
Indexed Codata Types

David Thibodeau ∗

School of Computer Science
McGill University
Montreal, Canada

david.thibodeau@mail.mcgill.ca

Andrew Cave †

School of Computer Science
McGill University
Montreal, Canada

andrew.cave@mail.mcgill.ca

Brigitte Pientka
School of Computer Science

McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

Abstract
Indexed data types allow us to specify and verify many interesting
invariants about finite data in a general purpose programming
language. In this paper we investigate the dual idea: indexed codata
types, which allow us to describe data-dependencies about infinite
data structures. Unlike finite data which is defined by constructors,
we define infinite data by observations. Dual to pattern matching on
indexed data which may refine the type indices, we define copattern
matching on indexed codata where type indices guard observations
we can make.

Our key technical contributions are three-fold: first, we ex-
tend Levy’s call-by-push value language with support for indexed
(co)data and deep (co)pattern matching; second, we provide a
clean foundation for dependent (co)pattern matching using equal-
ity constraints; third, we describe a small-step semantics using a
continuation-based abstract machine, define coverage for indexed
(co)patterns, and prove type safety. This is an important step towards
building a foundation where (co)data type definitions and dependent
types can coexist.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Reason-
ing about Programs

General Terms Languages, Theory

Keywords Coinduction, Dependent types, Functional program-
ming, Logical frameworks

1. Introduction
Over the past two decades we made significant progress in mechani-
cally verifying inductive properties about finite data and computa-
tion using proof assistants. However, the situation is very different

∗ This author acknowledges funding from the Fonds Québécois de Recherche
sur la Nature et les Technologies (FQRNT).
† This author acknowledges funding from the National Science and Engi-
neering Research Council (NSERC).

when it comes to specifying and mechanically verifying properties
such as fairness or liveness about programs whose computation is
infinite i. e. they continue to run and produce results. Such properties
are elegantly stated and proven coinductively. Starting with Hagino’s
work (1987) in (co)algebras, there has been growing consensus that
proof and programming environments should view infinite data
dual to finite data. Under this view inductive data such as lists are
modelled by constructors, while coinductive or infinite data such as
streams are described by observations. An important step towards
a sound type-theoretic foundation for inductive and coinductive
definitions has been taken by Abel et al. (2013) where the authors
present a simply-typed language using a rewriting semantics where
finite data is defined using constructors and analyzed by pattern
matching while infinite data is defined via copattern matching and
analyzed by observations. Subsequently, it was shown that this lan-
guage is normalizing using sized types (Abel and Pientka 2013).
A prototype implementation of copatterns exists within Agda, a
programming language based on Martin-Löf type theory (Norell
2007). However, a theoretical foundation that supports dependent
types, (deep) (co)pattern matching and (co)recursion and at the same
time allows inductive and coinductive definitions to be arbitrarily
mixed remains elusive.

In this paper we take a substantial step towards such a general
foundation concentrating on a flavor of dependent types, called
indexed types (Zenger 1997; Xi and Pfenning 1999), where the
language of indices is separate from the language of types and
programs and describes a domain where equality is decidable.
Specifically we present a core language for dependent (co)pattern
matching that allows eager and lazy evaluation to be mixed by
extending Levy’s call-by-push value language (2001). Following
Levy, our language is centered around the duality of positive types
which we interpret as values and use to construct finite data, and
negative types which we take as computations and use to describe
the observations about infinite data. While indexed data types allow
us to for example specify and statically enforce properties about
finite lists and trees, indexed codata types allow us to specify and
statically enforce properties about streams and traces. Throughout
our development, we keep the index language abstract. Our main
technical contributions are three-fold:

• We extend Levy’s call-by-push value language (2001), with
support for indexed (co)data and deep (co)pattern matching. To
keep our design modular, we keep the index domain abstract
and specify the key properties it must satisfy. In particular, our
index domain must provide a decision procedure to reason
about equalities and a unification procedure to compute the
most general unifier of two index objects. We illustrate these
properties by considering the domain of natural numbers.
• Our core language provides a clean foundation for dependent

(co)pattern matching where we track and reason with depen-

dencies among indices using equality constraints that are accu-
mulated in a context. Our equality context may contain both
equality constraints that are satisfiable and equality constraints
that are contradictory. This leads to an elegant foundation for
(co)pattern matching in the dependently typed setting that may
serve as an alternative to existing approaches (Brady et al. 2004;
Goguen et al. 2006; Pientka and Dunfield 2008).
• We describe the operational semantics of our core language

using a continuation-based abstract machine and prove type
preservation. We also provide a sound non-deterministic algo-
rithm to generate covering sets of copatterns. Finally, we show
progress – in the presence of infinite data the key idea here is
that every expression either returns a value or we can continue
to evaluate it by supplying enough observations.

We see several applications of our work: it lays the foundation for
extending languages such as DML (Xi and Pfenning 1999) and ATS
(Xi 2004) to support indexed codata; choosing as an index language
the language of types itself, it serves as a foundation for mixing eager
and lazy evaluation in functional languages that support GADTs
(Cheney and Hinze 2003; Xi et al. 2003); choosing as an index
language LF (Harper et al. 1993; Cave and Pientka 2012), our
work serves as a general foundation for writing both inductive and
coinductive definitions and proofs about formal systems. Finally, we
believe that the core language that we describe in this paper provides
a stepping stone in developing a sound dependently typed foundation
for Coq and Agda that supports deep (co)pattern matching and
allows inductive and coinductive definitions to be mixed.

The remainder of this paper is organized as follows: We illustrate
the main ideas of indexed (co)data types through several examples
in Section 2. In Section 3 we introduce our language supporting
both indexed data types and codata types together with pattern and
copattern matching in a symmetric way. Section 4 describes the
operational semantics, coverage, and type safety.

2. Main Idea
Indexed recursive types allow us to for example specify and program
with lists that track their length thereby avoiding run-time checks
for cases which cannot happen. We consider here a variation of this
example: a recursive type Msg which describes a message consisting
of bits and tracks its length by choosing as an index domain nat. Our
pseudo-code follows closely the underlying foundation where we
model data types using recursive types and disjoint sums together
with equality constraints.

data Msg [N: nat] : type =
| Nil : N = z * 1
| Cons: ΣM:nat. N = s M * Bit * Msg [M]

We separate the index domain from the language of types and
programs and embed index objects inside types and programs using
[]. The distinction between the index domain and programs is also
reflected in the syntactic convention we use for type-setting data-
types and programs. Index variables are upper case letters, while
index types and index constructors start with a lower case letter.
However, term variables use a lower case letter while types and term
constructors and observations start with an upper case letter.

The type Msg [N] defines messages inductively: either we have
an empty message Nil where N must be zero, or we can construct a
message using Cons, if there exists M:nat s.t. N = s M and we have
a Bit together with a message of length M. In the latter case, we have
built a message of length s M. As in ML-like languages, we require
that constructors that correspond to the base case in our inductive
definition take in formally an argument of type unit (denoted by 1).
When we pattern match on a message m of type Msg [N], we need to
consider the following two cases: if m stands for an empty message,

written as Nil (e, ()), then we also obtain an equality proof e that
N = z; if m stands for a message Cons <M, (e, h, t)> where M is
the witness for the existential in the definition of Cons and e stands
for the equality proof N = s M. In both cases, we can further pattern
match on the equality proof e, writing ℘ as the witness which forces
the type checker to solve the accumulated constraints setting in the
base case N to zero and in the step case N to s M. As our index domain
is restricted to a decidable domain, equality proofs can always be
derived and reconstructed when elaborating a surface program into
our core language.

Dually to model a stream of bits which keeps track of how many
bits belong to one message we define three different observations:
codata Str [N:nat] : type =
| GetBit : ΠM:nat. N = s M → Bit
| NextBits: ΠM:nat. N = s M → Str [M]
| Done : N = z → NextMsg

and data NextMsg : type =
| NextMsg : ΣN:nat. Str [N]

Given a stream with index N, we can observe the next bits
(NextBits) and get the current bit (GetBit), provided that we supply
some number M and an equality proof that N = s M. We are done
reading all bits belonging to our message, if N = z, i.e. we can
get the next message, if we can provide a proof for N = z. This
definition of a stream allows us to enforce that we read the correct
number of bits belonging to a message.

While our indexed recursive type Msg is defined via positive types
(equality, existentials, products), our coinductive definition of Str
uses negative types (universals, functions). When we pattern match
on a data type, we also learn about equality constraints that must
hold. When we make observations on a codata type, we must supply
an equality proof that satisfies the equality constraint that guards the
observation. To our knowledge this dual role that equality plays in
defining data and codata types has not been observed before, yet it
seems central in understanding how to scale (co)data type definitions
and (co)pattern matching to the dependently typed setting.

2.1 Message Processing Using Deep (Co)Pattern Matching
Interactions of a system with input/output devices or other systems
are performed through a series of queries and responses which are
represented using a stream of bits that can be read by the system.
Processing requests over those streams can be error prone. If one
reads too many or not enough bits, then there is a disconnect between
the information a program reads and the one that was sent which
potentially could be exploited by an attacker. To avoid such problem,
we propose to use indexed codata types to parametrize a stream with
a natural number indicating how many bits we are entitled to read
until the next message starts. Thus, one can guarantee easily that a
program will not leave parts of a message on top of the stream but
that they consume all of it. We will use this example of message
passing to highlight the role of indices in writing programs that use
(co)pattern matching.

First, we want to read a message from the stream Str [N] and
return the message together with the remaining stream. This is
enforced in the type of the function readMsg below. The type can
be read informally as: For all N given Str [N] we return a message
together with Str [z] which indicates that we are done reading the
entire message.
rec readMsg: Π N:nat. Str [N] → Msg [N] * Str [z] =
fn [z] s ⇒ (Nil (℘, ()), s)
| [s M] s ⇒

let c = s.GetBit [M] ℘ in
let (w, s’) = readMsg [M] (s.NextBits [M] ℘) in
(Cons <M, (℘, (c, w))>, s’)

The program readMsg is written by pattern matching on the index
object N. Using fn-abstractions we pattern match on multiple input

arguments simultaneously. We use a notation similar to ML-like
languages, but we wrap index objects in [] to clearly distinguish
them from computation-level data and terms. If N is zero, then we
are finished reading all bits belonging to the message and we simply
return the empty message together with the remaining stream s. If
N is not zero but of the form s M, we observe the first element c,
the bit at position s M, in the stream using the observation .GetBit.
We then read the rest of the message w by making the recursive
call readMsg [M] (s.NextBits [M] ℘) and then build the actual
message by consing c to the front of w. Note that in order to make
the observation GetBit or NextBits we must supply two arguments,
namely M and a proof that s M = s M. Dually, when we construct
a message Nil in the base case, we also must supply a proof that
z = z; similarly in the step-case, we construct a message Cons by
providing as a witness M together with a proof that s M = s M. It
seem reasonable to assume that these arguments and equality proofs
can be inferred in practice; however we make them explicit in our
core language to emphasize their dual role in indexed (co)data types.

So far we have seen how to make observations about streams
and use them. Next, we show how to build a stream which is aware
of how many bits belong to a message effectively turning it into a
stream of messages. This is accomplished via two mutually recursive
functions mixing pattern and copattern matching: the first marshals
the size of the message with the message stream and the second one
continues to create the message stream. We assume that we have
polymorphism here (which we do not treat in our foundation).

codata ’a Stream : type =
| Head : ’a
| Tail : ’a Stream

rec getMsg: Bit Stream → [nat] Stream → NextMsg =
fn s ns ⇒ let [N] = ns.Head in
NextMsg [N] (msgStr [N] s ns.Tail)

and msgStr: Π N:nat. Bit Stream→ [nat] Stream→ Str [N] =
fn [z] s ns .Done ℘⇒ getMsg s ns.Tail
| [s N] s ns .GetBit [M] ℘⇒ s.Head
| [s N] s ns .NextBits [M] ℘⇒ msgStr [N] s.Tail ns.Tail

The function getMsg takes in a stream s of bits and a stream of
natural numbers that tells us the size of a message. It then returns a
message of the required size by reading the appropriate number of
bits from s using the function msgStr and creating a stream of type
Str [N] where N is the size of the message. The function msgStr
is defined by (co)pattern matching: the first branch says, we can
only make the observation Done provided that N is zero; in this case
we are done reading all bits belonging to the message. The second
branch says: if the size of the message is s N, we can make the
observation GetBit provided we have a proof ℘ showing that s M
is equal to s N. Note that our (co)pattern remains linear - the fact
that M is forced to be equal to N is guaranteed by the equality proof
℘ that solves the arising constraint s N = s M. The term ℘ is the
canonical term for equality constraints. We exploit here the fact that
equality and unification is decidable in our index domain. If we
can solve the constraint, as is the case here, we keep track of the
solution N := M : nat in our context of assumptions and continue
to type check the body of the branch under this constraint; if we
can disprove the arising equality constraint, we keep a contradiction
in our context of assumption and continue to check the body. This
allows for an elegant treatment of linear (co)patterns in the presence
of dependent types.

Last, we show how to generate a bit stream where every message
contains two random bits. This illustrates deep copattern matching.

rec genBitStr: Str [s (s z)] =
fn .GetBit [s z] ℘⇒ RandomBitGen ()
| .NextBits [s z] ℘ .GetBit [z] ℘⇒ RandomBitGen ()
| .NextBits [s z] ℘ .NextBits [z] ℘ .Done ℘⇒

NextMsg [s (s z)] genBitStr

Following the ideas described in this section, we can implement
also fair merge of two streams as and bs where we consume a finite
amount of a’s followed by a finite amount of b’s. We refer the
interested reader to the extended technical report (Thibodeau et al.
2016) for more examples on streams.

2.2 Revisiting the Duality of (Co)Inductive Definitions
So far we have concentrated on two aspects: 1) how inductive data
is constructed and analyzed by pattern matching while coinductive
data is observed and analyzed by copattern matching; 2) the role of
indices and equality constraints in (co)pattern matching. For data
of type Msg [M], we provided a way of constructing a message for
each M. Dually, our codata type Str [N] provided observations for
all possible N.

An important question to clarify is whether (co)data type def-
initions need or should be covering, i.e. provide a constructor or
observation for each possible index. What does it mean to have no
constructor for a possible index? And dually, what does it mean to
have no observation for a possible index?

We discuss these questions by looking at how we define even
numbers inductively and coinductively. Clearly, inductive definitions
do not need to be covering. For example, our inductive definition
of Even [N] states that we can construct a proof that z is even using
Ev_z provided we have a proof that N = z. For clarity, we define the
type of the constructor Ev_z as N = z * 1 where 1 stands for unit
(or top). Similarly, we can construct a proof that N is even, if there
exists a number M s.t. N = s (s M) and M is even.

data Even [N:nat] : type =
| Ev_z : N = z * 1
| Ev_ss:ΣM:nat. N = s (s M) * Even [M]

The set of terms inhabiting this predicate is the least fixed point
defining even numbers. Note that there is no way that we can
construct a witness for Even [s z] and this type is empty. Modelling
the empty type

data 0: type

by declaring no constructors, we could make this more explicit by
adding a constructor Ev_s of type N = (s z) * 0. This explicitly
states that Even [s z] cannot be constructed without any assump-
tions, since 0 has not elements. We typically omit such a case in the
definition of our inductive types, but these impossible cases might
arise when we pattern match on elements of the type Even.

Dually, we can define even numbers coinductively using a
greatest fix point. By default the greatest fix point is inhabited by all
natural numbers and in particular all even numbers. The observations
we make describe those numbers that should not be in the set of
even numbers! Specifically, we are stating that odd numbers, cannot
be in the set of even numbers. This leaves us with the set of even
numbers.

codata CoEven (N:nat) : type =
| Cev_sz : N = s z → 0
| Cev_ss : ΠM:nat. N = s (s M) → CoEven [M]

If N = s z then we return the empty type. If we make an
observation Cev_sz and have a proof that N = s z then we have
arrived at a contradiction. The observation Cev_ss extracts a proof
of CoEven [M] from a proof of CoEven [s (s M)].

This discussion highlights the difference between the definition
of constructors and observations. If we omit a constructor for a given
index, then the indexed data type is not inhabited and it is interpreted
as false. Dually, if we omit an observation for a given index, then
the indexed codata type is still inhabited and it corresponds to being
trivially true.

We now prove that both interpretations give us the same set of
terms. First we show that Even [N] implies CoEven [N]:

rec evToCoEv : ΠN:nat. Even [N] → CoEven [N] =
fn [z] (Ev_z ℘ ()) .Cev_sz ℘
| [z] (Ev_z ℘ ()) .Cev_ss [M] ℘
| [s N] (Ev_ss <M, (℘, e)>) .Cev_sz ℘
| [s N] (Ev_ss <M, (℘, e)>) .Cev_ss [K] ℘⇒ evToCoEv e

We write this function by pattern matching on Even [N]. In the
case where Even [z], we want to return CoEven [z]. As elements
of CoEven [z] are defined by the observations we can make about
it, we consider two sub-cases. If we try to make the observation
Cev_sz, we must provide a proof that z = s z. This will be refuted
by our decision procedure in our index domain, i.e. our decision
procedure will succeed, but add a contradiction to our context of
assumptions, from which anything follows. Again, the pattern ℘
is the canonical pattern for equality constraints, even if they are
unsatisfiable. In those cases, we can simply omit the right hand side
of the inaccessible branch, since we cannot provide a term for an
unsatisfiable equality constraint.

If we try to make the observation Cev_ss, then we must show
ΠM:nat. z = s (s M)→ CoEven [M]. Again we have arrived at a
contradiction, since there is no proof for z = s (s M).

Finally, we consider the case where Even [s (s N)]. In this
case, we can again make two possible observations, Cev_sz and
Cev_ss. In the first case, we again arrive at a contradiction, since
s (s N) = s z is always false. In the last case, we accumulate and
solve two equality constraints while type checking the (co)pattern:
s (s N) = s (s M) and s (s N) = s (s K). Then we proceed to
check the body of the branch in the context where N := K: nat and
M := N : nat.

This example highlights the mix of pattern and copattern match-
ing and the reasoning with equality constraints; it also highlight how
impossible cases arise and how we treat them.

Can we also prove that CoEven [N] implies Even [N]? - In
general this is not true since the coinductive interpretation may
be strictly bigger than the inductive one. In our case however we
can indeed show this property by induction on N. In the case where
N = s z and we assume CoEven [s z], we make the observation (c.
Cev_sz ℘) which results in an object of type 0 – however, we know
that this type is not inhabited and hence we abort. In our language
abort is an abbreviation for a function without any branches.
rec coEvToEv : ΠN:nat. CoEven [N] → Even [N] =
fn [z] c ⇒ Ev_zero (℘, ())
| [s z] c ⇒ abort (c.Cev_sz ℘)
| [s (s N)] c ⇒

Ev_ss <N, (℘ , coEvToEv [N] (c.Cev_ss [N] ℘))>

2.3 Final Remark
For simplicity all our previous examples use as index domain natural
numbers. However, we want to emphasize that our theoretical
foundation is parametric in the index domain. Choosing the logical
framework LF as an index domain, we can model bisimulation
of two automata and encode a type-preserving environment-based
evaluator where values are defined coinductively following (Milner
and Tofte 1991) (see (Thibodeau et al. 2016)). We note that we have
not studied the use of coinductive index domains. While we believe
our work to be compatible with such domains, defining an adequate
notion of equality for coinductive terms is challenging, as explained
in (McBride 2009).

3. Theory
We present in this section a general purpose programming language
which supports defining finite data using indexed recursive types
and infinite data using indexed corecursive types. To analyze and
manipulate finite and infinite data, we support simultaneous pattern
and copattern matching. We omit polymorphism which is largely an
orthogonal issue.

3.1 Index Domain
Our programming language is parametric over the index domain
which we describe abstractly with U . This index domain can be
natural numbers, strings, types (Cheney and Hinze 2003; Xi et al.
2003), or (contextual) LF (Cave and Pientka 2012). Index objects
are abstractly referred to as index-term C and have index-type U .
As a running example we will use natural numbers to illustrate the
requirements our index domain must satisfy. It can be defined as
containing a single index-type nat and index-terms are simply built
of zero, suc, and variables X .

Index-Type U ::= nat
Index-Term C ::= X | zero | suc C
Index-Context ∆ ::= · | ∆, X : U | ∆, X := C : U | ∆,#
Index-Substitution θ ::= · | θ, C/X

Variables that occur in index-terms must be declared in an index-
context ∆. In our setting, the index-context also contains equality
constraints. The constraint X:=C:U says that the index-variable
X is equal to the index-term C. Such constraints arise in typing
(co)patterns (see the function msgStr from Sec. 2). The index-
context also keeps track of contradictions, written #, that may
arise when we encounter in a (co)pattern a constraint that can never
be satisfied.

Index-substitutions are built by supplying an index-term for an
index-variable. We interpret · as the identity index-substitution. We
define the lookup of the instantiation for a variable X as follows:

θ(X) = C Variable X is bound to term C in substitution θ

(θ, C/X)(X) = C
(θ, C/Y)(X) = θ(X) if X 6= Y
(·)(X) = X

We use index-substitutions to model the run-time environment
of index variables. Looking up X in the substitution θ returns the
index-term C to which X is bound at run-time. The index-context
∆ captures the information that is statically available and is used
during type checking.

Typing of Index Domain We define the well-formedness of index-
contexts and index-substitutions in Fig. 1. The definition of index-
contexts is mostly straightforward noting that ∆, X:=C:U is a
well-formed index-context if ∆ is well-formed, the index-type U
is well-formed in ∆, and the index-term C has index-type U . We
make sure that there are no circularities in ∆. An index-substitution
θ provides a mapping for declarations in the index-context ∆′

and guarantees that all instantiations have the expected index-
type and are compatible with existing constraints. Our judgment
∆ ` θ : ∆′ states that a given instantiation θ, computed via pattern
matching at run-time, matches the assumptions in ∆′ that were
made statically during type checking. It is defined inductively on
the domain ∆′. Although all instantiations computed by pattern
matching are ground (i.e. ∆ is empty), we state the relationship
between θ and ∆ more generally. If ∆′ contained a contradiction,
the contradiction must also be present in ∆. We still require in this
case that θ provides consistent and well-typed instantiations for all
the remaining declarations in ∆′.

While our rules for the well-formedness of index-contexts and
index-substitutions are generic, typing of index-terms and index-
types obviously depends on our choice of the index domain. We
include here the rules for natural numbers.

Our index domain must satisfy several properties. The first one
is the substitution property which we list here as a requirement1.

1 Proofs can be found in the supplementary material for this paper (Thibodeau
et al. 2016).

` ∆ ictx well-formed index-context ∆

` · ictx
` ∆ ictx ∆ ` U : Type ∆ ` C : U

` ∆, X := C : U ictx

` ∆ ictx
` ∆,# ictx

∆ ` U : Type ` ∆ ictx
` ∆, X : U ictx

∆ ` θ : ∆′ θ maps index variables from ∆′ to ∆

∆ ` θ : ∆′ ∆ ` θ(X) : U [θ]

∆ ` θ : ∆′, X:U

∆ ` θ : ∆′ # ∈ ∆

∆ ` θ : ∆′,#

∆ ` θ : ∆′ ∆ ` θ(X) : U [θ] ∆ ` θ(X) = C[θ]

∆ ` θ : ∆′, X:=C:U ∆ ` θ : ·

∆ ` U : Type Index-type U is well-kinded in ∆

∆ ` nat : Type

∆ ` C : U Index-term C has type U

∆ ` zero : nat
∆ ` C : nat

∆ ` suc C : nat

∆(X) = U

∆ ` X : U

Figure 1. Index-Contexts, Index-Substitution, Index-Types, and
Index-Terms

Requirement 1 (Index-Substitution Lemma).
If ∆ ` θ : ∆′ and ∆′ ` C : U then ∆ ` C[θ] : U [θ].

Proof. By induction on ∆′ ` C : U .

In addition to the typing rules (see Fig. 1) we also require that
equality on the index language is decidable and takes into account
the equality constraints in ∆. To illustrate we give the definition of
equality for natural numbers in Fig. 2.

∆ ` C1 = C2 Term C1 is equal to Term C2 in ∆.

∆ ` zero = zero

∆ ` C1 = C2

∆ ` suc C1 = suc C2 ∆ ` X = X

X:=C′:U ∈ ∆ ∆ ` C′ = C
∆ ` X = C

X:=C′:U ∈ ∆ ∆ ` C = C′

∆ ` C = X
∈ ∆

∆ ` C1 = C2

Figure 2. Equality of Index Terms

Typing of Index-Terms in (Co)Patterns As index-terms occur
within (co)patterns, we also require rules that extract the type
of index-variables. As we process a list of (co)pattern we thread
through a context ∆ and accumulate index variables and constraints.
As subsequent index patterns may depend on variables appearing
earlier in the (co)pattern spine, we extend and refine ∆ by imposing
constraints on existing variable declarations. In fact, our typing
rules for (co)patterns will also solve equality constraints using
unification. Hence the resulting index-context ∆′ is an extension
and refinement of ∆, written as ∆ ≺ ∆′. We define synthesizing
free index variables contained in an index-term C in Fig. 3. We

assume that C only contains fresh variables, i.e. any variable in C
does not already occur in ∆. We are threading through ∆ which
may contain variables introduced by a previous pattern match, since
for richer and more expressive index domains U may depend on ∆
and it is more uniform.

∆ ` C : U ↘ ∆′ Index-Pattern C of index-type U synthesizes
an index-context ∆′ s.t. ∆ ≺ ∆′

∆ ` zero : nat↘ ∆

∆ ` C : nat↘ ∆′

∆ ` suc C : nat↘ ∆′

X 6∈ ∆

∆ ` X : U ↘ ∆, X:U

Figure 3. Meta-Pattern Checking Rules

Type checking of (co)patterns will also need to solve equations
C1 = C2 using unification on our index domain, and thus intro-
duce term assignments to variables in ∆, yielding ∆′. We define
unification for the index domain of natural numbers in Fig. 4. Note
that our unification always succeeds in producing an index-context
∆′. However, if C1 and C2 were unifiable, then the arising equality
constraints are recorded in ∆′. If C1 and C2 were not unifiable, we
return a ∆′ that contains a contradiction #. There are two possible
sources of failure: either the two terms are syntactically different
or the occurs check fails. As we keep track of constraints in ∆,
checking whether X occurs in Y where Y :=C:U ∈ ∆, must check
whether X occurs in C. Our well-formedness of ∆ guarantees that
our context is not cyclic and hence the occurs check will terminate.
Our definition of unification is then straightforward. As we must
guarantee that ∆ remains well-formed, we may permute it to an
equivalent well-formed context (written as ∆ ∼ ∆′) when unifying
X with an index-term C.

Properties about Unification As we alluded during our examples,
typing of (co)patterns will rely on solving equality constraints. We
therefore rely on the correctness of the unification algorithm. In
particular, we require that unification will always succeed.

Requirement 2 (Unification of Index-Terms). For any ∆, C1, C2

and U such that ∆ ` C1 : U and ∆ ` C2 : U , there is a ∆′ such
that ∆ ` C1 = C2 ↘ ∆′.

Further, we require that our unification algorithm produces the
most general unifier.

Requirement 3. If ∆ ` C1 = C2 ↘ ∆′, then for all ∆0 and θ
such that ∆0 ` θ : ∆, we have that ∆0 ` C1[θ] = C2[θ] if and
only if ∆0 ` θ : ∆′.

Proof. By induction on ∆ ` C1 = C2 ↘ ∆′.

As we mentioned, our operational semantics for our programs
is environment based and our index-substitution θ provides instan-
tiations for all the index variables. Proving type safety of our core
language relies on a series of properties our index domain must sat-
isfy. We prove these properties for our index domain nat. First, we
rely on a substitution property of index-terms occurring in patterns.

Using these requirements, we can show that the unification
algorithm is stable under substitution.

Lemma 1. If ∆ ` C1 = C2 ↘ ∆′ and ∆1 ` θ : ∆ then there is
a ∆′1 such that ∆1 ` C1[θ] = C2[θ]↘ ∆′1 and ∆′1 ` θ : ∆′.

Proof. By Req. 2 and Req. 3.

∆ ` C1 = C2 ↘ ∆′ Given the index-terms C1 and C2 synthesize the most general index-context ∆′ s.t. ∆ ≺ ∆′ and ∆′ ` C1 = C2.

∆ ` zero = zero↘ ∆

∆ ` C1 = C2 ↘ ∆′

∆ ` suc C1 = suc C2 ↘ ∆′ ∆ ` X = X ↘ ∆

∆ ` zero = suc C ↘ ∆,# ∆ ` suc C = zero↘ ∆,#

∆ ∼ ∆0, X:U,∆1 ∆0 ` C : U

∆ ` X = C ↘ ∆0, X:=C:U,∆1

∆ ∼ ∆0, X:U,∆1 ∆0 ` C : U

∆ ` C = X ↘ ∆0, X:=C:U,∆1

∆ ` occursn+1(X,C)

∆ ` X = C ↘ ∆,#

∆ ` occursn+1(X,C)

∆ ` C = X ↘ ∆,#

X:=C′:U ∈ ∆ ∆ ` C′ = C ↘ ∆′

∆ ` X = C ↘ ∆′
X:=C′:U ∈ ∆ ∆ ` C = C′ ↘ ∆′

∆ ` C = X ↘ ∆′

∆ ` occursn(X,C) X occurs in C under n constructors

∆ ` occurs0(X,X)

∆ ` occursn(X,C)

∆ ` occursn+1(X, suc C)

Y :=C:U ∈ ∆ ∆ ` occursn(X,C)

∆ ` occursn(X,Y)

Figure 4. Unification of Index Terms

Pattern Matching on Index-Terms Our operational semantics for
our language relies on (co)pattern matching. As index terms appear
in (co)patterns, we rely on pattern matching on index terms. To
prove preservation and progress, we rely on the fact that extracting
the type of index-variables in (co)patterns is stable and does not
depend on the current run-time environment. We state this property
in general terms, although our instantiation θ will be ground during
run-time. It can be intuitively understood as follows: When we
process a (co)pattern we build up a context ∆ before we extend ∆
with the new variables that occur in an index term C obtaining ∆′.
Given an instantiation θ for the variables in ∆, where ∆1 ` θ : ∆,
we can also process C within the context ∆1 and extract the new
variables obtaining an extension ∆′1. In fact, as variables occurring
in C are not (yet) instantiated by θ, we also have that ∆′1 ` θ : ∆1.

Requirement 4 (Substitution Property of Index-Terms).
If ∆ ` C : U ↘ ∆′ and ∆1 ` θ : ∆ then there is ∆′1 such that
∆1 ` C : U [θ]↘ ∆′1 and ∆′1 ` θ : ∆′.

Proof. The proof of this statement is by induction on the derivation
∆ ` C : U ↘ ∆′.

Requirement 5 (Adequacy of Pattern Matching for Index-Terms).
Suppose · ` C : U . If ` C′ : U ↘ ∆ and C = C′[θ]. Then
· ` θ : ∆.

Proof. By induction on the derivation · ` C′ : U ↘ ∆.

Coverage of Index-Terms To discuss coverage of (co)patterns,
we rely on coverage of index-terms. We therefore define a splitting
algorithm that takes as input ∆ ` X where either X:U ∈ ∆ or
X:=C:U ∈ ∆. It generates a set containing ∆i ` Ci where Ci are
the possible refinements of X (see Fig. 5).

Requirement 6 (Coverage of Splitting for Index Objects).
Suppose · ` θ : ∆ and split(∆ ` X) = (∆i, Ci)∀i∈I , then there is
an i and θi such that ` θi : ∆i and θ(X) = Ci[θi] and θ ≺ θi.

The judgment θ ≺ θi means that θi is of the form θ, ~C/ ~X for
some terms ~C = C1, . . . , Cn and variables ~X = X1, . . . , Xn that
are not already bound by θ.

Proof of Req. 6. By induction on the splitting judgment.

We also require that the splitting algorithm preserves coverage
under the application of a substitution.

Requirement 7 (Preservation of Splitting under Substitution).
Suppose ∆′ ` θ : ∆ and split(∆ ` X) = (∆i ` Ci)∀i∈I , then
there are {∆′i}i∈I such that split(∆′ ` X) = (∆′i ` Ci)∀i∈I and
for all i ∈ I , ∆′i ` θ : ∆i.

3.2 Indexed Types and Kinds
Following Levy (2001) we distinguish between positive types (1,
ΣX:U.P , P1 × P2) which characterize finite data and negative
types (P → N , ΠX:U.N) which describes infinite data. We allow
negative types to be embedded into positive types and vice versa
using explicit coercions written as ↓N and ↑P respectively. Our
language also supports indexed recursive and indexed corecursive
types. The recursive type written as µY.λ ~X.D is a positive type, as
it allows us to construct finite data using labelled sums D (written
as 〈
−→
c P 〉). While Y denotes a type variable, λ ~X.D describes a type-

level function which expects index objects and returns a labelled
sum D. Dually, in the corecursive type, written as νZ.λ ~X.R, the
type-level function λ ~X.R expects index objects and returns a record
of indexed observations. Corecursive types are negative types, as
they describe infinite data using records R (standing for {

−−→
d:N}).

Index objects from our index domain U can be embedded and
returned by computations by returning an object of type ΣX:U.1.
Our core language also includes equality constraints between index
objects. They typically are used inside (co)recursive type definitions.
As we have seen in the examples, we mostly use equalities in two
forms: constrained products (written as C1 = C2 × P) in defining
indexed data types and constrained (or guarded) function (written
as C1 = C2 → N) in defining indexed codata types. As we require
that our index domain comes with decidable equality, we believe that
the equality proofs can always be reconstructed when elaborating
source level programs into our core language.

Our computation-level types can directly refer to index types. In
this article, both µY.λ ~X.D and νZ.λ ~X.R are just recursive types
rather than inductive and coinductive types resp. Since D and R

split(∆ ` X) = {∆i ` Ci}i∈I Splitting the index-variable X in ∆ yields a complete and non-redundant set of refinements ∆i ` Ci

split(∆, X:nat,∆′ ` X) = {(∆, Y :nat,∆′[suc Y/X] ` suc Y) , (∆,∆′[zero/X] ` zero)}

split(∆, X:U ` X) = {∆i ` Ci}i∈I for each i, ∆i ` Ci = C ↘ ∆̂i

split(∆, X:=C:U,∆′ ` X) = {∆̂i,∆
′[C/X] ` Ci}i∈I

Figure 5. Splitting of Index-Variable

Kinds K ::= type | ΠX:U.K

Positive Types P ::= Y | 1 | P1 × P2 | C1 = C2 | ↓N
| µY.λ

−→
X.D | P ~C | ΣX:U.P

Negative Types N ::= Z | P → N | ↑P
| νZ.λ

−→
X.R | N ~C | ΠX:U.N

Variants D ::= 〈c1 P1 | · · · | cn Pn〉
Records R ::= {d1 : N1, . . . , dn : Nn}

Figure 6. Types

are not checked for functoriality and programs are not checked for
termination or productivity, resp., there are no conditions that ensure
µY.λ ~X.D to be a least fixed-point inhabited only by finite data,
and νZ.λ ~X.R to be a greatest fixed-point that hosts infinite objects
which are productive. However, we keep the notational distinction to
allude to the intended interpretation as least and greatest fixed-points
in a total setting.

Example 1: Indexed Recursive Types Data typesC = µY.λ ~X.D
for D = 〈c1 P1 | · · · | cn Pn〉 describe least fixed points. Choosing
as index domain natural numbers, we can model our previous
definition of Msg as follows in our core language.

µMsg.λX.〈Nil : X = zero× 1 ,
Cons : ΣY :nat.X = suc Y × (Bit×Msg Y)〉

Example 2: Indexed Corecursive Types Record types C =
νZ.λ ~X.R with R = {d1 : N1, . . . , dn : Nn} are recursive la-
beled products and describe infinite data. As for data, non-recursive
record types are encoded by a void ν-abstraction ν_.λ ~X.R. Con-
sider our previous codata type definition for indexed streams, i.e.
Str, with the three observations, GetBit, NextBits, and Done. De-
pending on the index N we choose the corresponding observation. It
directly translates to the following:

νStr.λM. { Done : M = zero → ↑NextMsg ,
NextBits : ΠN :nat.M = suc N→ Str N ,
GetBit : ΠN :nat.M = suc N→ ↑Bit }

µNextMsg. 〈 NextMsg : ΣN :nat.↓ Str N 〉

Dually to data types where we employ Σ and product types, we
use Π and simple function types when defining codata types.

3.3 Terms and Typing
In our core language, we distinguish between terms which have
negative type and values which have positive type (see Fig. 7).
Values include unit (written as ()), pairs (written as (v1, v2)),
dependent pairs (written as pack 〈C, v〉). We also include data

built using constructors (written as c v). Finally we can embed
computation into values using thunk t. A thunk represents a term
which is suspended and may produce a value at a later stage. Last
but not least, we include the witness for equality between two index
objects, written as ℘, in our values.

Values v ::= x | () | (v1, v2) | ℘ | thunk t | c v | pack 〈C, v〉
Terms t ::= rec f.t | fn ~u | t v | t C | produce v | t.d

| t1 to x.t2 | force v
Branches u ::= q 7→ t | q
Patterns p ::= x | () | (p1, p2) | ℘ | c p | pack 〈C, p〉
Copatterns q ::= · | p q | C q | .d q

Figure 7. Values, Terms, (Co)Patterns

Computations (or terms) correspond to negative types. Compu-
tations include recursion (written as rec f.t) and functions (written
as fn ~u) which are defined by (co)pattern matching. In addition, we
have application (written as t v), index domain application (written
as t C) and destructor applications (written as t.d); given a term
t describing infinite data we unfold its corresponding corecursive
type to a record and select the component d of the record. Finally,
we can force a suspended computation v using force v and produce
a value (written as produce v). We also include a sequencing term
which is written as (t1 to x.t2).

We eliminate expressions of positive type such as recursive types
via pattern matching; dually, we make observations about expres-
sions of negative types such as corecursive types. Simultaneous
(co)patterns are described using a spine that is built out of patterns
(written as p) and observations (written as .d). Patterns themselves
are derived from values and can be defined using pattern variables x,
pairs (written as (p1, p2)), pattern instances (written as pack 〈C, p〉)
and patterns formed with a data constructor c.

Branches in case-expressions are modelled by q 7→ t. We also
allow branches with no body – they will only succeed if the copattern
q is impossible, i.e. we arrived at some equality constraints that lead
to a contradiction. Strictly speaking, it is not necessary as we could
always write some arbitrary expression for the body which would
be inaccessible and thus can never be reached.

The typing rules for terms and values are mostly straightforward
(see Fig. 8). We highlight here a few. Typing of index objectC refers
to typing of index-terms as described in Section 3.1. A constructor
takes a term of type Dc[µY.λ ~X.D/Y, ~C/ ~X], yielding a term of
type (µY.λ ~X.D) ~C. A thunk of a computation is well typed, if
the computation itself is. The witness for an equality C1 = C2 is
simply ℘ provided C1 and C2 are equal in our index domain using
our rules from Fig. 2. As we have constraints in ∆, we also include
type conversion rules (TPConv and TNConv). ∆ ` P = P ′ (and resp.
∆ ` N = N ′) is defined inductively on the structure of positive
and negative types. When we compare ∆ ` (P ~C) = (P ′ ~C′), we
simply compare ∆ ` P = P ′ and for all i we have ∆ ` Ci = C′i

∆; Γ ` v : P Value typing: In index-context ∆ and context Γ, value v has positive type P .

∆; Γ ` () : 1
TUnit

Γ(x) = P

∆; Γ ` x : P
TVar

∆; Γ ` v1 : P1 ∆; Γ ` v2 : P2

∆; Γ ` (v1, v2) : P1 × P2
TPair

∆ ` C : U ∆; Γ ` v : P [C/X]

∆; Γ ` pack 〈C, v〉 : ΣX:U.P
TPack

∆; Γ ` v : Dc[µY.λ ~X.D/Y, ~C/ ~X]

∆; Γ ` c v : (µY.λ ~X.D) ~C
TConst

∆; Γ ` v : P ′ ∆ ` P = P ′

∆; Γ ` v : P
TPConv

∆ ` C1 = C2

∆; Γ ` ℘ : C1 = C2
TCProd

∆; Γ ` t : N

∆; Γ ` thunk t : ↓N TThunk

∆; Γ ` t : N Computation typing: In index-context ∆ and context Γ, term t has negative type N .

∆; Γ, x : ↓N ` t : N

∆; Γ ` rec x.t : N
TRec

for each i ∆; Γ ` ui : N

∆; Γ ` fn ~u : N
TFn

∆; Γ ` t : (νZλ ~XR) ~C

∆; Γ ` t.d : Rd[νZ.λ ~X.R/Z, ~C/ ~X]
TDest

∆; Γ ` t : P → N ∆; Γ ` v : P

∆; Γ ` t v : N
TApp

∆; Γ ` t : ΠX:U.N ∆ ` C : U

∆; Γ ` t C : N [C/X]
TMApp

∆; Γ ` t : N ′ ∆ ` N = N ′

∆; Γ ` t : N
TNConv

∆; Γ ` v : ↓N
∆; Γ ` force v : N

TForce
∆; Γ ` v : P

∆; Γ ` produce v : ↑P TProduce
∆; Γ ` t1 : ↑P ∆; Γ, x : P ` t2 : N

∆; Γ ` t1 to x.t2 : N
TTo

∆; Γ ` ui : N In index-context ∆ and context Γ, branch ui has negative type N .

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ ∆′; Γ′ ` t : N ′

∆; Γ ` q 7→ t : N

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ # ∈ ∆′

∆; Γ ` q : N

Figure 8. Typing Rules for Terms

falling back to the comparison on index terms. We proceed similarly
when comparing negative types.

A rec-expression introduces a variable of type ↓N . Dual to a
constructor, an observation .d takes a term of type (νZ.λ ~X.R) ~C

yielding a term of type Rd[νZ.λ ~X.R/Z, ~C/ ~X]. For applications
we ensure that we apply a term of function type to a value. The
operational reading of t1 to x.t2 is that we first evaluate the
computations of t1 to produce v1 of type ↑P , and then evaluate the
term t2 where we replace x by the value v1. This is captured in the
typing rule for to-statements.

The function abstraction (written as fn ~u) introduces branches u
of the form q 7→ t. A branch is well typed if the copattern q checks
against the overall type N of the function and synthesizes a new
index-context ∆′, a new context Γ′, and the output type N ′, against
which the term t is checked. The contexts ∆′ and Γ′ describe the
types of the variables occurring in the pattern together with equality
constraints. Note that ∆′ not only accumulates equality constraints,
but might also contain a contradiction, if some equality constraint is
not satisfied. Our typing rules will then still guarantee that the body
t is effectively simply typed, as all equalities that appear in the body
and must be satisfied will be trivially true.

As mentioned earlier, we also allow branches that consist only
of a (co)pattern but have no body. This allows programmers to write
inaccessible (co)patterns. We check such branches by verifying that
∆′ contains a contradiction. In this case, we know that the branch
cannot be taken during run-time and is essentially dead-code.

The typing rules for (co)patterns (see Fig. 9) are defined using
the following two judgments:

∆; Γ ` p : P ↘ ∆′; Γ′ Typing for pattern p
∆; Γ;N ` q ↘ ∆′; Γ′;N ′ Typing for copattern q

In both typing judgments, the index-context ∆ and the context Γ
contain variable declarations that were introduced at the outside. We

assume that all variables occurring in the (co)pattern are fresh with
respect to ∆ and Γ and occur linearly, although this is not explicitly
enforced in our rules. When we check a pattern p against a positive
type P in the index-context ∆ and context Γ, we synthesize an
index-context ∆′ such that ∆′ is an extension of ∆ (i.e. ∆ ≺ ∆′)
and Γ′ is an extension of Γ. We note that as we check the pattern p
we may update and constrain some of the variables already present
in ∆. This happens in the rule Pcon where we fall back to type
checking patterns in our domain and in the rule PEq where we unify
two index objects C1 and C2, and return a new index-context ∆′

such that ∆′ ` C1 = C2. For simplicity, we thread through both the
index-context ∆ and the context Γ, although only ∆ may actually
be refined.

The typing rules for patterns are straightforward except for
equality. A pattern ℘ checks against C1 = C2 provided that C1

and C2 unify in our domain and ∆′ contains the solution which
makes C1 and C2 equal. It might also be the case that C1 does not
unify with C2, i.e. there is no instantiation for the index-variables in
C1 and C2 that makes C1 and C2 equal. In this case, we expect the
judgment ∆ ` C1 = C2 ↘ ∆′ to introduce in ∆′ a contradiction
which will make typing of the expression in the branch trivial.
This is necessary for the substitution lemma to hold.

Copattern spines allow us to make observations on a negative
type N in the index-context ∆ and context Γ. As we process the
copattern spine from left to right, we synthesize a negative type N ′.
Intuitively, N ′ is the suffix of N . As copattern spines also contain
patterns we also return a new index-context ∆′ and context Γ′.

To illustrate we show the partial typing derivation (see Fig. 9)
for the copattern spine [s N] s ns .GetBit that arises from the
program MsgStr from Sec. 2.1. This copattern spine is represented
in our core language as (s N) s ns .GetBit M ℘ and has type
ΠN :nat.Bit Stream → [nat] Stream → Str N . After in-
ferring the type of N and introducing declarations for s and ns,

∆; Γ ` p : P ↘ ∆′; Γ′ Pattern p of positive type P extends contexts ∆; Γ into ∆′; Γ′.

∆; Γ ` x : P ↘ ∆; Γ, x:P
PVar

∆; Γ ` p : Dc[µY.λ ~X.D/Y, ~C/ ~X]↘ ∆′; Γ′

∆; Γ ` c p : (µY.λ ~X.D) ~C ↘ ∆′; Γ′
PConst

∆; Γ ` () : 1↘ ∆; Γ
PUnit

∆; Γ ` p1 : P1 ↘ ∆′; Γ′ ∆′; Γ′ ` p2 : P2 ↘ ∆′′; Γ′′

∆; Γ ` (p1, p2) : P1 × P2 ↘ ∆′′; Γ′′
PPair

∆ ` C : U ↘ ∆′ ∆′; Γ ` p : P [C/X]↘ ∆′′; Γ′

∆; Γ ` pack 〈C, p〉 : ΣX:U.P ↘ ∆′′; Γ′
PPack

∆ ` C1 = C2 ↘ ∆′

∆; Γ ` ℘ : C1 = C2 ↘ ∆′; Γ
PEq

∆; Γ;N ` q ↘ ∆′; Γ′;N ′ Copattern q eliminates negative type N into type N ′ and extending contexts ∆; Γ into ∆′; Γ′.

∆; Γ;N ` · ↘ ∆; Γ;N
CPBase

∆; Γ ` p : P ↘ ∆′; Γ′ ∆′; Γ′;N ` q ↘ ∆′′; Γ′′;N ′

∆; Γ;P → N ` p q ↘ ∆′′; Γ′′;N ′
CPApp

∆ ` C : U ↘ ∆′ ∆′; Γ;N [C/X] ` q ↘ ∆′′; Γ′;N ′

∆; Γ; ΠX:U.N ` C q ↘ ∆′′; Γ′;N ′
CPMApp

∆; Γ;Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` q ↘ ∆′; Γ′;N ′

∆; Γ; (νZ.λ ~X.R) ~C ` .d q ↘ ∆′; Γ′;N ′
CPDest

Example:

...
N : nat `M : nat↘ ∆0

...
∆0 ` s M = s N ↘ ∆1 ∆1 = N : nat,M := N : nat

∆0 ` ℘ : s M = s N ↘ ∆1 ∆1; Γ; StrM ` · ↘ ∆1; Γ; StrM
∆0; Γ; s M = s N → StrM ` ℘ · ↘ ∆1; Γ; StrM

N : nat; Γ; ΠM :nat.s M = s N → StrM `M ℘ · ↘ ∆1; Γ; StrM
N : nat; Γ; StrN ` .GetBitM ℘ · ↘ ∆1; Γ; StrM

where Γ = s : Bit Stream, ns : [nat] Stream and ∆0 = N : nat,M : nat

Figure 9. Type Checking for Patterns

we synthesize Str M for .GetBit M ℘ · in ∆1 and the context
Γ = s:Bit Stream, ns:[nat] Stream. Recall, we write [nat] as a
notation for ΣX:nat.1.

Example 3 Recall our previous program genBitStr which gen-
erated a stream where every message consisted of two bits. This
program can be elaborated into our core language straightforwardly
to a program of type Str 2.

rec genBitStr.fn
| .GetBit (suc zero) ℘ 7→ RandomBitGen ()
| .NextBits (suc zero) ℘ .GetBit z ℘ 7→ RandomBitGen ()
| .NextBits (suc zero) ℘ .NextBits (suc zero) ℘ .Done ℘

7→ NextMsg (pack 〈(suc zero), genBitStr〉)

Example 4 Next, we consider the translation of readMsg.

rec readMsg.fn
| zero s 7→ produce (Nil (℘, ()), s)
| (suc M) s 7→
(force s).GetBit to c.
(force readMsg) M (thunk (force s).NextBits) to x.
(fn (w, s′) 7→
produce (Cons (pack 〈M, (℘, (c, w))〉 , s′))) x

This function deserves some explanation. The type of readMsg is
translated to ΠN :nat. ↓(Str N)→ ↑((Msg N)× ↓(Str z)). Since
StrN is in negative position, it needs to have positive type (thus the
↓) and so the input s of the function is in fact a thunk that needs to
be forced before we can use the observations GetBit and NextBits.
The recursive call needs also to be forced because the variable
readMsg needs to be positive to live in the context. Let-statements

are defined as to-statements whose left-hand side produces a value,
that is then bound to the variable c and x, respectively. Moreover,
the second let-statement in the original program also used pattern
matching. Our language does not have case-expression. Hence, we
use a function to pattern match on x. The output needs to be of
negative type but we want to return a product which is positive. It
is thus embedded using a produce-statement. This also allows the
recursive call to be put on the left-hand side of a to-statement.

4. Evaluation and Type Preservation
In this section, we present a small step operational semantics using
evaluation contexts (continuations) following Levy (2001). We also
define a non-deterministic coverage algorithm and prove that our
operational semantics satisfies subject reduction and progress.

4.1 Evaluation Contexts
Evaluation contexts are defined inductively. We start from a hole ·
and we accumulate values, index objects, observations, and sus-
pended to-bindings.

Evaluation Contexts E ::= · | v E | C E | .d E | ([] to x.t) E
We note that we only collect closed values, index objects, etc. in
the evaluation context and hence the typing judgment for them does
not carry any contexts. We use the following judgment to define
well-typed evaluation contexts:

N ` E ↘ N ′ Evaluation context E transforms N to N ′

The negative type N describes some computation t which when
used in the evaluation context E returns a computation of type N ′.

Intuitively, t stands for a function fn (
−−−−→
qi 7→ ti) and we match the

evaluation context E against the copattern spine qi and consume
part ofE to take a step. As evaluation contexts closely correspond to
copattern spines, their typing rules follow the ones for (co)patterns.

When the evaluation context is empty (rule EBase), we simply
return N . Intuitively, nothing is applied to the computation of
type N . If we have a computation of type P → N and our
evaluation context provides a value v of type P , then we check that,
given a computation of type N , applying the remaining evaluation
context takes us to N ′ (see EApp). If we have a computation of
type ΠX:U.N and the evaluation context supplies an index object
C, then we verify that, given a computation of type N [C/X],
applying the remaining evaluation context takes us to N ′. Similarly,
given a term of type (νZ.λ ~X.R) ~C and an evaluation context that
supplies an observation .d, we verify that, given a computation of
type Rd[(νZ.λ ~X.R)/Z, ~C/ ~X], applying the remaining evaluation
context takes us to N ′.

Finally, given a computation of type ↑P and an evaluation
context ([] to x.t) E, we check that once we are done evaluating
t and return a computation of type N , passing to it the remaining
evaluation context E yields a computation of type N ′.

N ` · ↘ N
EBase

Rd[(νZ.λ ~X.R)/Z, ~C/ ~X] ` E ↘ N

(νZ.λ ~X.R) ~C ` .d E ↘ N
EDest

` v : P N ` E ↘ N ′

P → N ` v E ↘ N ′
EApp

x : P ` t : N N ` E ↘ N ′

↑P ` ([] to x.t) E ↘ N ′
Eto

N [C/X] ` E ↘ N ′ ` C : U

ΠX:U.N ` C E ↘ N ′
EMApp

4.2 Small Step Operational Semantics
Unlike the language described by Abel et al. (2013) which presented
programs as rewrite rules, we give here the operational semantics in a
more traditional functional programming style using a continuation-
based abstract machine semantics. We might view our language as a
core language into which we can compile programs given as rewrite
rules to. More importantly it directly gives rise to an implementation
and illustrates how to extend more traditional ML-like languages
with copattern matching.

Our operational semantics is defined on configurations t;E
which contain a term and an evaluation context. Such pair is said to
have type N ′ (written ` t;E : N ′) if ` t : N and N ` E ↘ N ′.
The rules for the operational semantics on configurations are defined
in Fig. 10. To evaluate an expression t1 to x.t2, we evaluate t1 in the
evaluation context extended with [] to x.t2. Once we have a value v
for t1 we pop off [] to x.t2 and continue evaluating t2[v/x]. Forcing
thunks continues the evaluation. When processing applications (i.e.
applications to a value, an index object or an observation), we
simply extend our evaluation context accordingly until we step a
configuration fn (

−−−−→
qi 7→ ti);E. In this case, we match the evaluation

context E against the copattern spine qi yielding (θ;σ) and the
tail E′, and then step to ti[θ;σ]. The condition E = qi[θ;σ]@E′

denotes that appending qi under the substitutions with E′ results in
the original evaluation context E.

Next, we prove that types are preserved during evaluation (see
Theorem 4). This relies on substitution lemmas for values and
computations and adequacy of copattern matching. For convenience,
we describe below well-typed environments (θ, σ) and generalize
the relationship between the computation of the type N and an
evaluation contexts E that transforms N into N ′.

∆′ ` θ : ∆ ∆′; Γ′ ` σ : Γ[θ]

∆′; Γ′ ` (θ;σ) : (∆; Γ)

` (θ;σ) : (∆; Γ) N [θ] ` E ↘ N ′

` (θ;σ;E) : (∆; Γ;N)↘ N ′

t1;E1 −→ t2;E2 t1;E1 evaluates to t2;E2 in one step.

t1 to x.t2;E −→ t1; ([] to x.t2) E
produce v; ([] to x.t) E −→ t[v/x];E
force (thunk t);E −→ t;E
t.d;E −→ t; .d E
t v;E −→ t; v E
t C;E −→ t;C E
rec x.t;E −→ t[thunk (rec x.t)/x];E

E = qi[θ;σ]@E′

fn (
−−−−→
qi 7→ ti);E −→ ti[θ;σ];E′

Figure 10. Operational Semantics

Lemma 2 (Substitution Lemmas). The following hold

1. If ∆; Γ ` v : P and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` v[θ;σ] : P [θ].

2. If ∆; Γ ` t : N and ∆′; Γ′ ` (θ;σ) : (∆; Γ)
then ∆′; Γ′ ` t[θ;σ] : N [θ].

Proof. The proof of both statements is done by mutual induction on
the derivations of ∆; Γ ` v : P and ∆; Γ ` t : N , respectively

Lemma 3 (Adequacy of Copattern Matching).

1. Suppose ` v : P . If ` p : P ↘ ∆; Γ and v = p[θ;σ] then
` (θ;σ) : (∆; Γ).

2. Suppose N ` E ↘ N ′′ If N ` q ↘ ∆; Γ;N ′ and E =
q[θ;σ]@E′, then ` (θ;σ;E′) : (∆; Γ;N ′)↘ N ′′.

Proof. The proof is done by induction on ` p : P ↘ ∆; Γ and
N ` q ↘ ∆; Γ;N ′.

Theorem 4 (Type Preservation).
If ·; · ` t;E : N and t;E −→ t′;E′, then ` t′;E′ : N .

Proof. The proof is done by case analysis on the stepping rule. The
only interesting case is when dealing with function abstraction.

E = qi[θ;σ]@E′

fn (
−−−−→
qi 7→ ti);E −→ ti[θ;σ];E′

` fn (
−−−−→
qi 7→ ti);E : N by assumption

` fn (
−−−−→
qi 7→ ti) : N ′ and N ′ ` E ↘ N by inversion

·; ·;N ′ ` qi ↘ ∆i; Γi;Ni and ∆i; Γi ` ti : Ni by inversion
` θ;σ;E′ : ∆i; Γi;Ni ↘ N by lemma 3
` θ;σ : ∆i; Γi and Ni[θ] ` E′ ↘ N by inversion
` ti[θ;σ] : Ni[θ] by substitution lemma
` ti[θ;σ];E′ : N by definition

4.3 Coverage
In this section, we define a notion of coverage for copatterns, which
allows us to prove a type safety result.

To define coverage, we need to take into account that a function
abstraction can be underapplied, i.e., it will not trigger a reduction
step unless we add more to the evaluation context. To take into
account such possibility, we need to introduce some notation. We
define the append operation of evaluation contexts, denoted E@k,
where k = .d | v | [] to x.n | C which adds to the end of an
evaluation context. We also use this operation on copatterns.

We now define coverage. The main judgment ∆; Γ;N /| Q
defined in Figure 11 means that the (finite) setQ of copatterns covers
the type N in context ∆; Γ. It is established by iteratively refining a
covering set, beginning with the trivial copattern. It is easiest to read
the rules from the top to the bottom. A covering set Q is refined by
choosing a particular copattern q ↘ ∆′; Γ′;N ′ in Q and refining it
further into a (finite) set of copatterns. This is accomplished using
the auxiliary judgment (q ↘ ∆′; Γ′;N ′) =⇒ Q′, which states that
the copattern q refines into the set of copatterns Q′.

There are two different types of refinement which can be done.
The first one is introducing the result type. We look at the type
of a particular rule and we introduce it. If we have an arrow type
P → N , we introduce a variable of that type, yielding the copattern
q@x. If we have a corecursive type, for each observation d ∈ R, we
create a new copattern q@.d for each d ∈ R.

The second type of refinement is the splitting on a variable. We
expose a variable occurring in q, and its type in ∆ or Γ. We write
q[x] for a copattern q with a single distinguished position in which
the variable x occurs. We consider in this judgment the contexts to
be unordered, so the notation Γ, x : P (or ∆, X : U) is simply to
expose any variable x ∈ Γ (X ∈ ∆, respectively), no matter its
actual position in the context. The splitting is done by examining
the type of the exposed variable. If x : P1 × P2, we introduce two
new variables x1 : P1 and x2 : P2 and perform the instantiation
q[(x1, x2)]. If the variable is of recursive type (µY.λ ~X.D)~C, we
introduce a new copattern for each constructor c ∈ D with the
variable replaced by c x′ where x′ : Dc[µY.λ ~X.D/Y, ~C/ ~X]. If
we have an equality constraint C1 = C2, we attempt to unify them.
If they cannot be unified, we record this copattern as unreachable,
marking it with ⊥. Again we omit for space reasons rules which
perform further refinements on unreachable copatterns.

When splitting on an index variable in ∆, we use the splitting
mechanism from the index domain, as discussed in Section 3.1
which produces a set of refined patterns {(∆i, Ci) | i ∈ I}. We
then return the refined set of copatterns q[Ci/X] for each i ∈ I .

Our coverage algorithm generates a covering set Q. However, it
does not account for writing overlapping and fall-through patterns.
In this sense, our notion of coverage is not complete: there are sets
Q of copatterns which a programmer might write in a program
and one would consider covering, but for which one cannot derive
∆; Γ;N /| Q. However, it would be possible to check that for all
copattern spines q in the generated covering set Q, there exists a
copattern spines q′ in a given program s.t. q is an instance of q′. For
simplicity, we omit this generalization.

With copattern refinement and coverage of evaluation contexts
defined, we are able to prove some technical results which justify
the soundness of the copattern refinement rules. The first of these
states that if a copattern q matches an evaluation context E, and q
refines in one step into the set Q of copatterns, then eventually E
will match one of the copatterns in Q.

Lemma 5. Soundness of Copattern Refinement
If (q ↘ ∆; Γ;N) =⇒ Q and ` θ;σ;E : ∆; Γ;N ↘ ↑P then
there exists q′ ↘ ∆′; Γ′;N ′ ∈ Q and ` θ′;σ′;E′ : ∆′; Γ′;N ′ ↘
↑P such that q[θ;σ]@E = q′[θ′;σ′]@E′.

Proof. The proof is done by case analysis on (q ↘ ∆; Γ;N) =⇒
Q and inversion on the typing ` θ;σ;E : ∆; Γ;N ↘ ↑P .

The soundness of our notion of coverage now follows easily. It
states that if E is an evaluation context consuming type N , and Q
covers N , then eventually E will match one of the copatterns in Q.

Corollary 6. Soundness of Coverage
If N ` E ↘ ↑P and ·; ·;N /| Q, then there exists (q ↘
∆; Γ;N ′) ∈ Q, and θ;σ;E′ : ∆; Γ;N ′ ↘ ↑P such that E =
q[θ;σ]@E′.

Proof. By induction on the derivation of ·; ·;N /| Q.

In order for progress to hold for whole programs, we need the
operational semantics to preserve coverage so that the program
cannot become stuck under an incomplete copattern set. The only
concern lies when a covering set is under a substitution.

Lemma 7 (Preservation of Coverage under Substitution).
If ∆′; Γ′ ` (θ;σ) : ∆; Γ and ∆; Γ;N /| {qi ↘ ∆i; Γi;Ni}i∈I
then there are {∆′i; Γ′i}i∈I such that

∆′; Γ′;N [θ] /| {qi ↘ ∆′i; Γ′i;Ni[θ]}i∈I
and for all i ∈ I , ∆′i; Γ′i ` (θ;σ) : ∆i; Γi

Proof. By induction on the derivation of
∆; Γ;N /| {qi ↘ ∆i; Γi;Ni}i∈I .

We are now able to prove progress, assuming each copattern set
Q used in a function abstraction is covering.

Theorem 8 (Progress Theorem). If ` t;E : ↑P , then either
t;E −→ t′;E′ or t;E = produce v;·.

Proof. Proof by case analysis on t.
If t is of the form t′.d, or t′ v, or force thunk t′, or t′ to x.t′′, or

rec f.t′, then there is a stepping rule. If t is produce v we have two
cases: If E = · we are done. If E = ([] to x.t′′) E′, then it steps to
[v/x]t′′;E′.

The last case is t = fn ~u. By assumption, if ` fn ~u : N
and u = qi 7→ ti, then we have N /| Q where Q is the set of
copatterns in ~u. By Corollary 6, there exists q ↘ ∆; Γ;N ′ ∈ Q
and θ;σ;E′ : ∆; Γ;N ′ ↘ ↑P such that E = qi[θ;σ]@E′. Hence
fn ~u;E steps.

5. Related Work
Our work builds and extends directly the work by Levy (2001) to
track data-dependencies in finite and infinite data. We model finite
data using dependent sums and infinite data using dependent records
where fields share a given index. This is in contrast to dependent
records that allow a particular field to depend on previous ones
(Betarte 1998).

Most closely related to our development is the work on DML
(Xi and Pfenning 1999) where the authors also accumulate equality
constraints during type checking to reason about indices. However,
in DML all indices are erased before running the program while
we reason about indices and their instantiation during run-time. As
indices are also computationally relevant in fully dependently typed
languages, we believe our work lays the ground of understanding the
interaction of indices and (co)pattern matching in these languages.
Finally, our work may be seen as extending DML to support both
lazy and eager evaluation using (co)pattern matching.

Dependent type theories provide in principle support to track data
dependencies on infinite data, although this has not received much
attention in practice. Agda (Norell 2007), a dependently typed proof
and programming environment based on Martin-Löf’s type theory,
has support for copatterns since version 2.3.4 (Agda team 2014).
We can directly define equality guards and using large eliminations
we can match on index arguments.

Agda uses inaccessible patterns (also called dot-patterns) (Brady
et al. 2004; Goguen et al. 2006) to maintain linear pattern matching
in a dependently typed setting. Inaccessible patterns mark patterns
that are fully determined by their type. They do not bind additional
variables not already occurring in the rest of the pattern, which is
then linear. Our approach offers an alternative view which is mostly
notational where relationships between arguments in a pattern are

(q ↘ ∆′; Γ′;N ′) =⇒ Q Copattern q refines into copatterns Q

Impossible (Co)Pattern

(q ↘ ∆′; Γ′;N ′) =⇒ {} if # ∈ ∆′

(Co)Pattern Introduction

(q ↘ ∆′; Γ′; ΠX:U.N ′) =⇒ {q@X ↘ ∆′, X:U ; Γ′;N ′}
(q ↘ ∆′; Γ′;P → N ′) =⇒ {q@x↘ ∆′; Γ′, x:P ;N ′}

(q ↘ ∆′; Γ′; (νZ.λ ~X.R)~C) =⇒ {q@.d↘ ∆′; Γ′;Rd[νZλ
~X.R/Z, ~C/~X] | d ∈ R}

Pattern Refinement

(q[x]↘ ∆′; Γ′, x : C1=C2;N ′) =⇒ {q[℘]↘ ∆′′; Γ′;N ′} provided ∆′ ` C1 = C2 ↘ ∆′′

(q[x]↘ ∆′; Γ′, x : P1 × P2;N ′) =⇒ {q[(x1, x2)]↘ ∆′; Γ′, x1:P1, x2:P2;N ′}
(q[x]↘ ∆′; Γ′, x : ΣX:U.P ;N ′) =⇒ {q[pack 〈X,x′〉]↘ ∆′, X:U ; Γ′, x′:P ;N ′}

(q[x]↘ ∆′; Γ′, x : (µY.λ ~X.D)~C;N ′) =⇒ {q[c x′]↘ ∆′; Γ′, x′:Dc[µY.λ
~X.D/Y , ~C/~X];N ′ | c ∈ D}

(q[X]↘ ∆′; Γ′;N ′) =⇒ {q[Ci]↘ ∆i; (Γ′;N ′)[Ci/X]}i∈I if split(∆′ ` X) = {(∆i ` Ci)}i∈I

∆; Γ;N /| Q Copatterns Q cover type N in context ∆; Γ

∆; Γ;N /| {· ↘ ∆; Γ;N}
∆; Γ;N /| (Q] {q ↘ ∆′; Γ′;N ′}) (q ↘ ∆′; Γ′;N ′) =⇒ Q′

∆; Γ;N /| Q ∪Q′

Figure 11. Coverage

kept in the index context while the pattern is fully linear. The
equality checks are done during type checking and the constraints
are irrelevant at run-time since a matching branch will always satisfy
all of its constraints.

Our work draws on the distinction between finite data defined by
constructors and infinite data described by observations which was
pioneered by Hagino (1987). Hagino models finite objects via initial
algebras and infinite objects via final coalgebras in category theory.
This work, as others in this tradition such as Cockett and Fukushima
(1992) and Tuckey (1997), concentrates on the simply typed setting.
Extensions to dependent types with weakly final coalgebra structures
have been explored Hancock and Setzer (2005). However in this
line of work one programs directly with coiterators and corecursors
instead of using general recursion and deep copattern matching.
Further, equality is not treated first-class in their system – however,
we believe understanding the role of equality constraints is central
to arriving at a practical sound foundation for dependently typed
programming.

Our development of indexed patterns and copatterns builds
on the growing body of work (Zeilberger 2008a; Licata et al.
2008) which relates focusing and linear logic to programming
language theory via the Curry-Howard isomorphism. Zeilberger
(2008b) and Krishnaswami (2009) have argued that focusing calculi
for propositional logic provide a proof-theoretic foundation for
pattern matching in the simply-typed setting. Our work extends
and continues this line of work to first-order logic (= indexed
types) with (co)recursive types and equality. Our work also takes
inspiration from the proof theory described in Baelde (2012) and
Baelde et al. (2010) and the realization of this work in the Abella
system (Baelde et al. 2014). While Baelde’s proof theory supports
coinductive definitions and equality, coinduction is defined by a non-
wellfounded unfolding of a coinductive definition. Proofs in this
work would correspond to programs written by (co)iteration. This

is in contrast to our work, which is centered around the duality of
(co)data types and supports simultaneous deep (co)pattern matching.

Finally, our approach of defining infinite data using records
bears close similarity to the treatment and definition of objects and
methods in foundations for object-oriented languages. To specify
invariants about objects and methods and check them statically,
DeLine and Fähndrich (2004) propose typestates. While this work
focuses on the integration of typestates with object-oriented features
such as effects, subclasses, etc., we believe many of the same
examples can be modelled in our framework.

6. Conclusion
In this paper, we have presented an extension of a general purpose
programming language with support for indexed (co)data type to
allow the static specification and verification of invariants of infinite
data such as streams or bisimulation properties. In our development
we keep the index domain abstract and clearly state structural
requirements our index domain must satisfy. Our language extends
Levy (2001)’s call-by-push value with indexed (co)data types and
deep (co)pattern matching. We use equality constraints to reason
about dependencies between index arguments providing a clean
foundation for dependent (co)pattern matching. We describe the
operational semantics using a continuation-based abstract machine
and prove that our language’s operational semantics preserves types.
We also provide a non deterministic algorithm to generate covering
sets of copatterns, ensuring that terms do not get stuck during
evaluation.

In the future, we plan to address two main directions: first, we
aim to prove normalization of our language restricting our programs
to total functions. This then justifies the use of our core language as
a proof language for developing coinductive proofs; second, we will
extend this work to full dependent types providing a foundation for
Agda and Coq.

References
A. Abel and B. Pientka. Well-founded recursion with copatterns:a unified

approach to termination and productivity. In 18th ACM International
Conference on Functional Programming (ICFP ’13), pages 185–196.
ACM Press, 2013.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming
infinite structures by observations. In 40th ACM Symp. on Principles of
Programming Languages (POPL’13), pages 27–38. ACM Press, 2013.

Agda team. The Agda Wiki, 2014.
D. Baelde. Least and greatest fixed points in linear logic. ACM Transactions

on Computational Logic, 13(1):2:1–2:44, 2012.
D. Baelde, Z. Snow, and D. Miller. Focused inductive theorem proving. In

J. Giesl and R. Haehnle, editors, 5th International Joint Conference on
Automated Reasoning (IJCAR’10), Lecture Notes in Artificial Intelligence
(LNAI 6173), pages 278–292. Springer, 2010.

D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and
Y. Wang. Abella: A system for reasoning about relational specifications.
Journal of Formalized Reasoning, 7(2):1–89, 2014.

G. Betarte. Dependent Record Types and Formal Abstract Reasoning: Theory
and practice. PhD thesis, Department of Computing Science, Chalmers
University of Technology and University of Göteborg, 1998.

E. Brady, C. McBride, and J. McKinna. Inductive families need not store
their indices. In Types for Proofs and Programs (TYPES’03), Revised
Selected Papers, Lecture Notes in Computer Science (LNCS 3085), pages
115–129, 2004.

A. Cave and B. Pientka. Programming with binders and indexed data-
types. In 39th ACM Symposium on Principles of Programming Languages
(POPL’12), pages 413–424. ACM Press, 2012.

J. Cheney and R. Hinze. First-class phantom types. Technical Report CUCIS
TR2003-1901, Cornell University, 2003.

R. Cockett and T. Fukushima. About charity. Technical report, Department
of Computer Science, The University of Calgary, June 1992. Yellow
Series Report No. 92/480/18.

R. DeLine and M. Fähndrich. Typestates for objects. In 18th European
Conference on Object-Oriented Programming (ECOOP 2004), Lecture
Notes in Computer Science (LNCS 3086), pages 465–490. Springer,
2004.

H. Goguen, C. McBride, and J. McKinna. Eliminating dependent pattern
matching. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors,
Algebra, Meaning, and Computation, Essays Dedicated to Joseph A.
Goguen on the Occasion of His 65th Birthday, Lecture Notes in Computer
Science (LNCS 4060), pages 521–540. Springer, 2006.

T. Hagino. A typed lambda calculus with categorical type constructors. In
D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory
and Computer Science, Lecture Notes in Computer Science (LNCS 283),
pages 140–157. Springer, 1987.

P. Hancock and A. Setzer. Interactive programs and weakly final coalgebras
in dependent type theory. In L. Crosilla and P. Schuster, editors, From Sets

and Types to Topology and Analysis. Towards Practicable Foundations
for Constructive Mathematics, pages 115 – 134, Oxford, 2005. Clarendon
Press.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

N. R. Krishnaswami. Focusing on pattern matching. In 36th Annual ACM
Symposium on Principles of Programming Languages (POPL’09), pages
366–378. ACM Press, 2009.

P. B. Levy. Call-by-push-value. PhD thesis, Queen Mary and Westfield
College, University of London, 2001.

D. R. Licata, N. Zeilberger, and R. Harper. Focusing on binding and
computation. In F. Pfenning, editor, 23rd Symposium on Logic in
Computer Science, pages 241–252. IEEE Computer Society Press, 2008.

C. McBride. Let’s see how things unfold: Reconciling the infinite with the
intensional. In A. Kurz, M. Lenisa, and A. Tarlecki, editors, 3rd Int. Conf.
on Algebra and Coalgebra in Computer Science (CALCO’09), Lecture
Notes in Computer Science (LNCS 5728), pages 113–126. Springer,
2009.

R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209 – 220, 1991.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, Sept. 2007. Technical Report
33D.

B. Pientka and J. Dunfield. Programming with proofs and explicit con-
texts. In ACM Symposium on Principles and Practice of Declarative
Programming (PPDP’08), pages 163–173. ACM Press, 2008.

D. Thibodeau, A. Cave, and B. Pientka. Indexed codata (extended version).
Technical report, School of Computer Science, McGill University, July
2016. Techincal Report.

C. Tuckey. Pattern matching in Charity. Master’s thesis, The University of
Calgary, July 1997.

H. Xi. Applied type system. In Types for Proofs and Programs (TYPES’03),
Revised Selected Papers, Lecture Notes in Computer Science (LNCS
3085), pages 394–408. Springer, 2004.

H. Xi and F. Pfenning. Dependent types in practical programming. In 26th
ACM Symposium on Principles of Programming Languages (POPL’99),
pages 214–227. ACM Press, 1999.

H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In 30th ACM Symposium on Principles of Programming Languages
(POPL’03), pages 224–235. ACM Press, 2003. .

N. Zeilberger. On the unity of duality. Annals of Pure and Applied Logic,
153(1-3):66–96, 2008a.

N. Zeilberger. Focusing and higher-order abstract syntax. In 35th Annual
ACM Symposium on Principles of Programming Languages (POPL’08),
pages 359–369. ACM Press, 2008b.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1-2):147–165,
1997.

