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Abstract. In this paper, we advocate the use of Sparse Distributed Memories
(SDMs) for on-line, value-based reinforcement learning (RL). SDMs provide a
linear, local function approximation scheme, designed to work when a very large/
high-dimensional input (address) space has to be mapped into a much smaller
physical memory. We present an implementation of the SDM architecture for
on-line, value-based RL in continuous state spaces. An important contribution
of this paper is an algorithm for dynamic on-line allocation and adjustment of
memory resources for SDMs, which eliminates the need for choosing the memory
size and structure a priori. In our experiments, this algorithm provides very good
performance while efficiently managing the memory resources.

1 Introduction

The use of function approximators with on-line, value-based reinforcement learning
(RL) algorithms is the subject of much recent research and presents important theoret-
ical and practical challenges. For various reasons, detailed in Sect.2, linear, local ap-
proximators are often the preferred choice. Many practical RL applications have been
built around such approximators, e.g., CMACs [27], variable-resolution discretizations
[18, 23, 32] and memory-based methods [3, 8, 24, 26]. Radial basis function networks
(RBFNs) with fixed centers and widths have been used much less [10, 27], the main
difficulty being in the choice of parameters for the basis functions. Most of these meth-
ods, however, still face important difficulties when applied to on-line learning in large
domains. For example, CMACs and variable-resolution discretization approaches do
not scale well to high dimensions; related methods proposed in [18, 32] are intended for
off-line learning; the memory-based methods in [3, 26] do not address the issue of lim-
iting the memory size, which can grow very big during on-line reinforcement learning.
Global and/or nonlinear approximators, e.g., Neural Networks (NNs) and Support Vec-
tor Machines (SVMs) scale better, in principle. However, with on-line reinforcement
learning, they have no convergence guarantees and are subject to some other practical
problems. For example, NNs suffer from catastrophic forgetting and are notoriously
hard to tune when combined with RL algorithms; SVMs (even with recent incremental
training methods) rely on batches of previously seen data [5, 6, 16, 17, 20] which can be
problematic with on-line RL due to the non-stationary data distribution.

In this paper, we revive older ideas [27, 24, 8] of using Sparse Distributed Memo-
ries (SDMs) [13] and instance-based training [2] for value-function approximation in
on-line RL. SDMs provide a linear, local architecture, designed for the case where a
very large input space has to be mapped into a much smaller physical memory. One



of the advantages of instance-based methods is that they do not require choosing the
size or the structure of the approximator in advance, but shape it based on the observed
data. In general, local architectures, SDMs included, can be subject to the curse of
dimensionality, as an exponential number of local units may be required in order to
approximate some target functions accurately across the entire input space. However,
many researchers believe that most decision-making systems need high accuracy only
around low-dimensional manifolds of the state space or important state “highways”.
The SDM model enables us to take advantage of this fact.

In this paper, we explore the flexibility of the SDM model and some principles of
the instance-based learning to provide a function approximator that automatically allo-
cates resources only as needed based on the observed data. We propose a new approach
for such allocation and adaptation of SDMs, which unlike many methods from super-
vised learning, is capable of adapting limited memory resources to the changing data
distribution as the control strategies evolve during reinforcement learning. Based on
our experimental results, the proposed approach has great practical potential by provid-
ing high levels of performance while being very efficient both in terms of the resulting
memory sizes and computational time. It also remains close to the scope of existing
theoretical convergence guarantees.

The paper is organized as follows. In Sect.2, we introduce the notation for value-
based RL algorithms. We summarize the standard framework of SDMs and then present
our implementation of the SDM idea for the case of RL tasks in continuous state spaces
in Sect.3. In Sect.4, we describe our approach for dynamic memory allocation and ad-
justment in SDMs, designed to work with on-line RL algorithms. Experimental results
are presented in Sect.5. We end with conclusions and future work in Sect.6.

2 Reinforcement Learning

In the standard RL framework, a learning agent interacts with a stochastic environ-
ment at discrete time steps. On each time step t, the environment assumes some state
s from the state space S and the agent picks an action a from the action space A. As
a result, the environment transitions to a new state s′ and the agent receives a numer-
ical (stochastic) reward r. In a Markovian environment, the state transition distribu-
tion and the rewards depend only on 〈s,a〉. The goal of the agent is to find a policy
π : S×A→ [0,1] (a way of choosing actions) that optimizes a long-term performance
criterion, called return. Returns are usually defined as a cumulative function of rewards
received over time. Many RL algorithms compute value functions, which are expected
returns. For instance, the optimal action-value function with a discount factor γ ∈ (0,1]
is Q∗(s,a) = maxπ Eπ {rt+1 + γrt+2 + . . . |st = s,at = a} .

In this paper, we focus on RL algorithms that iteratively compute estimates of the
optimal action-value function from samples obtained by interacting with the environ-
ment. For example, at each time step, the SARSA algorithm [27] updates the value of
the current state-action pair 〈s,a〉 based on the observed reward r and the next state-
action pair 〈s′,a′〉, using learning rate α ∈ (0,1), as follows:

Q(s,a)← (1−α)Q(s,a)+α[r + γQ(s′,a′)] (1)



In domains with large or continuous state spaces, value functions can be represented
by function approximators. In this case, RL methods sample state-action pairs 〈s,a〉,
which represent inputs, and estimates of the action-value function, e.g., [r + γQ(s′,a′)],
representing targets. However, the problem of function approximation is more difficult
in the context of RL. Targets do not come from the true optimal value function, they
are “guesses” based on the current approximation (see Eq.1). Also, in on-line RL, the
agent’s action choices typically depend on the current value estimates in a (semi) greedy
manner. Hence, both the input distribution and the target function are non-stationary.
Moreover, during on-line learning, the training samples are not independent.

Some researchers (see, e.g., [3, 19]) argue that local methods are more suitable for
RL than global ones. Local approximators allow only a few local parameters to be
updated on every step, based on a distance to the current input. This is in contrast with
global models (e.g., sigmoid NNs), in which all parameters are updated on every step.
Local approximators do not suffer from catastrophic forgetting, which can be caused
by non-independent and non-stationary sampling in RL. Also, they quickly incorporate
new data in a local region of the input space, thus adjusting faster to the non-stationarity.

Theoretically, convergence properties are best understood for linear approxima-
tors, which compute the state value as a linear combination of some features of the
state. Relevant results include the convergence of policy evaluation [31], the conver-
gence of approximate dynamic programming with averagers [10], and non-divergence
of SARSA(λ) [11]. The behavior of non-linear approximators is still poorly understood
in theory, while practical evidence is not consistent.

3 Sparse Distributed Memory
The Sparse Distributed Memory architecture [13] was originally proposed for learning
input-output associations between data drawn from a binary space. The input can be
viewed as an “address” and the output is the desired content to be stored at that address.
The physical memory available is typically much smaller than the space of all possible
inputs, so the physical memory locations have to be distributed sparsely.

In SDMs, a sample of addresses is chosen (in any suitable manner) and physical
memory locations are associated only with these addresses. When some address x has
to be accessed, a set of the nearby locations is activated, as determined by a similarity
measure (e.g. Hamming distance, if addresses are binary). The original SDM design as-
sumes that the data to be memorized consists of bit vectors (with 0s substituted by -1s).
When such a vector f (x) needs to be stored, it is distributed between all the locations
activated by x, using bitwise addition. When the value for input (address) x is retrieved,
the content of all active locations is combined by summation and thresholding.

In this paper, we focus on the case in which the inputs are vectors of real values and
the outputs are also reals: f (x) : Rn→ R. In this case, other popular approximators, e.g.,
CMACs and RBFNs, can be related to SDMs. In RBFNs, each RBF unit can be viewed
as a memory location, where the center of the unit is the address and the similarity
measure is determined by the widths of the basis functions. The relationship between
CMACs and SDMs is discussed in Sect.5.

For presentation purposes and for our experiments, we chose a similarity mea-
sure based on symmetric triangular functions. The similarity between input vector x =



〈x1, ...,xn〉 and location h = 〈h1, ...,hn〉 is given by:

µ(h,x) = min
i=1,...,n

µi(h,x)

µi(h,x) =

{

1− |xi−hi|
βi

if |xi−hi| ≤ βi

0 otherwise

(2)

Here, 〈h1, ...,hn〉 represents the location address and βi are the activation radii in each
dimension. The similarity measure directly translates into the location’s degree of ac-
tivation, which, in this case, is continuous in [0,1]. This factorized similarity function
allows an immediate symbolic interpretation of the location’s semantics with respect
to each input dimension. Of course, the similarity measure can be defined in many
different ways (see, e.g., [2, 25]). It is possible to implement SDMs efficiently so that
isolating active locations does not require computing the similarity of a data point to
all locations, for example, by using kd-trees as in instance-based learning [26], or by
inverted indexing.

To predict the value of input x, we first find the set of active locations, Hx. Let
µk = µ(hk,x) be the similarity between input x and the kth location, hk, as in (2). Let wk
be a value stored at hk. Then the predicted value of x is:

f̂ (x) =
∑k∈Hx µkwk

∑k∈Hx µk (3)

This representation is equivalent to Normalized RBFNs. Using normalization provides a
better support (i.e., reduces non-smoothness in the approximate function) in the regions
of the input space where the basis functions overlap only little [15]. The normalized
activations of the memory locations, µm

∑k∈Hx µk , can be viewed as features of the input x.
Hence, the prediction is computed as a linear combination of local features.

Upon receiving a training sample 〈x, f (x)〉, the values stored in all active locations
are updated using the standard gradient descent algorithm for linear approximation:

wm := wm +α
µm

∑k∈Hx µk

[

f (x)− f̂ (x)
]

,∀m ∈ Hx (4)

where f̂ (x) is the prediction for input x and α ∈ (0,1) is the learning rate. In Sect.4, we
discuss how the addresses of the memory locations can be selected and updated.

SDMs can be incorporated into RL algorithms in a straightforward way. For in-
stance, in order to combine SDMs with SARSA(λ) [27], one approximator is used to
represent the action-value function, Q(s,a), for each action. The values stored in the
SDMs are updated after every transition 〈s,a〉 r

→ 〈s′,a′〉:

wm(ā) := wm(ā)+αem(ā)[r + γQ(s′,a′)−Q(s,a)], ∀ā ∈ A and m = 1, ...,Mā

Here, em(ā) are the eligibility traces associated with each location. For the replacing
traces method, they decay by γλ, λ ∈ [0,1], for all ā 6= a, and are reset to µm

∑k∈Hs(a) µk for

the performed action a. If the memory is big, a list of locations with traces greater than
some threshold can be maintained in order to perform this update efficiently.



4 Dynamic Resource Allocation
The distribution of the memory locations is crucial for the performance of SDMs and
related models, such as RBFNs. It is usually assumed that the memory size is fixed at
the beginning of learning and locations are either distributed uniformly randomly across
the input space, or determined by unsupervised learning methods, such as clustering. In
the second case, a batch of training data is assumed to exist from the beginning. Then
the parameters of the local units can be additionally adjusted during learning. Both in
the SDM and RBFN literature, there are several methods for doing this automatically.

For SDMs, the methods in [9, 12] periodically delete some units based on their
activation frequencies to free up resources for allocation elsewhere: rarely activated
locations are removed. According to our past experiments, this approach does not work
well with RL, as it often results in the removal of units associated with very important
states, such as goal states and catastrophic states, which usually have relatively low
activation frequencies for some time after they have been initially discovered.

Memory layout can also be adjusted using on-line, unsupervised learning methods,
as in [21, 28]. The approach introduced in [28] for binary SDMs slowly moves the
existing memory locations toward observed data. If the number of active locations for a
given training sample is too small, an inactive location is selected at random and moved
toward the current input in one, randomly selected, dimension. A symmetric adjustment
is made if too many locations are active. We implemented a version of this algorithm,
but it did not allow stable learning, despite significant tuning because it was unable to
track quickly the non-stationary data distribution produced by changing policies.

For RBFNs, one standard approach is to use gradient descent on the mean squared
error to adjust the centers and widths of RBFs [7, 15]. Interestingly, it was observed in
[15] that with RL, basis functions tend to move to regions in the state space with small
temporal-difference errors while leaving large portions of the state space uncovered
and failing to provide a good policy. As suggested in [15], a better method should also
incorporate information about the density of the visited states.

Resource-allocating RBF networks [4, 19, 1] are initially empty, and new units are
added based on the distance between the new data and the existing units, as well as
based on the prediction error on the new data (with different variations on how the error
is measured). These methods require lots of parameters to be chosen by the user, and it
is not clear, in general, whether reliance on the prediction error is robust in on-line RL,
because the error can vary a lot with changes in policy.

We propose a new method for determining automatically the SDM size and loca-
tion addresses based on the observed data. In this paper, we assume that the activation
radii of the memory locations are uniform and fixed by the user. The approach in [8],
formulated in the instance-based learning framework, is conceptually similar to ours.
However, technical differences between the two algorithms have some important impli-
cations, which we will discuss in more detail after the presentation of our method.

Our dynamic allocation algorithm starts with an empty memory, and locations are
added based on the observed data. Since the samples obtained during on-line RL are
correlated, memorizing all samples until the memory is filled can create unnecessary
densely populated areas, while leaving other parts of the state space uncovered. Our
goal is to add locations only if the memory is too sparse around the training samples.



Our algorithm has only one parameter, denoted N, which is the minimum number of
locations that we would like to see activated for a data sample. It is important to ensure
that these locations are “evenly distributed” across their local neighborhoods. Hence,
we do not allow locations to be too close. More specifically, for any pair of locations
hi,h j , we enforce a condition on their similarity:

µ(hi
,h j)≤

{

1− 1
N−1 N ≥ 3

0.5 N = 2
(5)

This condition means that the fewer locations are required in a neighborhood (the
smaller N), the farther apart these locations should be.

A new location can be added upon observing any new sample 〈(s,a), Q̄(s,a)〉, where
s = 〈s1, ...,sn〉 represents the input to the SDM for the action-value function of action
a, and Q̄(s,a) represents the target for the current state-action pair (s,a). For exam-
ple, Q̄(s,a) = r + γQ(s′,a′) in the case of SARSA algorithm. The following N-based
heuristic is aimed at ensuring a minimum of N active locations in the vicinity of s:

Rule 1: If fewer than N locations are activated by the input s, add a new location
centered at s, if its addition does not violate condition (5). The current target value,
Q̄(s,a), is stored in this location.

If during learning there is not enough exploration to ensure a good spread of the
visited states, the allocation using only the above heuristic proceeds very slowly, and
learning can be stalled for a long time (a phenomenon we observed in preliminary
experiments). To counteract this problem, we use an extension of the above heuristic,
which sets up memory resources faster, while still allocating them close to the actual
data samples:

Rule 2: If after applying Rule 1, the number of active locations is N ′ < N,
then (N−N ′) locations are randomly placed in the neighborhood of the current sample.
The addresses of new locations are sampled uniformly randomly from the intervals
[si−βi,si + βi] in each dimension, while enforcing condition (5). The value currently
predicted by the memory for the corresponding address is stored in such a location.

The parameter N in the above heuristics is reminiscent of the parameter k in the k-
nearest-neighbor methods, which determines the number of instances that are used for
locally weighted learning. Unlike the classical instance-based approach, our method
provides a way to selectively store training samples to obtain a good space coverage
with respect to this parameter while controlling the memory size.

If the memory size limit is reached but we still encounter a data sample for which
the number of active locations N ′ is smaller than the minimum desired number N, we
also allow existing locations to move around. Unlike the approach described in [28],
we do not adjust the existing addresses slowly. Instead, we pick at random and remove
one inactive location (or (N−N ′), if Rule 2 is used). The corresponding number of
new locations are added to the neighborhood of the current sample using Rule 1 or
2. When a location h is to be removed, we first find, among locations in the active set
Hh(a), the location h′ that is closest to h. Then, h and h′ are both replaced by another
location, h′′, placed midway between them. The value of h′′ is set to the average of the
values of h and h′. This approach, which we call randomized reallocation, allows the
memory to react quickly to the lack of resources in the regions visited under the current



behavior policy. At the same time, the randomized nature of the removals and the fact
that there are sufficient locations in most of the previously visited regions ensure that it
does not affect dramatically any particular area of the input space. The method is cheap
both in terms of computation and space, since the choice of locations to be removed is
not based on any extra information, like in other algorithms [9, 12, 14, 8].

Resource allocation proceeds in parallel with learning the memory content. On each
learning step, new locations are added or moved, if necessary, then the values stored
in the memory are updated as presented in Sect. 3. The resource adjustments can be
performed on prediction steps as well. If a new location is added in this case, the value
currently predicted for the corresponding address is stored in it. In our experiments, this
proved to be very beneficial, as it allowed the memory layout to adapt faster. It allows
the SDMs for all actions to get adjusted to the current state distribution, as opposed to
adjusting only the SDM for the performed action.

Our approach is conceptually similar to the instance-based approach presented in
[8], which also uses heuristics for selectively adding new instances to the memory and
for removing some of them when the memory capacity limit is reached. The method
was formulated in the classical instance-based framework [2], based on the definition
of two functions: a distance metric in the input space, e.g., the Euclidean distance, and
weighting functions, e.g., Gaussian, that transform the distances into weights to be used
in locally weighted regression. In [8], as well as earlier in [24], new instances are added
to the memory if they are farther away from the existing instances than a specified
threshold. Such a threshold is defined in terms of the distance metric and is not related
to the bandwidths of the weighting functions. If this correspondence is not explicitly
addressed, the obtained memory can be too sparse. While it is easy to prevent this in
the case of a uniform, fixed bandwidth of the weighting functions, the approach does
not generalize to varying bandwidths. Although adaptive bandwidths were claimed to
be used in [8], no discussion was provided for the practical behavior of the method and
its parameter settings.

Our approach, on the other hand, is directly related to the similarity function. It
ensures that the memory locations are spread appropriately with respect to the radii of
the similarity function and allows a coherent extension to the case of variable radii. In
our approach, the similarity threshold is implied by the parameter N (minimum desired
number of activated locations). This may seem to be equivalent; however, more than N
training samples can satisfy the similarity threshold and thus be added to the memory.
Thus, using the parameter N provides a more conservative way to control the size of the
memory, as was confirmed by our experiments (see Sect.5).

The heuristic in [8] for removing instances in the case when the memory capacity
limit is reached is also different from ours. It suggests discarding the instances whose
removal introduces the least error in the prediction of the values of their neighbors:

errorm =
1
|Hhm |

∑
k∈Hhm

|Q(hk,a)−Q−m(hk,a)| (6)

where Q−m(hk,a) is the prediction for input hk without the instance hm. In Sect.5,
we experimentally show that this error-based heuristic and the randomized heuristic
behave differently in practice. The former is also more expensive computationally: it



requires either to perform a complete memory sweep when reallocation is necessary,
or to perform (|Hhm | − 1) additional predictions on every memory access in order to
maintain (approximate) error estimates. The cost of the randomized heuristic, on the
other hand, is that of generating a random number and applies only when a new location
actually has to be added in an underrepresented region of the input space.

5 Experimental Results

We tested SDMs incorporated into the SARSA(0) algorithm with ε-greedy exploration.
In this paper, we provide detailed experimental results on the standard Montain-Car
benchmark [27], commonly used in the RL community. Due to the space limitation, we
cannot include here the results on other domains, but we refer the reader to [22] for
case studies on two other tasks: a variant of the hunter-prey domain with up to 11 state
variables and an instance of a swimmer motor-control task with 6 state variables.

Mountain-Car is an episodic task, with a two-dimensional continuous state space,
where the agent has to learn to drive up a hill from a valley. Episodes were terminated
when the goal was reached, or after 1000 steps. To obtain a baseline for performance,
we used the popular CMAC (tile coding) approximator [27], which is particularly suc-
cessful on this domain. CMACs are related to SDMs, but the memory layout is fixed a
priori, with the locations (tiles) arranged in several superimposed grids (tilings). Each
input activates one tile in each tiling, and the activation mechanism is binary. Since
CMACs rely on the discretization of the input space, their size scales exponentially
with the input dimensionality. We used CMACs and SDMs of ”similar resolutions”: If
a CMAC had T tilings, we set the parameter for dynamic memory allocation with the
N-based heuristic as N = T . The activation radii of the SDMs were set equal to the
size of the CMAC tiles. We also tested a dynamic allocation method in the style of [8],
where a new location was added when the similarity of the new sample to all existing
locations was below some threshold µ∗, whithout checking whether the number of ac-
tive locations already exceeds N. We will refer to it as the threshold-based heuristic. In
this case, we set the similarity thresholds µ∗ to the values that would be obtained from
Eq.(5) for the values of N and the activation radii used in the corresponding experiments
with the N-based heuristic. The objective was to investigate the resulting memory sizes,
layouts and the performance based on the two heuristics.

We conducted two sets of experiments as follows. In the first set, the start state of
each episode was chosen uniformly randomly. This is the most popular setting and it is
“easier” because the starting distribution ensures good exploration. Graphs (a), (b) and
(c) of Fig.1 present the returns of the greedy policies learned by CMACs and dynami-
cally allocated SDMs with the N-based and the threshold-based heuristics respectively.
In these experiments, the memory size limit was set sufficiently high to ensure that it
would not be reached and we could test the dynamic allocation method alone. The per-
formance of the SDMs is either the same or (in most cases) much better than that of
CMACs. It degrades more gracefully with the decrease in resolution. Moreover, SDMs
with the N-based heuristic always consume fewer resources, as shown in the legends of
the graphs. The asymptotic performance of the SDMs with the threshold-based heuristic
is similar to that of the N-based heuristic, but learning is slower. The resulting memo-
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(a) CMACs

Uniformly random start states

Size 500: 5 tilings; 0.17x0.014 tiles
Size 180: 5 tilings; 0.28x0.023 tiles
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(b) SDMs with N−based heuristic

Uniformly random start states

Size 309: N=5, radii <0.17,0.014>
Size 133: N=5, radii <0.28,0.023>
Size 82: N=3, radii <0.28,0.023>
Size 59: N=3, radii <0.34,0.028>
Size 31: N=2, radii <0.425,0.035>
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(c) SDMs with threshold−based heuristic

Uniformly random start states

Size 1342: µ*=0.75, radii <0.17,0.014>
Size 534: µ*=0.75, radii <0.28,0.023>
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Size 56: µ*=0.5, radii <0.425,0.035>
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(d) CMACs
Single start state

Size 500: 5 tilings; 0.17x0.014 tiles
Size 180: 5 tilings; 0.28x0.023 tiles
Size 108: 3 tilings; 0.28x0.023 tiles
Size 75: 3 tilings; 0.34x0.028 tiles
Size 32: 2 tilings; 0.425x0.035 tiles
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(e) SDMs with N−based heuristic

Single start state

Size 230: N=5, radii <0.17,0.014>
Size 102: N=5, radii <0.28,0.023>
Size 67: N=3, radii <0.28,0.023>
Size 46: N=3, radii <0.34,0.028>
Size 23: N=2, radii <0.425,0.035>
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(f) SDMs with threshold−based heuristic
Single start state

Size 965: µ*=0.75, radii <0.17,0.014>
Size 364: µ*=0.75, radii <0.28,0.023>
Size 91: µ*=0.5, radii <0.28,0.023>
Size 70: µ*=0.5, radii <0.34,0.028>
Size 43: µ*=0.5, radii <0.425,0.035>
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(g) SDM layout (N−based)
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(i) Adjustments on prediction 

Fig. 1. Dynamic allocation method. Returns of the greedy policies are averaged over 30 runs.
On graphs (a)-(c), returns are also averaged over 50 fixed starting test states. SDM sizes represent
maximum over 30 runs. The exploration parameter ε and the learning step α were optimized
for each architecture. Graphs (g) and (h) are for SDMs with radii 〈0.34,0.028〉, and N = 5 and
µ∗ = 0.5 respectively.

ries are between 2-4 times larger with the threshold-based heuristic, which slows down
learning, because more training is required for larger architectures. As mentioned be-
fore, the N-based heuristic allows better control over the amount of allocated resources
and, as the experiments show, results in faster learning.

In the second set of experiments, we used a single start state where the car starts
at the bottom of the hill with zero velocity. In this setting, exploration is much more
difficult. We specifically wanted to test the performance of SDMs when the training
samples are highly correlated and distributed non-uniformly. The results are shown in
the middle row of Fig.1. SDMs with the N-based heuristic (using Rule 1 and 2)
generally learn better policies than CMACs and take advantage of the fact that not
all states are visited. The resulting memory sizes for SDMs (graph (e)) are roughly
30% smaller than in the previous experiment (graph (b)). SDMs with the threshold-
based heuristic, however, were much slower and exhibited much higher variance (not
shown here) with this single start-state training, even though they had a large number
of locations placed exactly along the followed trajectories. This demonstrates that, with
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Fig. 2. Adaptive reallocation method. Each point on graph (b) represents the average over 100
trials and 30 runs. Graph (c) depicts an action-value function for action “positive throttle”.

restricted exploration, Rule 2 of our approach, which allows adding locations close
to but not exactly on trajectories, helps to build quickly a compact model with good
generalization capabilities. Also, under limited exploration, smaller architectures (as
obtained with the N-based heuristic) should be expected to learn better as they suffer
less from over-fitting. Graphs (g) and (h) show examples of SDM layouts obtained
with the N-based and the threshold-based heuristics for these experiments. The SDMs
obtained with the N-based heuristic are less dense and span the state space better.

Finally, graph (i) of Fig.1 shows the performance improvement achieved by allow-
ing adjustments to the memory layout during predictions as well as during RL updates.
The graph shows results for the dynamic allocation method with the N-based heuristic
only, but performance improvements were observed with the threshold-based heuristic
and the reallocation algorithm as well. Note that all the experiments with the SDMs
(for both heuristics) discussed above were performed with this option enabled. With
both heuristics, most memory locations (∼ 85%) where added in the first 200 trials.

Graph (a) of Fig.2 shows the performance of the randomized reallocation method,
which allows moving the existing locations when the memory size limit is reached.
The experiments were performed for the single start-state problem using the N-based
heuristic for location additions. We tested two removal approaches: the randomized one,
introduced in this paper and the error-based, suggested in [8]. This graph shows experi-
ments with memory parameters N = 5,β = 〈0.17,0.014〉. The memory size limits were
chosen to be equal to 230 and 175 which is 100% and 75% of the size obtained for the
same memory resolution with the dynamic allocation method and the N-based heuristic
in the previous experiments. The SDMs were initialized with all locations distributed
uniformly randomly across the state space and then allowed to move according to the
heuristics used. Note that the static memories of the same sizes were not able to learn a
good policy. As can be seen from graph (a), both removal heuristics exhibit very simi-
lar performance. However, as shown on graph (b), the behavior of the two heuristics is
quite different. With the randomized heuristic, most reallocations happen at the begin-
ning of learning and then their number decreases almost to zero. With the error-based
heuristic the number of reallocations is much higher. This happens because the addition
heuristic is density-based and the removal heuristic is error-based, and their objectives
are not “in agreement”. Graph (c) depicts 3000 location moves at the end of one train-
ing run, where removed locations are plotted with black dots and added locations with
white. A mixed black-and-white cloud in one region of the state space shows that most
removals happen in a particular region where the value function is relatively flat. But



the same region is then visited and found to be too sparsely populated, so locations are
added back. Apparently such a cycle repeats itself. As mentioned earlier, with the ran-
domized heuristic, no specific area of the input space is affected by removals more than
others, so cyclic behavior is minimized. The randomized heuristic is computationally
much cheaper while showing more stable behavior and providing good policies. The
error-based heuristic can still be an interesting choice, provided that it is in tune with
the addition heuristic.

6 Conclusion and Future Work

In this paper, we combined on-line value-based RL with a function approximation
model based on SDMs. This model is local and linear, which is often preferred in
RL and has enough flexibility to scale well with large and highly dimensional input
spaces. Our main contribution is a new approach for dynamic allocation and adaptation
of the memory resources specifically suited for on-line value-based RL. Our approach
to adding new memory locations provides a disciplined way to control the memory size
and density taking into account the location activation mechanism and can be readily
used in the future with activation functions that have variable bandwidth across loca-
tions. Moreover, our method facilitates learning under constrained exploration scenar-
ios. We demonstrated the importance of agreement between the methods for adding and
removing the memory locations which have to be used together if the memory limit is
reached. Our randomized approach to adaptive reallocation of the memory resources
provides good performance and a stable behavior. Our algorithm allows learning good
control policies while being simple to implement and efficient computationally and
memory-wise.

One of the issues that we will address in the future is the automatic selection of
the activation radii for the SDM locations while allowing them to vary across the state
space. Our resource allocation mechanism is based only on the distribution of the inputs.
In the future, we also plan to explore mechanisms that also use information about the
function shape (e.g., function linearity, decision boundaries, as in [18]), so that the
memory layout is adjusted taking into account the complexity of the target function.
Finally, we will investigate the theoretical properties of the SDM model starting from
currently available results in [29, 30].

References

1. Anderson, C. (1993). Q-learning with hidden-unit restarting. NIPS, 81-88.
2. Atkeson, C.G, Moore, A.W. & Schaal, S. (1997). Locally weighted learning Artificial Intelli-

gence Review, 11-73.
3. Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally weighted learning for control.

Artificial Intelligence Review, 75–113
4. Blanzieri, E., & Katenkamp, P. (1996). Learning RBFNs on-line. ICML, 37-45.
5. Dietterich, T. G., & Wang, X. (2001). Batch value function approximation via support vectors.

NIPS, 444-450.
6. Engel, Y., Mannor, S. & Meir, R. (2003). Bayes meets Bellman: The Gaussian process ap-

proach to temporal difference learning. ICML, 154-161.



7. Flachs, B., & J.Flynn, M. (1992). Sparse adaptive memory (Tech. Rep. 92-530). Computer
Systems Lab., Dptm. of Electrical Engineering and Computer Science, Stanford University.

8. Forbes,J.R.N. (2002). Reinforcement learning for autonomous vehicles. Ph.D. Thesis, Com-
puter Science Department, University of California at Berkeley.

9. Fritzke, B. (1997). A self-organizing network that can follow non-stationary distributions.
ICANN, 613-618.

10. Gordon, G.J. (1995). Stable function approximation in dynamic programming. ICML, 261-
268.

11. Gordon, G.J. (2000). Reinforcement learning with function approximation converges to a
region. NIPS, 1040-1046.

12. Hely, T.A., Willshaw, D.J. & Hayes, G.M.(1997). A new approach to Kanerva’s sparse
distributed memory. Neural Networks, 3, 791-794.

13. Kanerva, P. (1993). Sparse distributed memory and related models. In M. Hassoun (Ed.),
Associative neural memories: Theory and implementation, Oxford University Press, 50-76.

14. Kondo, T., & Ito, K. (2002). A reinforcement learning with adaptive state space recruitment
strategy for real autonomous mobile robots. IROS.

15. Kretchmar, R. & Anderson, C. (1997). Comparison of CMACs and RBFs for local function
approximators in reinforcement learning. IEEE Int. Conf. on Neural Networks, 834-837.

16. Lagoudakis, M.G., & Parr, R. (2003). Reinforcement learning as classification: Leveraging
modern classifiers. ICML, 424-431.

17. Martin, M. (2002). On-line support vector machine regression. ECML, 282-294.
18. Munos, R., & Moore, A. (2000). Variable resolution discretization in optimal control. Ma-

chine learning, 49, 291-323.
19. Platt, J. (1991). A resource-allocating network for function interpolation. Neural Computa-

tion, 3, 213–225.
20. Ralaivola, L., & d’Alche Buc, F. (2001). Incremental support vector machine learning: a

local approach. ICANN.
21. Rao, R. P.N., & Fuentes, O. (1998). Hierarchical learning of navigational behaviors in an

autonomous robot using a predictive SDM. Autonomous Robots, 5, 297-316.
22. Ratitch, B., Mahadevan, S. & Precup, D. (2004). Sparse distribute memories as function ap-

proximators in value-based reinforcement learning: Case studies. AAAI Workshop on Learning
and Planning in Markov Processes.

23. Reynolds, S. I. (2000). Decision boundary partitioning: variable resolution model-free rein-
forcement learning. ICML, 783-790.

24. Santamaria, J. C., Sutton, R. S., & Ram, A. (1998). Experiments with reinforcement learning
in problems with continuous state and action spaces. Adaptive Behavior, 6, 163–218.

25. Scholkopf, B. (2000). The kernel trick for distances. NIPS, 301–307
26. Smart, W. & Kaelbling, L.P. (2000). Practical reinforcement learning in continuous spaces

ICML, 903-910.
27. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. An introduction. The MIT

Press.
28. Sutton, R. S., & Whitehead, S. D. (1993). Online learning with random representations.

ICML, 314–321.
29. Szepesvari, C. & Smart, W. D. (2004). Convergent value function approximation methods.

http://www.sztaki.hu/∼szcsaba/papers/szws icml2004 rlfapp.pdf
30. Tsitsiklis, J.N. & Van Roy, B. (1996). Feature-based methods for large scale dynamic pro-

gramming. Machine Learning, pages 59-94.
31. Tsitsiklis, J.N. & Van Roy, B. (1997). An analysis of temporal difference learning with

function approximation. IEEE Transactions on Automatic Control, 42, 674-690.
32. Uther, W. T. B. & Veloso, M. M. (1998). Tree based discretization for continuous state space

reinforcement learning AAAI, 769–774.


