.

(6) The Howe relation “mimics” the simulation conditions:

(6.1) If 〈〉 4H> n, then n ⇓ 〈〉.

(6.2) If nil 4Hlist(τ) n, then n ⇓ nil.

(6.3) If lamx.m 4Hτ→τ ′ n, then n ⇓ lamx.m′ and for every q:τ we have [q/x]m 4Hτ ′

[q/x]m′.

(6.4) If cons mh mt 4Hlist(τ) n, then n ⇓ cons ph pt, with mh 4Hτ ph and mt 4Hlist(τ) pt.

By inversion on the Howe relation and definition of similarity, using semi-transitivity

and, in the lambda-case, substitutivity of the Howe relation.

(7) Downward closure: if p 4Hτ q and p ⇓ v, then v 4Hτ q. Induction on evaluation, and

inversion on the Howe relation and similarity, with an additional case analysis on v.

(8) p 4Hτ q entails p 4τ q. By coinduction, using the coinductive hypothesis, point (6) and

(7).

Once all of these properties have been proved, we are ready for the main result, stating

that the Howe relation coincides with applicative similarity, and hence the pre-congruence

of the latter follows as a corollary:

Theorem 4.3. Γ ` p 4Hτ q iff Γ ` p 4◦τ q

Proof. Right to left is point (4) above. Conversely, proceed by induction on Γ using (8) for

the base case and closure under substitution for the step.

Corollary 4.4. Open similarity is a pre-congruence.

4.1. A SUMMARY OF HOWE’S METHOD 143

On the role of substitutions in Howe’s method

Substitutions play a central role in the overall proof that similarity is a pre-congruence. In

the informal proof, we silently exploit equational laws about substitution; however, they can

cause significant trouble during mechanization. We summarize the definition of substitution

for our term language together with its equational theory in Figure 4.3. To illustrate how

we rely on these substitution properties in proofs, we show here in more detail the proof

of substitutivity and pay particular attention to the properties in Figure 4.3. Recall that

the definition of Ψ ` σ1 4HΓ σ2 is just an instance of the definition of related simultaneous

substitutions.

Lemma 4.7 (Substitutivity of the Howe relation). Suppose we have Γ ` m1 4Hτ m2 and

Ψ ` σ1 4HΓ σ2; then Ψ ` [σ1]m1 4Hτ [σ2]m2.

Proof. By induction on the derivations of Γ ` m1 4Hτ m2.

Case
Γ ` m 4Hτ→τ ′ m′ Γ ` n 4Hτ n′ Γ ` m′ n′ 4◦τ ′ r

happ
Γ ` m n 4Hτ ′ r

Ψ ` [σ1]m 4Hτ→τ ′ [σ2]m′ by IH on first subderivation

Ψ ` [σ1]n 4Hτ [σ2]n′ by IH on second subderivation

Ψ ` [σ2](m′ n′) 4◦τ ′ [σ2]r by cus on third subderivation

[σ2](m′ n′) = [σ2]m′ [σ2]n′ by def. of substitution (see Figure 4.3)

Ψ ` [σ1]m [σ1]n 4Hτ ′ [σ2]r by rule happ

Ψ ` [σ1](m n) 4Hτ ′ [σ2]r by above line

Case
Γ, x:τ ` m 4Hτ ′ m′ Γ ` lamx.m′ 4◦τ→τ ′ r

hlam
Γ ` lamx.m 4Hτ→τ ′ r

Ψ ` σ1 4HΓ σ2 by assumption

Ψ, x : τ ` σ1 4HΓ σ2 by weakening (Lemma 4.5.2)

[σ]x 4τ [σ]x for any σ where · ` σ : Ψ, x:τ by reflexivity of similarity (Theorem 4.1

Ψ, x:τ ` x 4◦τ x by def. of open similarity

144 CHAPTER 4. CASE STUDY: HOWE’S METHOD

Equational Theory of Simultaneous Substitution

For Γ′ ` σ : Γ and Γ ` m : τ , we define [σ]m as follows

[σ]x = σ(x)
[σ](lamx.m) = lamx. [σ, x/x]m
[σ](m n) = [σ]m [σ]n
[σ](〈〉) = 〈〉
[σ](nil) = nil
[σ](cons m n) = cons [σ]m [σ]n
[σ](fix x. m) = fix x. [σ, x/x]m
[σ](lcase m of {nil⇒ n | cons hd tl ⇒ p})

= lcase [σ]m of {nil⇒ [σ]n | cons hd tl ⇒ [σ, hd/hd, tl/tl]p}

[σ2](·) = ·
[σ2](σ1,m/x) = [σ2]σ1, [σ2]m/x

Lemma 4.5 (Substitution lemma and weakening property).

1. If Γ′ ` σ : Γ and Γ ` m : τ then Γ′ ` [σ]m : τ .

2. If Γ′ ` σ : Γ then Γ′, y:τ ` σ : Γ.

Lemma 4.6 (Substitution properties).

1. [σ, n/x]m = [n/x]([σ, x/x]m)

2. [σ′, n/x]σ = [n/x]([σ′, x/x]σ)

3. [σ2]([σ1]m1) = [[σ2]σ1]m

4. [σ2]([σ1]σ) = [[σ2]σ1]σ

5. Let id = x1/x1, . . . , xn/xn be the identity substitutions for Γ = x1:τ1, . . . , xn:τn, then
[id]m = m and [id]σ = σ. Moreover, [σ]id = σ. A special case is when Γ = ·. In this
case we have id = ·. Moreover, [·]m = m, [·]σ = σ, and [σ]· = ·.

Figure 4.3: Properties of simultaneous substitutions

Ψ, x:τ ` x 4Hτ x by rule hvar

Ψ, x:τ ` σ1, x/x 4HΓ,x:τ σ2, x/x by def. of Howe related substitutions

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 145

Ψ, x:τ ` [σ1, x/x]m 4Hτ ′ [σ2, x/x]m′ by IH on first subderivation

Ψ ` [σ2](lamx.m′) 4◦τ→τ ′ [σ2]r by cus on second subderivation

[σ2](lamx.m′) = lamx. [σ2, x/x]m′ by def. of substitution (see Figure 4.3)

Ψ ` (lamx. [σ1, x/x]m) 4Hτ→τ ′ [σ2]r by rule hlam

[σ1](lamx.m) = lamx. [σ1, x/x]m by def. of substitution (see Figure 4.3)

Ψ ` [σ1](lamx.m) 4Hτ→τ ′ [σ2]r by above line

The other cases are analogous.

4.2 Mechanizing Howe’s method in Beluga

We discuss in this section the proof that similarity in PCFL is a pre-congruence using Howe’s

method in Beluga.

Beluga is a programming environment that supports both specifying formal systems and

reasoning about them. To specify formal systems such as PCFL we use the logical framework

LF. This allows us to take advantage of higher-order abstract syntax. A key challenge when

reasoning about LF objects is that we must consider potentially open objects. In Beluga, this

need is met by viewing all LF objects together with the contexts in which they are meaningful

[Nanevski et al., 2008] as contextual LF objects and by abstracting not only over LF objects

but also over contexts. We then view contextual objects and contexts as the particular index

domain about which we can reason using the methodology described in Chapter 2. Under the

propositions-as-types principle this logic corresponds to a functional language with indexed

(co)inductive types that supports (co)pattern matching. Meta-theoretic proofs about formal

systems are implemented as (co)recursive functions in Beluga.

An Overview of Beluga

A Beluga signature consists of LF declarations, inductive and coinductive definitions, and

programs. For each LF type family a we declare its LF kind together with the constants that

146 CHAPTER 4. CASE STUDY: HOWE’S METHOD

allow us to form objects that inhabit the type family. We also support mutual LF definitions

that we do not capture in our grammar below not to complicate matters further.

Signature Decl. D ::= LF a : KLF = c1 : A1 | . . . | ck : Ak;

inductive a : K = c1:T1 | . . . | cn:Tn;

coinductive a : K = (c1:T1) :: T ′1 | . . . | (cn:Tn) :: T ′n;

rec c : T = E;

(Co)inductive definitions correspond to (co)indexed recursive types and semantically are

interpreted as (greatest) least fixed points. We define an indexed recursive type family by

defining constructors ci that can be used to construct its elements. We define a corecursive

type by the observations we can make about it using indexed records, where we write the field

ci together with the type Ti from which we can project the result T ′i . Given a Beluga term

of E type Ti we may use the projection ci and the result of E.ci is then of type T ′i .

We describe Beluga’s type and terms more precisely in Figure 4.4. The syntax for LF

kinds, types and terms is close to the syntax x in the Twelf system. We write curly braces

{ } for the dependent LF function space and allow users to write simply →, if there is no

dependency. LF kinds, types, and LF terms used in a signature declaration must be pure,

i.e. they cannot refer to closures highlighted in blue and written as u[σ] and #p[σ]. Here u

and #p are meta-variables that are bound and introduced in Beluga types and patterns.

Substitutions in closures are either empty, written as here, or a weakening substitution,

denoted by ..., which we use in practice to transition from a context to a possible extension.

Substitutions can also be built by extending a substitution σ with a LF term M.

LF contexts may be empty, consist of a context variable, or are built by concatenating

to a LF context a LF variable declaration.

Contextual types and terms pair a LF context together with a LF type or LF term

respectively. As LF contexts are first-class in Beluga, they form valid contextual objects. LF

contexts are in general classified by a schema that allows us to state an invariant the LF

context satisfies; here we only add the one schema we have used in this development (see

page 162), namely ctx.

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 147

LF Kinds KLF ::= type | {X:A}KLF | A → KLF

LF Types A ::= aM1 . . .Mn | {u:A}A′ | A → A′
LF Terms M ::= x | λx.M | c M1 . . .Mn | u[σ] | #p[σ]
LF Subst. σ ::= | ... | σ,M
LF Context Ψ, Φ ::= | ψ | Ψ,x:A
Contextual Type U ::= [Ψ ` a M1 . . .Mn] | [ctx] | [Ψ ` Φ] | . . .
Contextual Object C ::= [Ψ ` M] | [Ψ] | . . .

Beluga Kinds K ::= ctype | {u:U}K | U → K
Beluga Types T ::= {u:U}T | (u:ctx)T | T → T | U | a C1 . . . Cn
Beluga Terms E ::= E E | C | x | c | E.c | fun BR | let P = E in E

| mlam u ⇒ E | case E of BP
Beluga Copattern Branches BR ::= | (BR | R1 . . .Rn ⇒ E)
Beluga Pattern Branches BP ::= | (BP | P ⇒ E)
Beluga Pattern P ::= x | C | c P1 . . .Pn
Beluga Copatterns R ::= · | P R | .c R

Figure 4.4: Grammar of Beluga

Beluga’s type language supports indexed dependent function space, {u:U}T , non-

dependent functions, embedding contextual types, and (co)inductive definitions, described

as a C1 . . . Cn. Note that in {u:U}T we make u explicit and hence any computation-level

expression of that type expects first an object of type U . We also permit a limited form of

implicit type annotation for context variables; by writing (u:ctx)T we can abstract over the

context variable u and declare its context schema, while keeping u implicit.

Beluga’s computation language is an indexed language in the sense of Chapter 2 which

allows us to make statements about contextual types and objects and we highlight them in

blue as well. Recursive definitions are split between the top level rec definition that handles

recursion and the fun term that deals with (co)pattern matching. Beluga also supports case

analysis using pattern matching independently for convenience. Further, as in OCaml, we not

only allow functions to be defined via (co)pattern matching, but to be formed by abstracting

148 CHAPTER 4. CASE STUDY: HOWE’S METHOD

over their arguments. For example functions defined using mlam abstract over contextual

variables occurring in the function body. Further, our language features let-expressions as

a degenerate case of case analysis, together with applications, computation-level variables,

constructors, constants, and projections. This is by no means a complete account of the

computation language of Beluga— we have only described here the part relevant for our case

study.

Metatheory of Beluga

An important question, when discussing formalizations, regards trust in mechanized proofs.

There are two aspects that play a role: the first concerns the theoretical foundations underly-

ing a proof environment and the second the implementation of that foundation in a concrete

system. Beluga’s theoretical foundation provides the justification for reading its programs

as proofs. For reasoning inductively directly over contextual LF objects, we exploit the sub-

term ordering on LF terms, see [Pientka, 2005, Pientka and Abel, 2015]. Our (co)inductive

programs give a high-level surface language to the calculi described in Chapters 2 and 3.

The implementation of these theoretical ideas in Beluga (status: August 2019) — as it is

often the case — lags slightly behind; in particular, the totality checker does not yet support

simultaneous (co) copattern matching following. Such extension would allow us not only to

certify inductive proofs, but also coinductive ones in practice.

Encoding syntax in LF

We adopt the usual HOAS encoding for binding operators in the object language, and make

essential use of LF’s dependent types (see Figure 4.5). In particular the type family term

encodes intrinsically-typed terms. This will make our overall mechanization more compact,

as all terms are well-typed ‘by construction’ which is enforced by Beluga’s type checker.

Variables such as T and S that are used in declaring the type of the LF constants are ab-

stracted over at the front of the type of the constructor and we rely on type reconstruction to

infer their types [Pientka, 2013]. These variables are treated as implicit and we subsequently

omit passing them when forming term objects.

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 149

LF tp : type =

| top : tp

| arr : tp → tp → tp

| list: tp → tp;

LF term : tp → type =

| app : term (arr S T) → term S → term T

| lam : (term S → term T) → term (arr S T)

| fix : (term T → term T) → term T

| unit : term top

| nil : term (list T)

| cons : term T → term (list T) → term (list T)

| lcase: term (list S) → term T → (term S → term (list S) → term T)

→ term T;

Figure 4.5: LF definition of intrinsically typed terms

Encoding the operational semantics with indexed inductive types

To illustrate how we can use inductive types in Beluga, we encode the value and evaluation

judgment as computation-level type families indexed by closed well-typed terms. This is

demonstrably equivalent to encoding the same judgments at the LF level.

How do we enforce that a LF object is closed? This is accomplished by a contextual type

[` term T], where the context that appears to the left hand side of the turnstile is empty;

to improve readability we simply write [term T]. Note that we can embed contextual types

into Beluga types, but not vice-versa. There is a strict separation between LF definitions

that form our index objects and Beluga types that talk about LF definitions.

The inductive type family Value defines a subset of closed well-typed expressions, namely

those that are the observables of our object language. Similarly, the inductive type family

Eval relates two closed expressions of the same type, where the first big-step evaluates to

the second (see Figure 4.6).

Beluga has a sophisticated notion of built-in simultaneous substitution. Consider the rule

Ev_app, where to build the evaluation derivation for Eval [app M1 M2] [V] we have to supply

150 CHAPTER 4. CASE STUDY: HOWE’S METHOD

inductive Value : [term T] → ctype =

| Val_lam : Value [lam λx.N]
| Val_unit : Value [unit]

| Val_nil : Value [nil]

| Val_cons : Value [cons M1 M2];

inductive Eval : [term T] → [term T] → ctype =

| Ev_app : Eval [M1] [lam λx.N] → Eval [N[M2]] [V]

→ Eval [app M1 M2] [V]

| Ev_val : Value [V]

→ Eval [V] [V]

| Ev_fix : Eval [M[fix λx.M]] [V]

→ Eval [fix λx.M] [V]

| Ev_case_nil : Eval [M] [nil] → Eval [M1] [V]

→ Eval [lcase M M1 (λh.λt.M2)] [V]

| Ev_case_cons: Eval [M] [cons H L] → Eval [M2[H, L]] [V]

→ Eval [lcase M M1 (λh.λt.M2)] [V];

Figure 4.6: Inductive definition of values and evaluation

an evaluation derivation for Eval [M1] [lam λx.N] and Eval [N[M2]] [V] where N stands for

a term of type S that may refer to x:term T. The substitution that in standard LF would

be represented as meta-level application N M2, here consists of the singleton simultaneous

substitution N[M2] that keeps its domain, namely x, implicit. In general, all capitalized

variables denote LF objects that may depend on LF declarations. Given an LF term N that

depends on a context γ, we can use N in a context ψ by associating N with a simultaneous

substitution σ with domain ψ and co-domain γ, with type [ψ ` γ]. This closure is written

in post-fix notation as N[σ]. If σ is the identity substitution, we may drop the closure. We

make use of two kinds of weakening substitutions : 1) The weakening substitution, written

as [], moves a closed object from the empty context to a context γ. For example, the type

T is closed in [term T]. To use the closed type T in a context γ, we need to associate it with

the weakening substitution []. Hence, [γ ` term T[]] describes a term object of type T in

a context γ and enforces that the type T is closed. 2) The weakening substitution, written

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 151

µValue.λT,M.
<Val lam : ΣS1, S2:[tp].T = (arr S1 S2)× ΣN :[x:term S1 ` term S2[]].M = lam λx.N × 1
Val unit : T = top×M = unit× 1
Val nil : ΣS:[tp].T = list S ×M = nil× 1
Val cons : ΣS:[tp].T = list S × ΣM1:[term S].ΣM2:[term (list S)].

M = cons M1 M2 × 1 >

µEval.λT,M,W.
<Ev app : ΣS:[tp], M1:[term (arr S T)], M2:[term S], N :[x:term T ` term S[]].

M = (app M1 M2)× Eval [M1] [lam λx.N]× Eval [N [M2]] [W]
Ev fix : ΣN :[x:term T ` term T []]. M = fix λx.N × Eval [N [fix λx.N]] [W]
Ev val : M = W × Value [W]
. . . >

Figure 4.7: Core language definitions of Value and Eval

as [...], moves an object M that is defined in a context γ to an extension of γ, for example

γ, x:term T[]. Finally, we note that [lam λx.N] can be expanded to [lam λx.N[x]] where

the substitution that maps x to itself is simply written as [x].

The top level definitions of inductive types can be translated into recursive types in our

core language, as presented in Chapter 2. As such, Value and Eval take on the familiar

forms which appear in Figure 4.7. As we can see, the main difference with respect to the

previously defined recursive types is that Beluga expresses the index domain explicitely using

square brackets, but the definition is otherwise translated in the same was as before.

Encoding similarity using indexed coinductive types

In Beluga, we also can state coinductive type families and in particular similarity as a coin-

ductive definition that relates closed well-typed terms.

To define the coinductive type Sim [T] [M] [N], we declare observations Sim_unit,

Sim_nil, Sim_cons, and Sim_lam; each one corresponds to a case in our definition of ap-

plicative simulation — compare Def. 1 to Figure 4.8. We write the observation together

152 CHAPTER 4. CASE STUDY: HOWE’S METHOD

coinductive Sim : {T:[tp]} [term T] → [term T] → ctype =

| (Sim_unit : Sim [top] [M] [N])

:: Eval [M] [unit] → Eval [N] [unit]

| (Sim_nil : Sim [list T] [M] [N])

:: Eval [M] [nil] → Eval [N] [nil]

| (Sim_cons : Sim [list T] [M] [N])

:: Eval [M] [cons H L] → Ex_sim_cons [H] [L] [N]

| (Sim_lam : Sim [arr S T] [M] [N])

:: Eval [M] [lam λx.M’] → Ex_sim_lam [x:term S ` M’] [N]

and inductive Ex_sim_cons : [term T] → [term (list T)] → [term (list T)]

→ ctype =

| ESim_cons: Eval [N] [cons H’ L’]

→ Sim [T] [H] [H’] → Sim [list T] [L] [L’]

→ Ex_sim_cons [H] [L] [N]

and inductive Ex_sim_lam : [x:term S ` term T[]] → [term (arr S T)]

→ ctype =

| ESim_lam: Eval [N] [lam λx.N’]
→ ({R:[term S]} Sim [T] [M’[R]] [N’[R]])

→ Ex_sim_lam [x:term S ` M’] [N]

Figure 4.8: Coinductive definition of applicative similarity

with its type on the left side of :: and on the right side we give the result type of the

observation that describes our proof obligation. For example, we can make the observation

Sim_unit:Sim [top] [M] [N], if we can show that Eval [M] [unit] → Eval [N] [unit]. It

corresponds directly to “m ⇓ 〈〉 entails n ⇓ 〈〉” in Def. 1. Note that M and N are implicitly

quantified at the outside, as it becomes apparent in the desugared syntax on page 153. In

addition equalities are handled implicitly by providing a term at the appropriate position.

In the case of Sim_unit, we will have the equality guard T = top. The definition of the

observation Sim_nil follows a similar schema.

The result of the observation Sim_cons on Sim [list T] [M] [N] requires that if m ⇓
cons h t then there are h′ and t′ such that n ⇓ cons h′ t′ for which h Rτ h

′ and t Rlist(τ) t
′.

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 153

We hence need a way to encode an existential property. Although existentials (i.e. Σ-types)

were found in our calculus, the implementation of Beluga does not support them at the top

level, as they always can be realized using indexed inductive types. We therefore define an

indexed inductive type Ex_sim_cons that relates h, t and n.

Last, we need to represent the result of observing Sim_lam that encodes the corresponding

part from the definition:

m ⇓ lamx.m′ for any x:τ ` m′:τ ′ entails that there exists a y:τ ` n′:τ ′ such

that n ⇓ lam y. n′ for which m′[r/x] Rτ ′ n
′[r/y] for every term r of type τ .

We again resort to defining an inductive type Ex_sim_lam that relates the term M’ with

type [x:term S ` term T[]], i.e. M’ has type term T[] under the assumption of the variable

x having type term S. Hence we can simply write [x:term S ` M’], as we interpret M’

within the context x:term S. As T denotes a closed type, we associate it with a weakening

substitution, since it is used in a non-empty context. The relation Ex_sim_lam exists if

Eval [N] [lam λx.N’] and for all R:[term S] we know Sim [T] [M’[R]] [N’[R]]. Finally,

we remark that the coinductive type Sim and inductive types Ex_sim_cons and Ex_sim_lam

are defined mutually.

Once again, the coinductive type family Sim is encoded using a greatest fixed point that

is defined using records, universals, and implications.

νSim.λT.λM.λN.

{ Sim unit : T = top→ Eval [M] [unit]→ Eval [N] [unit]

Sim lam : ΠS1:[tp].ΠS2:[tp].ΠM ′:[x:term S1 ` term S2[]]. T = arr S1 S2

→ Eval [M] [lam λx.M ′]

→ ΣN ′:[x:term S1 ` term S2[]]. Eval [N] [lam λx.N ′]

×ΠR:[term S1].Sim [S2] [M ′[R]] [N ′[R]]

...

}

We only show the encoding for lambda-expressions and omit the observations we can make

on lists to keep it readable. We further in-lined the definition of Ex_sim_lam to keep the

154 CHAPTER 4. CASE STUDY: HOWE’S METHOD

definition compact.

Encoding Simple Proofs about Simulation

Let us do some simple proofs about simulation. The underlying understanding allowing us

to consider those programs as proofs has been discussed extensively in the previous chapters

so we will not go into too much details to justify them. Let us reconsider the proof that

similarity is reflexive: for all T, M, we have Sim [T] [M] [M]. The type of the function

sim_refl encodes this statement directly. We leave T and M implicit, as these arguments can

be reconstructed by Beluga.

rec sim_refl : Sim [T] [M] [M] =

fun .Sim_unit d ⇒ d

| .Sim_nil d ⇒ d

| .Sim_cons d ⇒ ESim_cons d sim_refl sim_refl

| .Sim_lam d ⇒ ESim_lam d (mlam R ⇒ sim_refl)

As mentioned above, recursive functions are defined via the top-level definition rec which

then makes use of fun as a term to define copattern definitions. There are four cases justified

by the four observations. The first two simply prove that if the left-hand side evaluates to

the correct value, then so does the right-hand side as they are the same. The last two cases

make recursive calls to prove reflexivity of the subcases, instantiating the (hidden) existential

by the result of the evaluation of the left-hand side. The recursive calls are deemed guarded

because an observation appear on the left-hand side of the arrow. The case for Sim_lam

makes use of the variable abstraction mlam R ⇒ sim_refl to abstract over the term R which

appears in the type of the recursive call (Sim [T] [M’[R]] [M’[R]]). While it is not passed

explicitly here, the reconstructed program would pass it to the recursive call to sim_refl.

Next, we prove that the simulation is transitive:

rec sim_trans : Sim [T] [M] [N] → Sim [T] [N] [R] → Sim [T] [M] [R] =

fun s1 s2 .Sim_unit d ⇒ s2.Sim_unit (s1.Sim_unit d)

| s1 s2 .Sim_nil d ⇒ s2.Sim_nil (s1.Sim_nil d)

| s1 s2 .Sim_cons d ⇒

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 155

let ESim_cons d1 s1’ s1’’ = s1.Sim_cons d in

let ESim_cons d2 s2’ s2’’ = s2.Sim_cons d1 in

ESim_cons d2 (sim_trans s1’ s2’) (sim_trans s1’’ s2’’)

| s1 s2 .Sim_lam d ⇒
let ESim_lam d1 s1’ = s1.Sim_lam d in

let ESim_lam d2 s2’ = s2.Sim_lam d1 in

ESim_lam d2 (mlam P ⇒ sim_trans (s1’ [P]) (s2’ [P]))

The proof takes two arguments, and then requires us to build a simulation. In the two

first cases, we simply chain together the fact that the arguments are each a simulation to

obtain the result. For example, assuming M evaluates to unit, then we know by s1 (by calling

s1.Sim_unit d) that N evaluates to unit and, using that fact, we know by s2 that so does R,

which is what we needed to prove.

Now, for the last two cases, we first need to chain together the observation of the input

and make recursive calls.. For example, if M evaluated to cons HM LM by d, then the first let-

statement allows us to conclude that N evaluates to cons HN LN by d1 and we have s1’ : Sim

[T] [HM] [HN] and s1’’ : Sim [list T] [LM] [LN]. The second let-statement similarly lets

us know that R evaluates to cons HR LR by d2 and we have s2’ : Sim [T] [HN] [HR] and

s2’’ : Sim [list T] [LN] [LR] Now, by use of a recursive call, we are able to show Sim

[T] [HM] [HR] and Sim [list T] [LM] [LR] and thus prove which is what was needed to

conclude that M is similar to R.

On the adequacy of coinductive encodings

We next sketch the adequacy of the encoding of similarity; a full proof, such as those in

the electronic appendix of Tiu and Miller [2010] would be too long to spell out. Instead,

we rely on our intuitive understanding of (co)inductive types; to get started, we assume the

adequacy of LF encodings, whereby we denote the mapping of terms m and types τ to their

encodings as pmq and pτq respectively. Conversely, the decoding of an LF object M and T

into terms and types is written xMy and xTy respectively.

Lemma 4.8. For any term m and type τ , we have xpmqy = m and xpτqy = τ .

156 CHAPTER 4. CASE STUDY: HOWE’S METHOD

Proof. Standard, following for example the work of Pfenning [1997].

We further build on the adequacy of the encoding of substitutions. In particular, the

translation of [σ]m is equivalent to first translating σ and the term m to their corresponding

representations in LF and then relying on the built-in simultaneous LF substitution operation

of applying pσq to pmq. The encoding pσq is defined inductively on the substitution σ as

expected: p·q =ˆand pσ,m/xq = pσq, pmq. Further, recall that we write the application

of a simultaneous LF substitution in prefix form, while we write the closure of an LF object

together with an LF substitution in post-fix.

Lemma 4.9 (Compositionality). p[σ]mq = [pσq]pmq.

Proof. Generalization of the compositionality lemma for LF.

Lemma 4.10 (Soundness). If Sim [pτq] [pmq] [pnq] then m 4τ n.

Proof. (Sketch) We apply rule CI− � to unfold m 4τ n selecting the family Sτ to be

{(m,n) | Sim [pτq] [pmq] [pnq]}

We then show that Sτ satisfies the simulation conditions unfolding the definition of Sτ .

Before addressing the other direction, we briefly contrast the more familiar inductive

reasoning with the coinductive reasoning we will use. To prove a conjecture inductively on

an object, we consider all possible ways such an object can be constructed and we reason

inductively about some notion of size of an object or a derivation. In an inductive proof, to

show that the property holds for objects of size m, we may assume that it holds for objects

of size k where k < m.

For example, to prove that for all terms M and V , if D : Eval [M] [V] then there exists

F : Value [V], we proceed by induction on the height n of D, the derivation of Eval [M] [V].

We therefore prove the following by considering all possible constructors that we can use to

build such a derivation D.

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 157

IH For all k < n, for all terms M and V ,

if D′ : Eval [M] [V] and size(D′) = k then there is F : Value [V]

To show For all term M and V , if D : Eval [M] [V] and size(D) = n then

there is F : Value [V]

Dually, to prove a conjecture coinductively, we consider all possible observations we can

make about an object and we reason inductively on the number of observations, which we

refer to as depth. In a coinductive proof, we assume that the conjecture holds when we can

make k observations about the object, and we show that the conjecture also holds when we

make n observations about it where k < n. In essence, to prove a statement by coinduction

we reason by complete induction on the number of observations. For example, if we want

to prove reflexivity of simulation, i.e. for all terms M and types T , D : Sim [T] [M] [M],

then we proceed by induction on the number of observation on D and consider all possible

observations we can make about D.

IH For all k < n, for all terms M and types T ,

D′ : Sim [T] [M] [M] and depth(D′) = k

To show For all term M and types T , D : Sim [T] [M] [M] and depth(D) = n

We are now ready to address the other direction of the adequacy statement. For a more

formal justification of reasoning about inductive data via sizes and coinductive data via

observations we refer the reader to [Abel and Pientka, 2013, 2016].

Lemma 4.11 (Completeness). If m 4τ n, then Sim [pτq] [pmq] [pnq].

Proof. We proceed by complete induction on the number of observations we can make on

Sim [pτq] [pmq] [pnq].

IH For all k < j, for all terms m and types τ ,

If S : m 4τ n, then D′ : Sim [pτq] [pmq] [pnq] and depth(D′) = k

To show for all terms m and types τ ,

If S : m 4τ n, then D : Sim [pτq] [pmq] [pnq] and depth(D) = j

158 CHAPTER 4. CASE STUDY: HOWE’S METHOD

Observation Sim unit.

To show: If m 4τ n then (pτq = top)→ Eval [pmq] [unit]→ Eval [pnq] [unit].

Assume m 4τ n, pτq = top, and Eval [pmq] [unit]

τ = > by definition of pτq

m ⇓ 〈〉 entails n ⇓ 〈〉 by Def. 1 using the assumption m 4τ n

x Eval [pmq] [unit] y = m ⇓ 〈〉 by decoding of Eval

n ⇓ 〈〉 by previous lines

pn ⇓ 〈〉q = Eval [pnq] [unit] by encoding of Eval

Observation Sim lam.

IH For all k < j, if m 4τ n then D : Sim [pτq] [pmq] [pnq] and depth(D) = k

To show If m 4τ n then D .S lam : Sim [pτq] [pmq] [pnq] and depth(D .Sim lam) = j

Making an observation corresponds to projecting with the dot notation the field Sim_lam of

the record. We further note that depth(D .Sim lam) = depth(D) + 1. Since we are making

the observation Sim lam, we can unfold the definitions. Hence, it suffices to show

if m 4τ n then

for all S1, S2, M
′. (pτq = arr S1 S2)→ Eval [pmq] [lam λx.M′]

→ there exists N′ s.t. Eval [N] [lam λx.N′]

and (for all R, D : Sim [S2] [M′[R]] [N′[R]])

Moreover, depth(D) is clearly less than depth(D .Sim lam) and we may appeal to the induc-

tion hypothesis, which can be specialized to the following statement:

if [r/x]m′ 4s2 [r/y]n′ then Sim [S2] [M′[R]] [N′[R]] where pm′q = M′, prq = R, pn′q = N′.

Assume m 4τ n, pτq = (arr S1 S2), and Eval [pmq] [lam λx.M′]

τ = s1 → s2 since ps1 → s2q = arr S1 S2 where s1 = xS1y and s2 = xS2y.

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 159

for any x:s1 ` m′:s2. m ⇓ lamx.m′ entails that

there exists a y:s1 ` n′:s2 such that n ⇓ lam y. n′

and for every r:s1, [r/x]m′ 4s2 [r/y]n′; by definition of m 4τ n

Eval [pmq] [lam λx.M′] = pm ⇓ xlam λx.M′yq by encoding of Eval

lam λx.M′ = plamx.m′q by encoding of terms

there exists a y:s1 ` n′:s2 such that n ⇓ lam y. n′

and for every r:s1, [r/x]m′ 4s2 [r/y]n′ by previous lines

pn ⇓ lam y. n′q = Eval pnq (lam λy.pn′q) by encoding of Eval

Assume R : term S1.

p[r/x]m′q = M′[R] and p[r/y]n′q = N′[R] by Theorem 4.9 (Compositionality)

Sim [S2] [M′[R]] [N′[R]] by the specialized induction hypothesis

using [r/x]m′ 4s2 [r/y]n′ from the previous line

Therefore, there exists N′, namely pn′q, and Eval [pnq] [lam λy.pn′q] and for all R:term S1,

we have Sim [S2] [M′[R]] [N′[R]]. Hence, Sim [ps1 → s2q] [pmq] [pnq]. This concludes this

case.

Theorem 4.12 (Adequacy of encoding of similarity as a coinductive type). m 4τ n iff

Sim [pτq] [pmq] [pnq].

We remark that while soundness follows the same structure of [Honsell et al., 2001] and

[Tiu and Miller, 2010], the possibility to induct on the number of observation allows one to

establishes completeness in a novel and easier way with respect to an analogous result in

[Tiu and Miller, 2010], which had to resort to a complex induction on the structure of the

arguments of the coinductively defined predicate/type.

Subsequently, we will not make the number of observations explicit in coinductive argu-

ments, but simply permit corecursive calls when they are guarded by an observation.

160 CHAPTER 4. CASE STUDY: HOWE’S METHOD

A concrete example of similarity

In this section we show how we can interactively build an actual simulation between two

terms, namely that two is simulated by suc one, following the example in [Pitts, 2011].

We represent the numbers via Church encodings, where one ≡ lam f. lamx. f x, two ≡
lam f. lamx. f(f x), and suc ≡ lamn. lamx. lam y. x (n x y). We thus want to prove the

following theorem:

rec sim_two_suc_one :

Sim [_] [lam λf.lam λx.app f (app f x)]

[app (lam λn. lam λx. lam λy. app x (app (app n x) y))

(lam λf.lam λx.app f x)]

We will build the proof incrementally, by inserting holes, denoted by ? and refining them,

analogously to Agda’s or Epigram’s methodology [McBride, 2004]. We start with the follow-

ing program body:

fun .Sim_lam (Ev_val Val_lam) ⇒
ESim_lam (Ev_app (Ev_val Val_lam) (Ev_val Val_lam)) sim_lemma1

where sim_lemma1 is used to abstract over the nested copattern matching:

rec sim_lemma1 : {M:[exp (arr T T)]}

Sim [arr T T]

[lam (λx. app M[] (app M[] x))]

[lam (λy. app M[] (app (app (lam (λf. lam (λw. app f w))) M[]) y))] =

fun [M] .Sim_lam (Ev_val Val_lam) ⇒
ESim_lam (Ev_val Val_lam)

(mlam N ⇒ ?)

Here, the goal has type Sim [_] [app M (app M N)] [app M (app (app (lam (λf. lam

(λw. app f w))) M) N)], which we cannot prove directly using our definition of similar-

ity: since our evaluation strategy is call-by-name and the metavariable M is not a concrete

term, the right-hand side will not reduce. Instead, we use the fact that similarity is a pre-

congruence, the main result of this work. We only need property (C3) of Definition 2, which

translates to the following lemma.

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 161

rec sim_cong_app : Sim [arr S T] [M1] [M2] → Sim [S] [N1] [N2]

→ Sim [T] [app M1 N1] [app M2 N2]

Using this result and reflexivity of similarity, we can thus refine the body of sim_lemma1:

fun [M] .Sim_lam (Ev_val Val_lam) ⇒
ExSimlam (Ev_val Val_lam)

(mlam N ⇒ sim_cong_app sim_refl ?)

where the current hole has type:

Sim [T] [app M N] [app (app (lam (λu. lam (λw. app u w))) M) N]

Now, we can easily use a derivation of the evaluation of the left-hand side to derive the

evaluation of the right-hand side of this similarity as follows:

rec ev1 : Eval [app M N] [V] →
Eval [app (app (lam (λu. lam (λw. app u w))) M) N] [V] =

fun d ⇒ Ev_app (Ev_app (Ev_val Val_lam) (Ev_val Val_lam)) d;

Constructing the above simulation requires us to match on the possible values that app M N

can take through the possible observations — in fact all of them as the type T is abstract.

We then use ev1 on the derivations of Eval [app M N] [V] for the given V and reflexivity

when needed.

rec sim_lemma2 : Sim [T] [app M N]

[app (app (lam (λu. lam (λw. app u w))) M) N] =

fun .Sim_lam d ⇒ ESim_lam (ev1 d) (fun [V] ⇒ sim_refl)

| .Sim_unit d ⇒ ev1 d

| .Sim_nil d ⇒ ev1 d

| .Sim_cons d ⇒ ESim_cons (ev1 d) sim_refl sim_refl

Using this lemma, we can complete the body of sim_lemma1:

fun [M] .Sim_lam (Ev_val Val_lam) ⇒
ExSimlam (Ev_val Val_lam)

(mlam N ⇒ sim_cong_app sim_refl sim_lemma2)

This concludes the proof.

162 CHAPTER 4. CASE STUDY: HOWE’S METHOD

Defining open similarity using first-class contexts and

substitutions

Similarity only relates closed terms. However, in general, we want to be able to reason about

similarity of open terms, i.e. terms that depend on a context γ. In Beluga, we can declare

schemas of contexts that classify contexts in the same way that types classify terms and

kinds classify types, describing the shape of each declaration in a context. Moreover, we can

take advantage of built-in substitutions to relate two contexts. In particular, we can describe

grounding substitutions with the type [` γ], where the range of the substitution is empty.

We begin by defining the schema of contexts that can occur in our development:

schema ctx = term T;

Here we declare the schema ctx that states that each declaration of a context γ of schema

ctx can only contain variable declarations of type term T for some type T. For example,

the context x:term top, y:term (list top) is a valid context of schema ctx. On the other

hand, a context x:term unit, a:tp is not.

We can now state open similarity as an inductive type relating well-typed terms in the

context γ. In the kind of the inductive type OSim, we make the type T explicit, but leave γ

implicit. This distinction is reflected in Beluga’s source syntax. We use curly braces { } to

describe explicit index arguments and round ones () to give type annotations implicitly.

We can now define open similarity: two terms [γ ` M] and [γ ` N] are openly similar

if they are similar for all grounding substitutions σ. Here, we pass γ explicitly to OSimC so

that Beluga knows the type of σ.

inductive OSim:(γ:ctx){T:[tp]} [γ ` term T[]] → [γ ` term T[]] → ctype =

| OSimC : {γ:ctx}({σ:[` γ]} Sim [T] [M[σ]] [N[σ]])

→ OSim [T] [γ ` M] [γ ` N]

We can easily show that open similarity is closed under substitutions by simply composing

the input substitution σ with the grounding substitution σ’.

rec osim_cus : (γ:ctx) (ψ:ctx) {σ:[ψ ` γ]} OSim [T] [γ ` M] [γ ` N]

→ OSim [T] [ψ ` M[σ]] [ψ ` N[σ]] =

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 163

inductive Howe: (γ:ctx){T:[tp]}[γ ` term T[]] → [γ ` term T[]] → ctype =

| Howe_unit: OSim [top] [γ ` unit] [γ ` M]

→ Howe [top] [γ ` unit] [γ ` M]

| Howe_var : {#p:[γ ` term T[]]} OSim [T] [γ ` #p] [γ ` M]

→ Howe [T] [γ ` #p] [γ ` M]

| Howe_lam : Howe [T] [γ,x:term S[] ` M] [γ,x:term S[] ` N]

→ OSim [arr S T] [γ ` lam λx.N] [γ ` R]

→ Howe [arr S T] [γ ` lam λx.M] [γ ` R]

| Howe_app : Howe [arr S T] [γ ` M] [γ ` M’]

→ Howe [S] [γ ` N] [γ ` N’]

→ OSim [T] [γ ` app M’ N’] [γ ` R]

→ Howe [T] [γ ` app M N] [γ ` R]

...

Figure 4.9: The Howe relation

fun [ψ ` σ] (OSimC [γ] f) ⇒ OSimC [ψ] (fun [σ’] ⇒ f [σ[σ’]])

Defining the Howe relation

The encoding of the Howe relation (see Figure 4.9) is, in our view, one of the high points

of the formalization: it follows very closely its mathematical formulation, while retaining

all the powerful abstractions that Beluga offers. This is apparent in the variable case where

Beluga’s parameter variables, denoted #p, range over elements from the context γ. They

permit us to precisely characterize when a variable is Howe related to a term M in the given

context, while looking remarkably similar to the informal version. The same applies to

lambda-abstractions case, where one notes the correct scoping of M, N and R with respect to

γ. The cases for fix and lcase follow the same principle and we omit them to save space.

The structure of the Howe relation makes it trivial to prove it is a precongruence. We

show here the proof in the application case, which is indirectly used for the example of

simulation we presented above. The proof of precongruence of similarity in fact follows

immediately once we prove equivalent similarity and the Howe relation, see Section 4.2.

164 CHAPTER 4. CASE STUDY: HOWE’S METHOD

rec howe_cong_app : Howe [arr S T] [M1] [M2] → Howe [S] [N1] [N2]

→ Howe [T] [app M1 N1] [app M2 N2] =

fun h1 h2 ⇒ Howe_app h1 h2 osim_refl;

Using reflexivity and transitivity of open similarity, respectively, we can show reflexivity

and semi-transitivity of the candidate relation. We only show the types.

rec howe_refl : (γ:ctx) {M:[γ ` term T[]]} Howe [T] [γ ` M] [γ ` M]

rec howe_osim_trans : (γ:ctx) Howe [T] [γ ` M] [γ ` N]

→ OSim [T] [γ ` N] [γ ` R]

→ Howe [T] [γ ` M] [γ ` R]

From this it immediately follows that open similarity is a Howe relation.

rec osim_howe:(γ:ctx) OSim [T] [γ ` M] [γ ` N]

→ Howe [T] [γ ` M] [γ ` N] =

fun s ⇒ howe_osim_trans (howe_refl [_ ` _]) s

Substitutivity of the Howe relation

As remarked in Section 4.1, a crucial point of the proof is showing that the Howe relation

is substitutive. Traditionally, substitution properties tend to be tedious to prove in proof

assistants due to the necessity to reason manually about contexts. Here, Beluga’s contextual

abstractions significantly reduces the amount of boilerplate work needed for that proof.

We first encode (Figure 4.10) Φ ` σ1 4HΓ σ2 using an inductive type that relates two

simultaneous substitutions . The base case relates empty substitutions, written as [ψ `].

In the inductive case, the substitution [ψ ` σ1, M] and [ψ ` σ2, N] are related, if so are

[ψ ` σ1] and [ψ ` σ2] and [ψ ` M] is Howe related to [ψ ` N].

In the subsequent proofs, we rely on the weakening property of simultaneous substitu-

tions: namely, that weakening preserves Howe-relatedness, see function howe_subst_wkn in

Figure 4.10. In Beluga, weakening a substitution is simply achieved by composing it with

the weakening substitution [...], which has here domain ψ and range ψ, x:term S[]. This is

4.2. MECHANIZING HOWE’S METHOD IN BELUGA 165

rec howe_ren : {γ:ctx}{ψ:ctx}{σ: [ψ ` # γ]} Howe [T] [γ ` M] [γ ` N]

→ Howe [T] [ψ ` M[σ]] [ψ ` N[σ]]

inductive Howe_subst:

{γ:ctx} (ψ:ctx) {σ1 : [ψ ` γ]} {σ2 : [ψ ` γ]} ctype =

| HNil : Howe_subst [] [ψ `] [ψ `]

| HCons : Howe_subst [γ] [ψ ` σ1] [ψ ` σ2]

→ Howe [T] [ψ ` M] [ψ ` N]

→ Howe_subst [γ,x:term T[]] [ψ ` σ1, M] [ψ ` σ2, N]

rec howe_subst_wkn : Howe_subst [γ] [ψ ` σ1] [ψ ` σ2]

→ Howe_subst [γ] [ψ,x:term S[] ` σ1[...]] [ψ,x:term S[] ` σ2[...]] =

fun [S] HNil ⇒ HNil

| [S] HCons hs’ h’ ⇒
HCons (howe_subst_wkn [` S] hs’)

(howe_ren [_] [_, x:term S[]] [_, x:term S[] ` ...] h’)

Figure 4.10: Howe related substitutions

supported in Beluga’s theory of simultaneous substitutions [Cave and Pientka, 2013], which

internalizes the notions in Figure 4.3. The proof of howe_subst_wkn is done by induction

over the predicate Howe_subst and by appealing to howe_ren, a special case of substitutivity

of Howe on renamings. In the following, namely in the proof of howe osim, see Figure 4.12,

we will also need the following reflexivity property of Howe_subst, which holds by a simple

induction on substitutions:

rec howe_subst_refl: (γ:ctx)(ψ:ctx){σ:[ψ ` γ]}
Howe_subst [γ] [ψ ` σ] [ψ ` σ]

A fragment of the proof of substitutivity in Beluga appears in Figure 4.11. We only show

here the same two cases we described in the informal proof, together with the variable case,

but the remaining cases follow a similar pattern. We make use of the lemmas described

above, together with the following additional lemma for the variable case:

rec howe_subst_var : (γ:ctx) (ψ:ctx) Howe [T] [γ ` #p] [γ ` M]

166 CHAPTER 4. CASE STUDY: HOWE’S METHOD

→ Howe_subst [γ] [ψ ` σ1] [ψ ` σ2]

→ Howe [T] [ψ ` #p[σ1]] [ψ ` M[σ2]] =

This is proven by simple induction on the position of the variable in the context which follows

the inductive definition of Howe_subst.

We can see that howe_subst straightforwardly represents the proof of Lemma 4.7. What

is remarkable in this program with respect to the informal proof is that there are no explicit

references to the substitution properties outside of the weakening of the Howe relation on

substitutions. The encoding is very concise and captures the essential steps in the proof.

rec howe_subst : Howe [T] [γ ` M] [γ ` N]

→ Howe_subst [γ] [ψ ` σ1] [ψ ` σ2]

→ Howe [T] [ψ ` M[σ1]] [ψ ` N[σ2]] =

fun h (hs:Howe_subst [γ] [ψ ` σ1] [ψ ` σ2]) ⇒
case h of

...
| Howe_var [γ ` #p] s ⇒ howe_subst_var h hs

| Howe_lam h’ s ⇒
Howe_lam (howe_subst h’ (HCons (howe_subst_wkn hs)

(howe_refl [ψ,x:term _] [ψ,x:term _ ` x])))
(osim_cus [ψ ` σ2] s)

| Howe_app h1’ h2’ s ⇒
Howe_app (howe_subst h1’ hs) (howe_subst h2’ hs) (osim_cus [ψ ` σ2] s);

Figure 4.11: Substitutivity property of the Howe relation

Main theorem

The key lemma in our main theorem is the proof that the Howe relation is downward closed :

rec down_closed : Eval [M] [V] → Howe [T] [M] [N] → Howe [T] [V] [N]

The proof of this lemma (point 4.1 at page 141) relies on several previous lemmas such

as transitivity of closed and open similarity, semi-transitivity and substitutivity of the Howe

4.3. RELATED WORK 167

relation, together with the unfolding of similarity using the observations. The proof is

otherwise straightforward but long, and we omit it.

Moving on, we first establish lemmas that mimic the similarity conditions (previous

point 4.1). For example: If lam x. m 4Hτ→τ ′ n, then n ⇓ lam x. m′ and for every q:τ we have

[q/x]m 4Hτ ′ [q/x]m′. Again, as we do not have existential types, we encode the existence of a

term N’ using the inductive types Howe_abs. A fragment of the type signature is as follows:

inductive Howe_abs: [x:term S ` term T[]] → [term (arr S T)] → ctype =

| Howe_absC : Eval [N] [lam λx.N’]

→ ({R:[term T]} Howe [T’] [M’[R]] [N’[R]])

→ HoweAbs [x:term S ` M’] [N];

rec howe_ev_abs : Howe [arr S T] [lam λx.M’] [N]

→ HoweAbs [x:term S ` M’] [N]

We are now ready to prove that the Howe relation coincides with open similarity. We

do this by first proving that, in the empty context, the Howe relation is a similarity, then

we embed the open version into an open similarity. To do so, we construct out of the input

substitution σ for open similarity a derivation · ` σ 4HΓ σ by reflexivity. The proofs appear

in Figure 4.12.

4.3 Related work

The first HOAS-like formal verification of the congruence of a notion of bisimilarity concerned

the π-calculus [Honsell et al., 2001] and was carried out in Coq using the weak HOAS

approach and instantiating the Theory of Contexts to axiomatizing properties of names.

As common in many coinductive developments in Coq, the authors soon ran afoul of the

guardedness checker in Cofix-style proofs and had to resort to an explicit greatest-fixed point

encoding for Strong Late Bisimilairy. Abella’s take on the same issue [Tiu and Miller, 2010]

seems preferable; that paper details, among so much more, a proof that similarity is a pre-

congruence for the finite π-calculus. The encoding is rather elegant, where all issues involving

168 CHAPTER 4. CASE STUDY: HOWE’S METHOD

rec howe_sim : Howe [T] [M] [N] → Sim [T] [M] [N] =

fun h .Sim_unit e ⇒ howe_ev_unit (down_closed e h)

| h .Sim_nil e ⇒ howe_ev_nil (down_closed e h)

| h .Sim_cons e ⇒
let Howe_consC e’ h1 h2 = howe_ev_cons (down_closed e h) in

ESim_cons e’ (howe_sim h1) (howe_sim h2)

| h .Sim_lam e ⇒
let Howe_absC e’ f = howe_ev_abs (down_closed e h) in

ESim_lam e’ (mlam R ⇒ howe_sim (f [R])

rec howe_osim : {γ:ctx} Howe [T] [γ ` M] [γ ` N]

→ OSim [T] [γ ` M] [γ ` N] =

fun [γ] h ⇒ OSimC (mlam σ ⇒ howe_sim (howe_subst h (howeSubst_refl [σ])));

Figure 4.12: The Howe relation is included in open similarity

bindings, names, and substitutions are handled declaratively without explicit side-conditions,

thanks to the ∇-quantifier. This style of encoding has been extended in [Chaudhuri et al.,

2015] to handle bisimilarity “up-to”. This is achieved via a limited form of quantification on

relations that does not have, to our knowledge, a consistency proof yet. The authors do not

pursue a proof of congruence in the cited paper.

Recent years have seen much work regarding the formalization of process calculi, in

particular using Nominal Isabelle. Among those we mention Bengtson and Parrow [2009],

Parrow et al. [2014], Bengtson et al. [2016] which discuss various versions of the π/ψ-calculus

and their congruence properties, without resorting to the Howe’s proof strategy.

Encoding bisimilarity in the λ-calculus, in particular via Howe’s method, brings in ad-

ditional challenges, as we have seen. We are aware of several formalizations through the

years:

1. In [Ambler and Crole, 1999] the authors verify in Isabelle/HOL 98 the same result of the

present paper and a bit more (they also show that similarity coincides with contextual

pre-order) for PCFL using de Bruijn indexes as an encoding techniques for binders.

4.3. RELATED WORK 169

The development, for the congruence part, consists of around 160 lemmas/theorems,

and it confirms a common belief about (standard) concrete syntax approaches: doable,

but very hard-going;

2. A partial improvement was presented in [Momigliano et al., 2002], which was based

on the HOAS approach implemented in an early version of the Hybrid tool [Felty

and Momigliano, 2012], but one crucial lemma was left unproven, tellingly: Howe’s

substitutivity. This was related to the difficulty of lifting substitution as β-conversion

to substitution on judgments in one-level Hybrid term;

3. In Momigliano [2012] the author fixed this problem, giving a complete Abella proof

for the simply typed calculus with unit. The proof consists of circa 45 theorems,

1/4 of which devoted to maintaining typing invariants in (open)similarity and in the

candidate relation, 1/7 of which instead used to make sure that some ∇-quantified

variable cannot occur in certain predicates. The main source of difficulty was again in

the proof of substitutivity of the Howe relation, in particular while handling structural

properties of explicit contexts.

4. Using the present work as a blue print, Chaudhuri [2018] gives a proof in Abella of

the substitutivity of the Howe relation that is very close to the one discussed here;

it is based on a theory of first class simultaneous substitutions encoded via the copy

clauses as originally suggested by Miller: m1/x1, . . . ,mn/xn is represented as the Abella

context copy nn mn :: ... :: copy m1 n1 :: nil.The application of a substi-

tution [σ]m = n becomes the derivability of the judgment {pσq ` copy pmq pnq}. The

theory underlying this formalization consists of 15 theorems, 4 of which are sensitive

to the signature: in this sense the theory has to be stated and re-proven for each signa-

ture. The effort required to automate the infrastructure for simultaneous substitutions

in Abella should be analogous to similar libraries in Coq [Kaiser et al., 2017]. Com-

pared to the Beluga development, where substitutions and their equality theory are

built-in, this is more labour-intense roughly adding a factor of 1.6. Moreover, Abella’s

proposed handling of simultaneous substitutions is, of course, relational and must be

explicitly applied whenever needed. For example, the proof of osim ocus, which in

170 CHAPTER 4. CASE STUDY: HOWE’S METHOD

Beluga is a one liner, requires here the appeal to five lemmas to ensure that substitu-

tions and their compositions are functional, that types and well-formedness of contexts

are preserved etc.

In another recent paper McLaughlin et al. [2018] give a formalization of the coincidence

of observational and applicative approximation not going through the candidate relation, but

triangulating with a notion of logical (as in logical relations) approximation. This is then

extended to CIU approximation. The encoding uses first-order syntax for terms, but a form

of weak HOAS for judgments following Allais et al. [2017], and it is therefore compatible with

a standard proof assistant such as Agda. Similarly to us, it leverages the use of intrinsically

well-typed and well-scoped terms and simultaneous substitutions, although the latter are not

supported natively by the framework. Interestingly, it offers an elegant notion of concrete

context (and thus of Morris approximation) that seems much easier to reason with than

previous efforts [Ford and Mason, 2003].

Lenglet and Schmitt [2018] present a formalization of Sangiorgi’s Higher-Order π-calculus

in Coq, using the locally nameless approach to representing name restriction and well-scoped

de Bruijn indices for process variables. The formalization includes a proof that strong context

bisimilarity is a congruence, via an adaptation to the concurrent setting of Howe’s method.

The authors seem unaware of HOAS representations of the π-calculus and the representation

technique adopted, albeit state of the art among the concrete ones, still requires a lot of

boilerplate infrastructure to handle names and related notions.

4.4 Conclusions

We have outlined how to use Beluga to encode a significant example of reasoning about

program equivalence using Howe’s method for PCFL. This has reinforced several observations

that have been done in other case studies involving Beluga, viz. [Cave and Pientka, 2015,

2018]:

• Using intrinsically typed terms instead of working with explicit typing invariants makes

our encoding more compact and easier to deal with, since HOAS maintains our terms

4.4. CONCLUSIONS 171

well-scoped. The advantages of intrinsically typed representations have also been ob-

served in non-HOAS setting [Benton et al., 2012, Allais et al., 2017].

• The support for built-in simultaneous substitutions and contexts lead us to generalize

some statements, for example substitutivity; but this paid off in our mechanization, as

many crucial lemmas became simpler to prove.

• Thanks to catering for both indexed inductive and coinductive data-types in Beluga,

the encoding of similarity and of the candidate relation was concise and as close as the

informal presentation as one can reasonably hope for.

While we hope that we have succeeded in showing that Beluga is an excellent environment

for the meta-theory of program equivalence, this case study has shown that is not well suited

(yet) to verifying the equivalence of concrete pieces of code. To approach this, we need

better interactive tools. The interactive proof environment Harpoon [Errington, 2020] is

being developed to that effect. It allows tactic based reasoning of Beluga programs. At the

time of writing of this thesis, it does not support coinduction.

Last but not least, we take a look beyond mechanizing bisimilarity which has been the

focus of this chapter. The attentive reader may have noticed that we have not proven

that bisimilarity coincides with contextual equivalence, as e.g., in [Ambler and Crole, 1999].

The challenge lies in the encoding of the latter notion: we would rather avoid using a

notion of concrete non-α-equivalent terms with holes, in favour of a context-less formulation:

contextual equivalence can be seen as the largest adequate and compatible relation [Lassen,

1998, Pitts, 2011]. This requires extending Beluga to at least second-order quantification.

This would also be useful in many other scenarios, e g., normalization for system F .

Finally, we believe it would be interesting to explore other approaches to proving program

equivalence such as step-indexed logical relations [Ahmed, 2006] and compare this approach

with Howe’s. This would give us a deeper understanding of program equivalence proofs and

provide insights into how both approaches scale to more complex programming languages

such as in [Pitts, 2005, Crary and Harper, 2007].

Chapter 5

Conclusion

This thesis described an indexed type theory with support for coinductive reasoning. Coin-

ductive types were defined by observations while coinductive proofs are represented using

copattern matching. We provided a simple framework to allowing us to use custom in-

dex domains ranging from simple like natural numbers or sophisticated like contextual LF.

We proved subject reduction and progress for this language. We also designed a non-

deterministic coverage algorithm mimicking interactive splitting, and criteria for termina-

tion. Those criteria are can be checked statically to accept safe programs. We showed them

correct by defining a translation to a core calculus. We proved the core calculus to be nor-

malizing, the translation to be evaluation preserving, and the criteria to be sufficient for the

translation.

In addition, we implemented a prototype implementation for this language with con-

textual LF as index domain in the proof assistant Beluga by extending it with copattern

matching. We showcase this prototype with a case study on Howe’s method. The case study

used coinductive types to define a simulation on a simply-typed lazy λ-calculus. It lever-

ages Beluga’s support for open terms and substitutions to define the auxiliary Howe relation

on open terms and prove it to be substitutive. This property is key to show the equiva-

lence and is often a challenge in proof assistants with limited support for meta reasoning for

programming languages.

172

5.1. FUTURE WORK 173

5.1 Future Work

Coinductive Indices

We believe our framework to be able to handle coinductive index domains in addition to

inductive ones but we haven’t spelled out such a domain. In particular, providing and

adequate definition of equality and unification for coinductive definition can prove to be

challenging. An example of streams as indices with a basic corecursor and observations head

and tail might not have such a simple answer for equality. It might be needed to design a

notion of bisimulation on top of it. Manipulating bisimulations in addition to equalities could

prove to be challenging given the intensional nature of our theory. It is also possible that

we can reuse some insights from the extensional type theories of NuPRL or Isabelle/HOL to

obtain a domain of coinductive indices. Such development would also give insights towards

a fully dependent copattern language.

Internal Encoding of Equality Constraints

The Agda language has support for copatterns and can explicitly spell out equality guards

to simulate the description of our indexed coinductive types. On the other hand, Agda offers

intrinsic support to handle equality constraints for inductive types. For example, we can

define vectors of A’s as

data Vec : Nat → type =

| nil : Vec 0

| cons : A → Vec n → Vec (suc n)

which is equivalent to

data Vec (n : Nat) : type =

| nil : n = 0

| cons : Σm.n = (suc m) * A * Vec m

Defining such vectors coinductively can only be done as

codata Vec (n : Nat) : type =

174 CHAPTER 5. CONCLUSION

| head : Πm.n = (suc m) → A

| tail : Πm.n = (suc m) → Vec m

Intrinsic support could lead to definitions like the following:

codata Vec : Nat → type =

| head : Vec (suc m) → A

| tail : Vec (suc m) → Vec m

Such addition leads us to ask how we can handle coinductive indices that cannot simply

be pattern matched on. For example, if instead we were to use coinductive natural numbers

that are defined as:

codata CoNat : type =

| out : CoNat’

and data CoNat’ : type =

| zero : CoNat’

| suc : CoNat → CoNat’

In this case, we can only pattern match once we apply the observation out. It gets even

more complicated if the codata has more than one observation. Moreover, as we mentioned

above, the question of an adequate representation of equality for such type is not so simple.

Beluga Implementation

At the time of the writing of this thesis, Beluga’s termination checking algorithm is lacking

support for coinduction. The criteria and the translation from Chapter 3 does provide an

answer as to how to extend it but the work remains to be done. Extending Beluga to

second-order quantification would also gives us the opportunity to abstract over relations

and thus encode adequate and compatible relations. This would allow us to prove that

our bisimulation from Chapter 4 coincides with contextual equivalence (as done by Ambler

and Crole [1999]), as contextual equivalence is the largest adquate and compatible relation

[Lassen, 1998, Pitts, 2011].

5.1. FUTURE WORK 175

Carrying out other case studies in Beluga would also be interesting. Step-indexed logical

relation [Ahmed, 2006] have been used to show program equivalence. Beluga has already

been used to show logical relation proofs [Cave and Pientka, 2015]. One could compare the

two developments and see how they scales to more complex programming languages such as

in [Pitts, 2005].

Bibliography

A. Abel. Termination checking with types. RAIRO - Theoretical Informatics and Applica-

tions, 38(4):277–319, 3 2004.

A. Abel and R. Matthes. Fixed points of type constructors and primitive recursion. In

J. Marcinkowski and A. Tarlecki, editors, 18th International Workshop on Computer Sci-

ence Logic (CSL’04), volume 3210 of Lecture Notes in Computer Science, pages 190–204.

Springer, 2004.

A. Abel and B. Pientka. Well-founded recursion with copatterns:a unified approach to

termination and productivity. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming (ICFP ’13), pages 185–196, 2013. doi: 10.1145/

2500365.2500591.

A. Abel and B. Pientka. Well-founded recursion with copatterns and sized types.

Journal of Functional Programming, 26:e2 (61 pages), 2016. ISSN 1469-7653.

doi: 10.1017/S0956796816000022. URL http://journals.cambridge.org/article_

S0956796816000022.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming infinite

structures by observations. In 40th ACM Symp. on Principles of Programming Languages

(POPL’13), pages 27–38. ACM Press, 2013.

S. Abramsky. A domain equation for bisimulation. Inf. Comput., 92(2):161–218, 1991. doi:

10.1006/inco.1991.9999. URL https://doi.org/10.1006/inco.1991.9999.

176

BIBLIOGRAPHY 177

Agda team. The Agda Wiki, 2014.

A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

P. Sestoft, editor, 15th European Symposium on Programming (ESOP’06), pages 69–83.

Springer, 2006. ISBN 978-3-540-33096-7. doi: doi:10.1007/11693024 6. URL http://dx.

doi.org/10.1007/11693024_6.

K. Y. Ahn. The Nax Language: Unifying Functional Programming and Logical Reasoning

in a Language based on Mendler-style Recursion Schemes and Term-indexed Types. PhD

thesis, Portland State University, 2014.

K. Y. Ahn and T. Sheard. A hierarchy of mendler style recursion combinators: Taming

inductive datatypes with negative occurrences. In Proceedings of the 16th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’11, pages 234–246, New

York, NY, USA, 2011. ACM. ISBN 978-1-4503-0865-6. doi: 10.1145/2034773.2034807.

URL http://doi.acm.org/10.1145/2034773.2034807.

G. Allais, J. Chapman, C. McBride, and J. McKinna. Type-and-scope safe programs and

their proofs. In Y. Bertot and V. Vafeiadis, editors, 6th Conference on Certified Programs

and Proofs (CPP’17), pages 195–207. ACM, 2017. doi: 10.1145/3018610.3018613. URL

http://doi.acm.org/10.1145/3018610.3018613.

S. Ambler and R. L. Crole. Mechanized operational semantics via (co)induction. In Y. Bertot,

G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry, editors, 12th International Conference

on Theorem Proving in Higher Order Logics (TPHOLs’99), Lecture Notes in Computer

Science (LNCS 1690), pages 221–238. Springer, 1999. ISBN 3-540-66463-7.

J. Andronick and A. P. Felty, editors. Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January

8-9, 2018, 2018. ACM. ISBN 978-1-4503-5586-5. URL http://dl.acm.org/citation.

cfm?id=3176245.

D. Baelde. Least and greatest fixed points in linear logic. ACM Transactions on Computa-

tional Logic, 13(1):2:1–2:44, 2012.

178 BIBLIOGRAPHY

D. Baelde, Z. Snow, and D. Miller. Focused inductive theorem proving. In J. Giesl and

R. Haehnle, editors, 5th International Joint Conference on Automated Reasoning (IJ-

CAR’10), Lecture Notes in Artificial Intelligence (LNAI 6173), pages 278–292. Springer,

2010.

D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and Y. Wang. Abella:

A system for reasoning about relational specifications. Journal of Formalized Reasoning, 7

(2):1–89, 2014a. ISSN 1972-5787. doi: 10.6092/issn.1972-5787/4650. URL https://jfr.

unibo.it/article/view/4650.

D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and Y. Wang. Abella:

A system for reasoning about relational specifications. Journal of Formalized Reasoning,

7(2):1–89, 2014b.

H. Basold and H. Geuvers. Type theory based on dependent inductive and coinductive types.

In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS ’16, page 327–336. Association for Computing Machinery, 2016.

J. Bengtson and J. Parrow. Formalising the pi-calculus using nominal logic. Logical Methods

in Computer Science, 5(2), 2009. URL http://arxiv.org/abs/0809.3960.

J. Bengtson, J. Parrow, and T. Weber. Psi-calculi in Isabelle. J. Autom. Reasoning, 56(1):

1–47, 2016. doi: 10.1007/s10817-015-9336-2.

N. Benton, C. Hur, A. Kennedy, and C. McBride. Strongly typed term representations in

coq. J. Autom. Reasoning, 49(2):141–159, 2012. doi: 10.1007/s10817-011-9219-0. URL

http://dx.doi.org/10.1007/s10817-011-9219-0.

U. Berger and A. Setzer. Undecidability of equality for codata types. In Coalgebraic Methods

in Computer Science, pages 34–55. Springer International Publishing, 2018.

G. Betarte. Dependent Record Types and Formal Abstract Reasoning: Theory and practice.

PhD thesis, Department of Computing Science, Chalmers University of Technology and

University of Göteborg, 1998.

BIBLIOGRAPHY 179

J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly

modular (co)datatypes for isabelle/hol. In G. Klein and R. Gamboa, editors, Interactive

Theorem Proving, pages 93–110, Cham, 2014. Springer International Publishing.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store their indices. In

Types for Proofs and Programs (TYPES’03), Revised Selected Papers, Lecture Notes in

Computer Science (LNCS 3085), pages 115–129, 2004.

A. Cave and B. Pientka. Programming with binders and indexed data-types. In 39th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’12),

pages 413–424. ACM Press, 2012.

A. Cave and B. Pientka. First-class substitutions in contextual type theory. In 8th ACM

SIGPLAN International Workshop on Logical Frameworks and Meta-Languages: Theory

and Practice (LFMTP’13), pages 15–24. ACM Press, 2013.

A. Cave and B. Pientka. A case study on logical relations using contextual types. In

I. Cervesato and K.Chaudhuri, editors, 10th International Workshop on Logical Frame-

works and Meta-Languages: Theory and Practice (LFMTP’15), pages 18–33. Electronic

Proceedings in Theoretical Computer Science (EPTCS), 2015.

A. Cave and B. Pientka. Mechanizing Proofs with Logical Relations – Kripke-style.

Mathematical Structures in Computer Science, 28(9):1606–1638, 2018. doi: 10.1017/

S0960129518000154.

K. Chaudhuri. A two-level logic perspective on (simultaneous) substitutions. In Andronick

and Felty [2018], pages 280–292. ISBN 978-1-4503-5586-5. doi: 10.1145/3167093. URL

http://doi.acm.org/10.1145/3167093.

K. Chaudhuri, M. Cimini, and D. Miller. A lightweight formalization of the metatheory of

bisimulation-up-to. In CPP, pages 157–166. ACM, 2015.

J. Cheney and R. Hinze. First-class phantom types. Technical Report CUCIS TR2003-1901,

Cornell University, 2003.

180 BIBLIOGRAPHY

R. Cockett and T. Fukushima. About charity. Technical report, Department of Computer

Science, The University of Calgary, June 1992. Yellow Series Report No. 92/480/18.

J. Cockx and A. Abel. Elaborating dependent (co)pattern matching. Proceedings of the

ACM on Programming Languages, 2(ICFP), July 2018.

J. Cockx and A. Abel. Elaborating dependent (co)pattern matching: No pattern left behind.

Journal of Functional Programming, 30:e2, 2020.

T. Coquand. Pattern matching with dependent types. In Informal Proceedings of Workshop

on Types for Proofs and Programs, pages 66–79. Dept. of Computing Science, Chalmers

Univ. of Technology and Göteborg Univ., 1992.

T. Coquand. Infinite objects in type theory. In Types for Proofs and Programs, volume

806 of Lecture Notes in Computer Science, pages 62–78. Springer Berlin Heidelberg, 1994.

ISBN 978-3-540-58085-0.

K. Crary and R. Harper. Syntactic logical relations for polymorphic and recursive types.

Electr. Notes Theor. Comput. Sci., 172:259–299, 2007.

R. DeLine and M. Fähndrich. Typestates for objects. In 18th European Conference on Object-

Oriented Programming (ECOOP 2004), Lecture Notes in Computer Science (LNCS 3086),

pages 465–490. Springer, 2004.

J. Errington. Mechanizing metatheory interactively. Master’s thesis, Mcgill University, 2020.

A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach to reasoning with

higher-order abstract syntax. Journal of Automated Reasoning, 48(1):43–105, 2012.

J. Ford and I. A. Mason. Formal foundations of operational semantics. Higher-Order and

Symbolic Computation, 16(3):161–202, 2003.

D. R. Ghica and G. McCusker. Reasoning about idealized ALGOL using regular lan-

guages. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Automata, Lan-

guages and Programming, 27th International Colloquium, ICALP 2000, Proceedings, vol-

BIBLIOGRAPHY 181

ume 1853 of Lecture Notes in Computer Science, pages 103–115. Springer, 2000. doi:

10.1007/3-540-45022-X 10. URL https://doi.org/10.1007/3-540-45022-X_10.

E. Giménez. Codifying guarded definitions with recursive schemes. In Selected Papers from

the International Workshop on Types for Proofs and Programs, TYPES ’94, pages 39–59,

1995.

E. Giménez. Un Calcul de Constructions Infinies et son application à la vérification de

systèmes communicants. PhD thesis, Ecole Normale Supérieure de Lyon, Dec. 1996. Thèse

d’université.

J. Y. Girard. Interprétation fonctionnelle et elimination des coupures de l’arithmétique

d’ordre supérieur. These d’état, Université de Paris 7, 1972.

H. Goguen, C. Mcbride, and J. Mckinna. Eliminating dependent pattern matching. In

Joseph Goguen Festschrift, volume 4060 of Lecture Notes in Computer Science (LNCS),

pages 521–540. Springer, 2006a.

H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern matching. In

K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning, and Com-

putation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday,

Lecture Notes in Computer Science (LNCS 4060), pages 521–540. Springer, 2006b.

T. Hagino. A typed lambda calculus with categorical type constructors. In D. H. Pitt,

A. Poigné, and D. E. Rydeheard, editors, Category Theory and Computer Science, volume

283 of Lecture Notes in Computer Science, pages 140–157. Springer, 1987.

T. Hagino. Codatatypes in ML. Journal of Symbolic Logic, 8(6):629–650, 1989.

P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras in dependent

type theory. In L. Crosilla and P. Schuster, editors, From Sets and Types to Topology

and Analysis. Towards Practicable Foundations for Constructive Mathematics, pages 115

– 134, Oxford, 2005. Clarendon Press.

182 BIBLIOGRAPHY

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM,

40(1):143–184, January 1993.

D. Hausmann, T. Mossakowski, and L. Schröder. Iterative circular coinduction for cocasl

in isabelle/hol. In M. Cerioli, editor, Fundamental Approaches to Software Engineering,

pages 341–356, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

D. Hirschkoff. A full formalisation of pi-calculus theory in the calculus of constructions. In

E. L. Gunter and A. P. Felty, editors, 10th International Conference on Theorem Proving

in Higher Order Logics (TPHOLs’97), Lecture Notes in Computer Science (LNCS 1275),

pages 153–169. Springer, 1997. doi: 10.1007/BFb0028392. URL http://dx.doi.org/10.

1007/BFb0028392.

F. Honsell, M. Miculan, and I. Scagnetto. Π-calculus in (co)inductive type theories. Theo-

retical Computer Science, 2(253):239–285, 2001.

D. J. Howe. Proving congruence of bisimulation in functional programming languages. In-

formation and Computation, 124(2):103–112, 1996.

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.12 edition, 2020.

R. Jacob-Rao, B. Pientka, and D. Thibodeau. Index-stratified types. In H. Kirchner, edi-

tor, 3rdd International Conference on Formal Structures for Computation and Deduction

(FSCD’18), LIPIcs, pages 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

January 2018.

J. Kaiser, S. Schäfer, and K. Stark. Autosubst 2: Towards reasoning with multi-sorted

de Bruijn terms and vector substitutions. In Proceedings of the Workshop on Logical

Frameworks and Meta-Languages: Theory and Practice, LFMTP ’17, pages 10–14, New

York, NY, USA, 2017. ACM. ISBN 978-1-4503-5374-8. doi: 10.1145/3130261.3130263.

N. R. Krishnaswami. Focusing on pattern matching. In 36th Annual ACM Symposium on

Principles of Programming Languages (POPL’09), pages 366–378. ACM Press, 2009.

BIBLIOGRAPHY 183

P. Laforgue and Y. Régis-Gianas. Copattern matching and first-class observations in ocaml,

with a macro. In Proceedings of the 19th International Symposium on Principles and

Practice of Declarative Programming, PPDP ’17, page 97–108, New York, NY, USA, 2017.

Association for Computing Machinery.

S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis, Dept

of Computer Science, Univ of Aarhus, 1998.

D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of standard ml.

In 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL’07), pages 173–184. ACM Press, 2007. ISBN 1-59593-575-4.

S. Lenglet and A. Schmitt. Ho(π) in Coq. In Andronick and Felty [2018], pages 252–265.

ISBN 978-1-4503-5586-5. doi: 10.1145/3167083. URL http://doi.acm.org/10.1145/

3167083.

D. R. Licata, N. Zeilberger, and R. Harper. Focusing on binding and computation. In

F. Pfenning, editor, 23rd Symposium on Logic in Computer Science, pages 241–252. IEEE

Computer Society Press, 2008.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford Uni-

versity Press, Inc., USA, 1994.

I. Mason and C. Talcott. Equivalence in functional languages with effects. Journal of

Functional Programming, 1(03):287–327, 1991.

C. McBride. Epigram: Practical programming with dependent types. In Advanced Func-

tional Programming, volume 3622 of Lecture Notes in Computer Science, pages 130–170.

Springer, 2004.

C. McBride. Let’s see how things unfold: Reconciling the infinite with the intensional (ex-

tended abstract). In Algebra and Coalgebra in Computer Science, pages 113–126. Springer

Berlin Heidelberg, 2009.

184 BIBLIOGRAPHY

R. McDowell and D. Miller. A logic for reasoning with higher-order abstract syntax. In

G. Winskel, editor, 12th Symp. on Logic in Computer Science, pages 434–445. IEEE Com-

puter Society Press, July 1997.

R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in sequent calculus:

Preliminary report. Electronic Notes in Theoretical Computer Science (ENTCS), 3, 1996.

C. McLaughlin, J. McKinna, and I. Stark. Triangulating context lemmas. In Andronick

and Felty [2018], pages 102–114. ISBN 978-1-4503-5586-5. doi: 10.1145/3167081. URL

http://doi.acm.org/10.1145/3167081.

N. Mendler, R. L. Constable, and P. Panangaden. Infinite objects in type theory. In Pro-

ceedings of First IEEE Symposium on Logic in Computer Science, LICS, pages 249–257,

1986.

N. P. Mendler. Recursive types and type constraints in second-order lambda calculus. In

Symposium on Logic in Computer Science (LICS’87), pages 30–36. IEEE Computer Soci-

ety, 1987.

N. P. Mendler. Inductive types and type constraints in the second-order lambda calcu-

lus. Annals of Pure and Applied Logic, 51(1):159 – 172, 1991. ISSN 0168-0072. doi:

http://dx.doi.org/10.1016/0168-0072(91)90069-X. URL http://www.sciencedirect.

com/science/article/pii/016800729190069X.

D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge University

Press, New York, NY, USA, 1st edition, 2012. ISBN 052187940X, 9780521879408.

D. Miller and C. Palamidessi. Foundational aspects of syntax. ACM Comput. Surv., 31(3es),

Sept. 1999. ISSN 0360-0300. doi: 10.1145/333580.333590. URL http://doi.acm.org/

10.1145/333580.333590.

D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. Comput. Log., 6

(4):749–783, 2005.

BIBLIOGRAPHY 185

R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science, 4(1):1

– 22, 1977. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/0304-3975(77)90053-6. URL

http://www.sciencedirect.com/science/article/pii/0304397577900536.

R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc, 1982.

R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Computer Science,

87(1):209 – 220, 1991.

A. Momigliano. A supposedly fun thing I may have to do again: A HOAS encoding of Howe’s

method. In 7nth International Workshop on Logical Frameworks and Meta-languages:

Theory and Practice (LFMTP’12), pages 33–42. ACM, 2012. ISBN 978-1-4503-1578-4.

URL http://doi.acm.org/10.1145/2364406.2364411.

A. Momigliano and A. Tiu. Induction and co-induction in sequent calculus. In M. Coppo,

S. Berardi, and F. Damiani, editors, Post-proceedings of TYPES 2003, Lecture Notes in

Computer Science (LNCS 3085), pages 293–308, Jan. 2003.

A. Momigliano, S. Ambler, and R. L. Crole. A Hybrid encoding of Howe’s method for

establishing congruence of bisimilarity. Electr. Notes Theor. Comput. Sci., 70(2), 2002.

A. Momigliano, B. Pientka, and D. Thibodeau. A case study in programming coinductive

proofs: Howe’s method. Mathematical Structures in Computer Science, 29(8):1309–1343,

2019.

A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory. ACM Transactions

on Computational Logic, 9(3):1–49, 2008.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order

Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

U. Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Department of Computer Science and Engineering, Chalmers University of Tech-

nology, Sept. 2007. Technical Report 33D.

186 BIBLIOGRAPHY

N. Oury. Coinductive types and type preservation. Message on the coq-club mailing list,

June 2008.

D. Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI-

Conference on Theoretical Computer Science, pages 167–183, 1981.

D. M. R. Park. On the semantics of fair parallelism. In Abstract Software Specifications,

pages 504–526, 1979.

J. Parrow, J. Borgström, P. Raabjerg, and J. Å. Pohjola. Higher-order psi-calculi. Mathe-

matical Structures in Computer Science, 24(2), 2014. doi: 10.1017/S0960129513000170.

L. C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In

A. Bundy, editor, 12th International Conference on Automated Deduction (CADE-12),

Nancy, France, volume 814 of Lecture Notes in Computer Science, pages 148–161. Springer,

1994. ISBN 3-540-58156-1.

F. Pfenning. Computation and deduction, 1997.

F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical framework for

deductive systems. In H. Ganzinger, editor, 16th International Conference on Automated

Deduction (CADE-16), Lecture Notes in Artificial Intelligence (LNAI 1632), pages 202–

206. Springer, 1999.

B. Pientka. Verifying termination and reduction properties about higher-order logic pro-

grams. Journal of Automated Reasoning, 34(2):179–207, 2005.

B. Pientka. A type-theoretic foundation for programming with higher-order abstract syntax

and first-class substitutions. In 35th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL’08), pages 371–382. ACM Press, 2008.

B. Pientka. An insider’s look at LF type reconstruction: Everything you (n)ever wanted to

know. Journal of Functional Programming, 1(1–37), 2013.

BIBLIOGRAPHY 187

B. Pientka and A. Abel. Structural recursion over contextual objects. In T. Altenkirch, edi-

tor, 13th International Conference on Typed Lambda Calculi and Applications (TLCA’15),

pages 273–287. Leibniz International Proceedings in Informatics (LIPIcs) of Schloss

Dagstuhl, 2015.

B. Pientka and A. Cave. Inductive Beluga:Programming Proofs (System Description). In

A. P. Felty and A. Middeldorp, editors, 25th International Conference on Automated

Deduction (CADE-25), Lecture Notes in Computer Science (LNCS 9195), pages 272–281.

Springer, 2015.

B. Pientka and J. Dunfield. Programming with proofs and explicit contexts. In ACM

SIGPLAN Symposium on Principles and Practice of Declarative Programming (PPDP’08),

pages 163–173. ACM Press, 2008.

B. Pientka and J. Dunfield. Beluga: a framework for programming and reasoning with

deductive systems (System Description). In J. Giesl and R. Haehnle, editors, 5th Interna-

tional Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in Artificial

Intelligence (LNAI 6173), pages 15–21. Springer, 2010.

A. M. Pitts. Operationally Based Theories of Program Equivalence. In P. Dybjer and A. M.

Pitts, editors, Semantics and Logics of Computation, 1997.

A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced Topics in Types

and Programming Languages, chapter 7, pages 245–289. The MIT Press, 2005.

A. M. Pitts. Howe’s method for higher-order languages. In D. Sangiorgi and J. Rutten,

editors, Advanced Topics in Bisimulation and Coinduction, volume 52 of Cambridge Tracts

in Theoretical Computer Science, chapter 5, pages 197–232. Cambridge University Press,

Nov. 2011. ISBN 978-1-107-00497-9.

A. Setzer, A. Abel, B. Pientka, and D. Thibodeau. Unnesting of copatterns. In G. Dowek,

editor, Joint International Conference on Rewriting and Typed Lambda Calculi (RTA-

TLCA’14), Lecture Notes in Computer Science (LNCS 8560), pages 31–45. Springer, 2014.

doi: 10.1007/978-3-319-08918-8 3.

188 BIBLIOGRAPHY

W. Tait. Intensional Interpretations of Functionals of Finite Type I. J. Symb. Log., 32(2):

198–212, 1967.

D. Thibodeau, A. Cave, and B. Pientka. Indexed codata. In J. Garrigue, G. Keller, and

E. Sumii, editors, 21st ACM SIGPLAN International Conference on Functional Program-

ming (ICFP’16), pages 351–363. ACM, 2016.

A. Tiu and D. Miller. Proof search specifications of bisimulation and modal logics for the

π-calculus. ACM Trans. Comput. Logic, 11(2):1–35, 2010. ISSN 1529-3785. URL http:

//doi.acm.org/10.1145/1656242.1656248.

A. Tiu and A. Momigliano. Cut elimination for a logic with induction and co-induction. J.

Applied Logic, 10(4):330–367, 2012. URL https://doi.org/10.1016/j.jal.2012.07.

007.

D. Traytel, A. Popescu, and J. C. Blanchette. Foundational, compositional (co)datatypes

for higher-order logic: Category theory applied to theorem proving. In 2012 27th Annual

IEEE Symposium on Logic in Computer Science (LICS12), pages 596–605, 2012.

C. Tuckey. Pattern matching in Charity. Master’s thesis, The University of Calgary, July

1997.

T. Uustalu and V. Vene. Primitive (co)recursion and course-of-value (co)iteration, categor-

ically. Informatica, 10:5–26, 1999.

H. Xi. Applied type system. In TYPES 2003, volume 3085 of Lecture Notes in Computer

Science, pages 394–408. Springer, 2004.

H. Xi and F. Pfenning. Dependent types in practical programming. In 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’99), pages 214–227.

ACM Press, 1999.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In 30th ACM

Symposium on Principles of Programming Languages (POPL’03), pages 224–235. ACM

Press, 2003. doi: 10.1145/604131.604150.

BIBLIOGRAPHY 189

N. Zeilberger. On the unity of duality. Annals of Pure and Applied Logic, to appear (draft

available on Noam’s webpage), 2007.

N. Zeilberger. Focusing and higher-order abstract syntax. In Conference Record of the

35th Annual ACM Symposium on Principles of Programming Languages, San Fran-

cisco, California, page to appear(draft available on Noam’s webpage). ACM, 2008. URL

draftavailableonNoam’swebpage.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–165, 1997.

